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Abstract Accurate detection and localization of

mechanical discontinuities are essential for industries

dependent on natural, synthetic and composite mate-

rials, e.g. construction, aerospace, oil and gas, ceram-

ics, metal, and geothermal industries, to name a few.

In this study, a physics-informed machine learning

workflow is developed for detecting and locating

single, linear mechanical discontinuity in homoge-

neous 2D material by processing the full-waveforms

recorded during multi-point compressional/shear

transmission measurements. This work is based on

fundamental aspects of simulation of wave propaga-

tion, signal processing, feature engineering, and data-

driven model evaluation. k-Wave simulator is imple-

mented to model the compressional and shear wave

transmission through the 2D numerical model of a

material containing single mechanical discontinuity.

For a specific source-sensor configuration, the newly

developed data-driven workflow can detect and locate

the mechanical discontinuity with an accuracy higher

than 0.9 in terms of coefficient of determination.

AdaBoost regressor with k-Nearest Neighbor as a base

estimator significantly outperforms all other models.

In terms of sensitivity to noise, k-Nearest Neighbor is

the most robust to both gaussian and uniform

distributed noise.

Keywords Machine learning � Regression � Wave

propagation � Mechanical discontinuity � Signal
processing � Feature engineering

1 Introduction

It is important to detect, locate, and characterize the

mechanical discontinuities in natural, synthetic, com-

posite and engineering materials. For purposes of

energy security and environmental sustainability, the

U.S. Department of Energy (DOE) Office of Basic

Energy Science, Office of Fossil Energy, and Geother-

mal Technologies Office & U.S. National Science

Foundation (NSF) Division of Earth Sciences empha-

size the need to understand, predict, & control the

mechanical discontinuities in subsurface (Pyrak-Nolte

et al. 2015). From a geophysical standpoint,
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mechanical discontinuities refer to mechanical sepa-

ration or interface, such as joints, fractures, and

bedding planes (Osogba et al. 2020). Such disconti-

nuities occur at various scales from interfaces of

mineral to tectonic plates that are generated in various

forms by several distinct processes. Mechanical dis-

continuities are important for producing the subsur-

face earth resources because they provide potential

transport pathways and determine the bulk mechani-

cal, physical and chemical behavior of the subsurface

system. Various aspects of subsurface engineering

rely heavily on robust characterization and control of

mechanical discontinuities in subsurface.

In the petroleum and geothermal industries, a wide

variety of materials, tools and techniques are utilized

to identify, map, and characterize the induced and

natural fractures. Laboratory tests are carried out to

detect discontinuities, observe the failure mechanisms

during uniaxial compressive strength tests, and ana-

lyze the factors affecting their mechanical strength

(Szwedzicki and Shamu 1999). Other techniques for

detecting fractures use core data, borehole image log

(Kabir et al. 2009), seismic section (Kanasewich and

Phadke 1988), well logs (Shalaby and Islam 2017), in-

situ stress data, and well flow tests. However, each

technique has its own limitations, e.g. the study of

conventional logs suffers from a low spatial resolution

and direct study of cores and image logs is associated

with high costs (Kosari et al. 2015).

For purposes of extraction of subsurface earth

resources, the mechanical discontinuities are charac-

terized at different scales. Well testing and seismic

tomography is used to characterize the beddings,

joints, and faults at meter to kilometer scale. Resis-

tivity/dielectric imaging is a well logging technique

used to quantify the beddings and fractures in the near-

wellbore region at centimeter to meter scale. In the

civil engineering discipline, sonic and ultra-sonic

waves are utilized to measure the discontinuities in

steel, concrete, and other materials at centimeter scale

for purposes of structure health monitoring. Many

non-destructive tests are developed for the character-

ization of cracks at millimeter scale such as acoustic

emission (AE) monitoring (Godin et al. 2018), ultra-

sonic imaging, and computer tomography (CT) scan-

ning have been developed and applied concurrently to

detect defects and visualize the failure process. AE

tools are designed for monitoring acoustic emissions

produced during crack initiation (Godin et al. 2018). A

major issue in the use of AE technique is that the signal

discrimination is difficult. Ultrasonic wave imaging

captures the multiple reflections of ultrasonic waves

due to the presence of discontinuity. Ultrasonic

imaging detects discontinuities at laboratory scale

(Lee et al. 2009). CT scanning is a non-destructive

imaging technique that utilizes X-ray technology and

mathematical reconstruction algorithms to view cross-

sectional slices of a material. Although CT-scanners

are medical diagnostic tools they have been used

extensively by the petroleum industry for studying

reservoir cores for more than 20 years (Siddiqui and

Khamees 2004). However, compared to other meth-

ods, CT scanning is relatively time consuming and

expensive.

1.1 Motivation

Recent advances in machine learning methods have

allowed us to process large, high-dimensional datasets

for purposes of enhanced detection of anomalies and

processes with high granularity at multiple scales. As a

replacement for traditional experimental data analysis,

in this paper, we develop a regressor-based machine-

learning workflow to precisely locate mechanical

discontinuity by processing multipoint compressional

and shear wave transmission measurements. In an

earlier study, we developed a classifier-based

machine-learning workflow to categorically charac-

terize certain bulk properties of the embedded crack

clusters, such as orientation, dispersion, and spatial

distribution, by processing multipoint compressional

and shear wave traveltime measurements (Misra and

Li 2019; Liu and Misra 2022). In the previous study,

we did not account for the mode conversion, reflec-

tion, attenuation, and dispersion of the wave propaga-

tion. Unlike the previous study that processed only the

traveltime measurements, we process the full wave-

forms in this study.

Elastic wave propagation is simulated using

k-Wave, an implementation of the k-space pseu-

dospectral method, which can handle reflection,

scattering, and mode conversion. k-Wave implemen-

tation honors the fact that elastic waves in materials

are subject to attenuation and dispersion in a broad

range of frequencies. The configuration of

source/transmitter and sensors/receivers used in this

study is inspired by real-world laboratory experiments

(Bhoumick et al. 2018; Chakravarty et al. 2020).
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Moreover, this study suggests that the combination of

regression model, synthetic data generation using

k-Wave simulator, and single-source based multipoint

wave-transmission measurements is an effective tool

for visualizing/locating the discontinuity. The pro-

posed method needs to be further developed to handle

dynamic spatiotemporal evolution of the discontinuity

and the structural complexity of the discontinuity.

2 Introduction to the workflow

First, the wave propagation phenomenon is simulated

in 2D material containing various types of single,

linear mechanical discontinuity. The embedded dis-

continuity varies in terms of the size, location, and

orientation. Full waveform recordings are captured by

multiple sensors located on the surface/boundary of

the 2D material. Regressors are then developed to

predict the location, orientation, and size of the

discontinuity by training and testing the regressors to

relate the full waveform recordings to the continuous

states of the single, linear discontinuity in the 2D

material. Two main modules in this workflow include

the wave-propagation simulation model followed by

the data preprocessing and regression analysis of the

full waveform recordings at multiple locations

(Fig. 1).

Physics-based open-source k-Wave toolbox is used

to simulate the elastic wave propagation, originating

from a single pressure source, through a 2D material

containing single discontinuity. The full waveforms

are recorded by 20 receivers placed on the surface of

the material. The full waveform at each receiver is

recorded for 30 microseconds, discretized into 1500

time steps. Overall, 20 waveforms lasting for 30

microseconds each are generated for 13,000 materials

containing single discontinuity of varying length,

orientation, and location. k-Wave simulator was used

to generate 10,000 training samples and 3000 test

samples that took 55 h on a traditional computing

desktop. The simulation model used for generating the

training/testing data will be explained in Sect. 3. The

training dataset is used to construct the regressors,

whereas the testing dataset is used to evaluate the built

model. The training dataset and testing dataset should

not have common samples.

It is necessary to perform feature elimination/

selection as a preprocessing step to overcome the curse

of dimensionality because not all the 1500 time steps

recorded by each of the 20 receivers are relevant and

useful for the desired data-driven prediction. The

feature selection methods are discussed in Sect. 4.

Several relevant, independent, and informative fea-

tures are extracted from the discretized full waveforms

to serve as the inputs for the regression models. The

regressors learn to relate these waveform-derived

features with the location, size and orientation of the

discontinuity. The regressors detect and localize the

primary discontinuity by learning from the simulated

waveforms and corresponding state of discontinuity.

The performance of regression model is evaluated

using coefficient of determination, R square score,

which provides a measure of how well observed

outcomes are replicated by the model, based on the

proportion of total variation of outcomes explained by

the model (Castagna et al. 1985). The results of this

evaluation showed that the fracture could be identified

by the regression models with above 0.9 accuracy.

This will be discussed in Sect. 5. Good performance of

the regressors strongly depend on well-formulated

feature extraction and data pre-processing. Care must

be taken to ensure that there is no leakage of

information between the testing and training stages

during the data preprocessing steps.

3 Simulation model

3.1 k-Wave simulation

k-Wave is an open-source MATLAB toolbox

designed for time-domain acoustic and ultrasound

simulations in complex medium (Treeby and Cox

2010a, b). The toolbox can handle elastic wave

propagation based on two coupled first-order equa-

tions describing the stress and particle velocity within

the medium. The elastic simulation functions

(pstdElastic 2D and pstdElastic3D) are invoked to

perform the desired simulation. The four input struc-

tures, including kgrid, medium, source location and

sensor location, define the properties of the computa-

tional grid. In an isotropic elastic medium, the material

properties can be characterized by the shear and

compressional wave velocities, and the mass density.

The medium parameters are defined at the level of

computational grid. The distribution of medium
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properties, stress, and source determine the propaga-

tion of the wave field that can be captured at multiple

sensor locations. The time array is defined by the user

which must be evenly spaced and monotonic increas-

ing. The elastic modeling supports three types of

sources: an initial pressure distribution, time varying

velocity or time varying stress sources (Treeby et al.

2014). In this work, our source is an initial pressure

point located in the middle of the material’s left

boundary. The source and sensor locations are defined

as a series of Cartesian coordinates within the

computational grids. If the Cartesian coordinates do

not exactly match the coordinates of a grid point, the

output values are calculated from the interpolation.

Reflection and scattering are an important param-

eter of medium when simulating physical phenomena

like wave propagation. k-Wave treats the medium as

absorbing material for both compressional and shear

waves. A split-field perfectly matched layer (PML) is

used to absorb the waves at the edges of the

computational domain. Without this boundary layer,

the computation of the spatial derivates via the fast

Fourier transform (FFT) causes waves leaving one

side of the domain to reappear at the opposite side

(Treeby and Cox 2010a). The use of the PML thus

facilitates infinite domain simulations without

increase the size of the computational grid. However,

the computational time will still be dependent on the

total size of the grid including the PML. For accurate

simulation, it is crucial that all the source and sensor

do not lie with in this layer. By changing the

absorption and thickness of the PML, we could control

the reflections and wave wrapping from the bound-

aries. The absorption within the layer is set by

‘PMLAlpha’ in units of Nepers per grid point, which

is 2, by default.

k-Wave simulation has been experimentally vali-

dated in many studies (Martin et al. 2019; Treeby et al.

2012). The maximum supported frequency in k-Wave

vary based on the spatial grid size. If the grid spacing is

not uniform in each Cartesian direction, the maximum

frequency supported in all directions will be dictated

Fig. 1 Data-driven

workflow for learning to

detect and locate

mechanical discontinuities

in materials by processing

the full waveform

measurements at multiple

locations. This workflow

clarifies the dimensions of

the data set at each

significant feature reduction

step
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by the largest grid spacing. Therefore, when setting up

a simulation it is necessary to ensure that the grid

spacing is sufficiently small that the highest frequency

of interest can be supported by the grid. Moreover,

stability of the simulation is highly depending on the

spatial size of grid and timestep.

3.2 Experimental design

The 2D numerical models of crack-bearing material

implemented in this study are inspired by the labora-

tory experiments conducted at the Integrated Core

Characterization Center (Bhoumick et al. 2018; Misra

et al. 2019; Misra and Li 2019). In those studies, they

placed multiple sonic wave sources and receivers

around a porous cylindrical rock samples to visualize

crack distribution inside the rock samples. Our 2D

simulation model in k-Wave is inspired by real

experimental equipment. k-Wave simulator was used

to simulate wave propagation through 13,000 materi-

als containing single discontinuity of varying length,

orientation, and location.

3.2.1 Transmitter-receiver (source-sensor)

configuration

In our experiment, we built a square-shaped crack-

bearing material with dimension of 64 mm by 64 mm

discretized using 320 by 320 grids. 10 additional grids

representing the PML is added to all the four

boundaries. In total, the numerical model is discretized

using 340 by 340 grids. This partially effective PML

absorbs some of the waves approaching the boundaries

and majority of wave will be reflected back into the

material, which honors the real-world behavior of a

material sample. One source and 20 receivers are

located around this material to record the whole

waveform for 30 microseconds. Six sensors are placed

on each boundary are shown as black circles in Fig. 2.

The red triangle denotes the pressure source placed at

the center of the left boundary of the material.

The material is assumed to be sandstone with 20%

porosity. Porosity describes the volume of pore space

within the bulk volume of the material. The compres-

sional and shear wave velocities of the crack-bearing

material are set on the basis of commonly occurring

porous sandstones in the subsurface earth. Elastic

waves can be divided into body waves and surface

waves according to the way they propagate through a

material. Compressional (P-wave) and shear (S-wave)

waves as body waves are most often used for

inspecting defects (He et al. 2019). Without consid-

ering spatial variations of water saturation and pres-

sure, the compressional wave velocity of the crack-

bearing material is set to 3760 m/s, whereas the shear

wave velocity is set to 2300 m/s representing a 20%

water-filled porous sandstone (Hamada and Joseph

2020).

3.2.2 Mechanical discontinuity

Discontinuities include all types of mechanical break

or plane of weakness in a material. For example,

discontinuities can occur as joints, bedding plane,

fractures and shear zones that weaken the strength of

rock masses (Osogba et al. 2020). In our study, we will

refer discontinuities as cracks. The length of crack is

randomly selected from a uniform distribution ranging

from 10 to 30 mm (50 to 150 grids). The crack is

assumed to be filled with water and has a width around

0.6 mm.

3.2.3 Compressional and shear wave measurements

Both the compressional wave and shear wave can be

used for characterizing the crack-bearing material

(Klimentos and McCann 1990). The k-Wave

Fig. 2 Transmitter-receiver (source-sensor) configuration for a

crack-bearing material containing single, linear discontinuity.

One source/transmitter (red triangle) and 20 receivers/sensors

(black circle) are placed on the boundary of the material
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simulations include both compressional- and shear-

wave propagation. k-Wave can model the conversion

of P-wave energy into S-wave and vice versa at a

reflecting horizon. In addition, the normal and shear

components of the stress field are also recorded.

Figure 3 shows the waves recorded by the sensors

placed on the left boundary of the material (shown in

Fig. 2). The amplitude of the signal represents the

pressure intensity in Pa. There exists approximate

symmetry in the waves recorded above and below the

single source due to their symmetric placement. The

slight differences in the wave patterns between

subplots 1 and 2 are influenced by the heterogeneity

of the crack inside material and the presence of

mechanical discontinuity. We hypothesize that the use

of robust signal processing followed by machine

learning can identify these differences in the waves

recorded at multiple locations and then use those

differences to interpret the location, orientation and

length of the discontinuity. Notably, the wave mea-

surements last for 30 microseconds which is long

enough to capture the reflections from the boundaries,

even those from the farthest border. An important

requirement of the signal processing is to distinguish

the signatures of reflection from the boundaries and

those from the mechanical discontinuity.

3.3 Description of the dataset

In Machine Learning projects, we need a large dataset

which is a collection of features and targets. k-Wave

simulation is conducted on a numerical model of a

crack-bearing material for simulating the elastic wave

propagation through the material and for recording the

full waveform at 20 sensors placed on the boundary of

the material. Each simulation for a numerical model of

crack-bearing material constitutes a sample. The

features of the sample include the 20 full waveforms

recorded at 20 sensors for 30 microseconds, compris-

ing 1500 time steps. The waveform dataset recorded

for each simulation has 20 rows representing the 20
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Fig. 3 Waveforms recorded at six sensors located on the left boundary (source side) of the material, as shown in Fig. 2
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sensors and 1500 columns representing the equispaced

time steps that discretize the 30 microseconds. The

targets for each sample are the length, orientation, and

location of the single, linear discontinuity in the

material. As a rule of thumb, for training, a larger size

of the dataset ensures higher statistical significance of

the data-driven model. This study generates10,000

samples as training data and 3000 samples as testing

data. Each sample represents a crack-bearing material

with random length, orientation, and location of

mechanical discontinuity. The regression model learns

from training samples to relate the features (extracted

from the 20 full waveforms) with targets (length,

orientation, and location of single discontinuity). The

regression models are evaluated on the testing dataset.

4 Feature reduction

Feature reduction, also called dimensionality reduc-

tion, is commonly applied as a data preprocessing step

to overcome the curse of dimensionality. A data-

driven model has low computation cost, low memory

usage and low risk of overfitting when trained on low-

dimensional data, i.e. when samples are described

using less number of features. The full waveform

recorded at 20 locations for 1500 steps is a very high

dimensional data containing 30,000 features per

sample. Such a dataset needs robust dimensionality

reduction methods, such as Discrete Fourier Trans-

form (DFT) (Allen 1977; Weinstein and Ebert 1971),

Singular Value Decomposition (SVD) (De Lathauwer

et al. 2000; Klema and Laub 1980), and Discrete

Wavelet Transform (DWT) (Shensa 1992; Wu and

Misra 2019) and Short-Time Fourier Transform

(Chakravarty et al. 2020). There are methods for

piecewise aggregate representations of complex wave-

forms, including Piecewise Aggregate Approximation

(PAA) and Symbolic Aggregate approximation

(SAX).

Feature reduction techniques can also be divided

into feature selection and feature extraction. Feature

extraction could be distinguished from feature selec-

tion. Feature extraction creates new features from

functions of the original features, whereas feature

selection returns a subset of the features (Misra and

Wu 2019). Feature selection is for filtering irrelevant

or redundant features from the whole dataset that do

not contribute to the prediction variable. Feature

selection algorithms have three main categories:

wrappers, filters, and embedded methods. This work

tests the methods, such as low variance filter, mutual

information, Pearson correlation, and F-regression to

remove redundant information. In terms of comparing

the effectiveness of each feature extraction technique,

we have tried many commonly used approaches

including, Principal Component Analysis (PCA)

(Abdi and Williams 2010), Linear Discriminant

Analysis (LDA) (Ye et al. 2004), Nonnegative Matrix

Factorization (NMF) (Lee and Seung 2000), Sparse

Random Projection (SRP) (Bingham and Mannila

2001), and Gaussian Random Projection (GRP)

(Bingham and Mannila 2001). Finally, we get the

optimum combination of dimensionality reduction

algorithms for purposes of our study. The dimension-

ality reduction applied in our work starts with a low

variance threshold to drop low variance features (i.e.

the timesteps that do not have sufficient informa-

tion/variance). Then, we apply PAA to reduce the

number of noisy time points with a specific window

size. In the end, NMF extracts sparse and meaningful

features from a set of nonnegative data vectors. The

following sections will describe these two algorithms

in more detail.

4.1 Piecewise aggregate approximate (PAA)

Yi and Faloutsos (2000) and Keogh et al. (2001)

independently proposed PAA, a popular and compet-

itive basic dimensionality reduction method for high-

dimensional time-series data. It transforms a time

series X ¼ x1; . . .. . .xnð Þ into another time series ~X ¼
~x1; . . .. . .~xmð Þ with m� n, where each of ~xi is calcu-

lated as follows:

~xi ¼
m

n

Xn
mð Þi

j¼n
mði�1Þþ1

xj ð1Þ

The basic idea behind this algorithm is to reduce the

dimensionality of the time series data by splitting them

into equal-sized segments that are computed by

averaging the values in these segments (Keogh et al.

2001). The window size of our study is 8000, which is

still a high dimension for regression models.
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4.2 Non-negative matrix factorization (NMF)

NMF was first introduced by Paatero and Tapper

(Paatero and Tapper 1994) in 1994 and popularized in

an article by Lee and Seung (Lee and Seung 1999) in

1999. NMF approximates a given matrix Xwith a low-

rank matrix approximation such that X � WH. The

three matrices are assumed to have no negative

elements to speed up the factorization. For certain

dataset, non-negativity is an inherent property. This

results in a compressed version of the original matrix.

A well-known cost function of measuring the quality

of approximation WH is the Frobenius norm (Lee and

Seung 2000):

X �WHk k2F¼
X

i;j

X �WHð Þ2ij ð2Þ

This objective function is minimized by an alter-

nating minimization of W and H with a square error

expression. In the standard NMF algorithm W and H

are initialized with random nonnegative values before

the iteration (Berry et al. 2007).

4.3 Description of the dimensionally reduced

dataset

Figure 4 compares the original dataset (a) and reduced

dataset (b), used in this study. Subplot (a) aggregates

the 20 waveforms recorded by the 20 sensors over

1500 time steps, in total 30,000 features. The number

of retrieved features was decreased to 200 after using

the recommended dimensionality reduction proce-

dure, which included the low variance filter, PAA, and

NMF. However, if input features are significantly

correlated with each other, multicollinearity occurs.

This can result in distorted or misleading regressor

results. Therefore, we have always checked the

correlation between different variables in our dataset

with Pearson correlation filter. Any dimensionality

reduction performed on training data must also be

performed on new data and on the test dataset. First,

dimensionality reduction approach is learnt from the

training data. Following that, the learnt dimensionality

reduction approach is applied on the training data, test

data and new data. Machine Learning models perform

better when the distributions of the features are

approximately normally distributed and when the

scales/ranges of the features are relatively similar.

Therefore, feature transformation to Gaussian-like

distribution and standard scaler are the final data

preprocessing steps before the transformed features

are fed into the regression models.

5 Regression models to detect and locate

the mechanical discontinuity

5.1 Regression models used in this study

This section addresses methods for the detection and

characterization of discontinuity by using regression

Fig. 4 a Original 30,000 features corresponding to a crack-bearing material sample; b 200 features extracted from the original 30,000-

dimensional data corresponding to the crack-bearing material sample
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models, such as Random Forest (RF), K-Nearest

Neighbors (KNN), Adaptive Boosting (AdaBoost),

Gradient Boosting (GB), Support Vector Machine

(SVM) and Bayesian Ridge Regression. RF is an

ensemble learning method for classification and

regression. It is a bagging technique where several

decision trees are trained and deployed in parallel. RF

model aggregates the predictions of all the trees to

generate a final prediction based on a specific voting

strategy. RF is known for its efficiency on large-sized

databases. AdaBoost is another ensemble method

which takes weaker learners and combines them in

series to get a strong learner. The goal is grouping the

weak learners to create a stronger, more generalizable

and accurate model. Each subsequent weak learner

improves on the predictions of previous weak learner.

GB is also an ensemble method where multiple weak

learners are combined in series for the final prediction.

The major difference between AdaBoost and Gradient

Boosting is how the two algorithms fix the shortcom-

ings of pervious weak learners. AdaBoost improves

the shortcomings by assigning higher weights to

samples that were wrongly predicted by previous

weak learner that guides the learning to best final

prediction. Gradient boosting fixes the shortcomings

of the previous weak learners by using gradient

descent optimization of a loss function to reduce the

errors of the previous weak learners.

KNN algorithm is a non-parametric machine

learning method first developed by Evelyn Fix

(1951) and Joseph Hodges that was later expanded

(Altman 1992). KNN regression approximates the

association between features and targets by averaging

the target values of training samples within a specific

neighborhood of a new sample for which the target

needs to be predicted. The performance of KNN is

based on the quality of the training dataset. SVM

regression relies on kernel function to find the trend in

data by using high-order transformations of the

features. SVMs can efficiently perform a non-linear

task by using a kernel transformation, which implicitly

maps the samples from the original feature space to

high-dimensional feature space, in which the data-

driven modeling becomes tractable. The main idea is

to minimize error in prediction based on an error-

tolerance through an acceptable error margin. Another

method, Bayesian Ridge regression estimates a prob-

abilistic model by assuming the target is generated

from a normal (Gaussian) distribution characterized

by a mean and variance. Unlike Ordinary Linear

Regression,Bayesian approach does not estimate a single

optimal value of the model parameter but determines the

posterior distribution for the model parameters. Ordinary

linear regression assumes that there are enoughmeasure-

ments to find a meaningful model. Bayesian models are

more flexible with better performance on smaller sized

dataset. In the Bayesian approach, the data are supple-

mented with additional information in the form of a prior

probability distribution.

This study compares the performances of six

regression models capable of detecting and locating

a single mechanical discontinuity embedded in a

material. The prediction of each regressor can be

evaluated by using the coefficient of determination,

R2, which is a statistical measure of how well the

regression predictions approximate the training/test-

ing samples. This metric ranges typically from 0 to 1,

such that 1 represents perfect model prediction and

lower values denote poor predictions.

5.2 Performances of the regression models

In this section, we will discuss the performances of the

six regression models for the task of detecting and

locating the discontinuities. The performances are

shown in Fig. 5. The models are trained on 10,000

samples and tested on 3000 samples. Grid search was

used for hyperparameter optimization of each regres-

sor. AdaBoost regressor with KNN as a base estimator

performs the best, reaching an R2 of around 0.96 on

the testing dataset. This is an exceptional

Fig. 5 Testing accuracies of the 6 regression methods with 95%

confidence interval for the task of characterizing the orientation,

location, and length of the mechanical discontinuity embedded

in the material
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generalization performance in detecting and locating

embedded mechanical discontinuity. KNN, GB, and

SVR also performed well with an accuracy in the

range of 0.93 to 0.95. The average accuracy of these

models is around 0.9. Figure 5 shows the 95%

confidence interval for regressor performance as a

grey error bar. This confidence interval is very small,

the detail standard deviation of R-Squared is shown in

the Table 1. The generalization performances of KNN

regressor and SVR are visualized in ‘‘Appendix A’’.

Figures 8 and 9 illustrates the exceptional performance

of the regressors in detecting and locating the

mechanical discontinuity in 2D materials.

To support the exceptional performance of most of

the regressors, the generalization performance of

KNN is presented in Fig. 6 (right), where the location,

orientation, and size of a predicted discontinuity is

compared against the known/true discontinuity. The

shapes of the predicted and known discontinuity

coincide; there is a slight difference is the lengths of

the discontinuity. More such comparisons are pre-

sented in ‘‘Appendix A’’. The plot on the left contains

the locations of the center of discontinuity for the 3000

testing samples and their predictions. The red dots are

predicted x-coordinates of the center of discontinuity,

and the blue dots are the y-coordinates of the center of

discontinuity in the testing dataset. Overall, the

predicted locations agree with the known locations

because the dots lie on the X = Y line, indicating the

good match between true and predicted responses. It is

worth noting that predictions of x-coordinate are

slightly less accurate than y-coordinate predictions. It

seems possible that these results are due to the signal

source is on the x-axis, resulting in more x-axis

reflections in the signal as noise. It can be concluded

that the KNN regressor is a reliable method for

locating discontinuity.

6 Sensitivity of the regressors to noise in data

6.1 Noise generation

Noise is a common occurrence in all forms of measure-

ments, especially when measuring wave propagation

interactions with discontinuities because of energy loss

and complex scattering and reflection processes. To

investigate the robustness of the classifiers to the noise,

numerical experiments are carried out to analyze the

responses of the regressors to noisy data. The generation

of noise can be characterized in different ways such as

distribution or color of noise (Han and Misra 2018).

Different colors of noise have significantly different

properties. White noise is commonly used for impulse

response which has equal intensity at different frequen-

cies, giving it a constant power spectral density (Stein

2012).

In this work, experiments are conducted to analyze

the regression model response with a noisy dataset in

both training and testing data. The noise in the first

experiment is generated using a Gaussian Distribution

N ð0; hÞ. The level of noise is adjusted by changing the
variance hð0; 10; 50; 100Þof the Gaussian distribution.

Then, secondexperiment tests the regressor performance

with noise characterized using Uniform Distribution

Uð0; hÞ. The magnitude of noise in data varies with h.
When h is equal to zero, the dataset is free of noise.

6.2 Impact of noise on algorithms

As evident in Fig. 7, the generalization performances of

RF,KNN,AdaBoost,GB, SVRandBayesianRidge drop

in thepresenceofnoise and thedrop in accuracy increases

with increase in the noise level. Gaussian distribution of

noise reduces the accuracy more than the uniform

distribution of noise. KNN is the least sensitive to

uniformly distributed noise, with its R-squared dropping

Table 1 Comparison of the generalization performances of 4 of the 6 regressors when all sensors on specific boundary are removed

from the dataset. The number inside the parentheses are standard deviation of the regression accuracy

KNN AdaBoost Gradient Boosting SVR

All sensors 0.95 (0.003) 0.96 (0.007) 0.93 (0.003) 0.93 (0.002)

Remove left 0.96 (0.003) 0.96 (0.007) 0.93 (0.003) 0.94 (0.002)

Remove right 0.90 (0.002) 0.91 (0.005) 0.90 (0.004) 0.86 (0.003)

Remove upper 0.90 (0.002) 0.91 (0.005) 0.90 (0.004) 0.89 (0.002)

Remove lower 0.93 (0.003) 0.92 (0.005) 0.92 (0.003) 0.90 (0.002)
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by only 0.05. Both KNN and AdaBoost exhibit lower

sensitivity to Gaussian distributed noise as compared to

other regression techniques. As the noise level increases,

the accuracy of KNN decreases from 0.95 to 0.75, while

AdaBoost decreases from 0.96 to 0.77. The accuracies of

KNN, AdaBoost, GB, and SVR is above 0.9 when the

noise level has variance less than 10.

7 Analysis of sensor importance

Not all the sensors are significant for the characteri-

zation of discontinuity. For the desired

characterization task, the importance of the 20 sensors

placed on the 4 boundaries of the material (Fig. 2) can

be quantified by performing sensitivity test. There are

four sides/boundaries of the materials on which

sensors are placed. The information from all sensors

on each boundary is destroyed one boundary at a time

by removing the information of all the sensors on that

boundary. Following that, regressors were trained on

the data without information from sensors on specific

boundary. The newly trained models exhibited drop in

the generalization performance quantified in terms of

R2 (Table 1). The source and six sensors are located

on the left boundary. Six sensors are located on the

upper and lower boundaries. Six sensors are located on

Fig. 6 Evaluation of the generalization performance of KNN

regression on testing dataset a analysis of the predictions of

centers of discontinuity and b predictions of location,

orientation, and size of the discontinuity for a randomly selected

sample from testing dataset. More such comparisons are

available in ‘‘Appendix A’’

Fig. 7 Generalization performances of the 6 regressors when trained on dataset with different levels of noise exhibiting a Gaussian

distribution and b uniform distribution
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the right boundary opposite to the left boundary

containing the source. The sensors located on the right

boundary, opposite to the source, and the upper

boundary are much more important than the remaining

sensors on the left and lower boundaries. Without

influencing the overall accuracy, sensors on the left

boundary could be eliminated. This result can be

explained by the fact that the signals received by the

sensors on the left boundary do not actually pass

through the crack. Similarly, because the signal travels

through the entire material, the sensor on the right

boundary contains more information. The sensor

importance analysis strongly indicates that there is

no need for sensors on the boundary containing the

single source and all the sensors from one of the three

other boundaries can be removed without drastically

affecting the overall performances of the KNN,

AdaBoost and Gradient Boosting regressors, whose

generalization performances are above 0.9 despite the

information loss.

8 Conclusions

The study is based on the hypothesis that the use of

robust signal processing followed by machine learning

can identify small differences and minute patterns in

the waveforms recorded at multiple locations and then

use those differences/patterns to predict the location,

orientation and length of a single discontinuity

embedded in a material. k-Wave simulation is used

to model the elastic wave propagation in a 2D

numerical model of material containing single, linear

discontinuity. The modeling framework accounts for

wave attenuation, reflection, mode conversion, and

scattering including the effects of boundary. AdaBoost

regressor with k-Nearest Neighbor as the base esti-

mator significantly outperforms all other regression

models and achieves an exception generalization

performance of 0.96, in terms of the coefficient of

determination. Overall, k-Nearest Neighbor (KNN)

and Support Vector Regressor exhibit similar perfor-

mances as AdaBoost. To achieve this exceptional

performance, it is important that the high dimension-

ality of the multipoint time-series data be drastically

reduced by two orders of magnitude using low

variance filter, piecewise aggregate approximation,

and non-negative matrix factorization in sequence.

Moreover, feature transformation to Gaussian-like

distribution followed by feature scaling positively

contributes to the generalization performance of the

regressors. Random Forest and Bayesian Ridge

regression methods exhibit low performances. Ada-

boost and KNN regressors are relatively robust to

uniformly distributed noise. However, increase in the

variance of Gaussian noise adversely affects the

performances of the regressors. Sensor importance

study indicates that sensors are required on only two of

the three boundaries/sides of the material, excluding

the boundary containing the single source.

Data-driven workflow successfully predicted the

location, orientation, and size of a mechanical dis-

continuity in a material by processing the full wave-

forms recorded by 20 sensors that originated from a

single pressure-impulse source. However, the gener-

alizability of these results is subject to certain

limitations. For example, designed material is rela-

tively small due to the restrictions of the simulation

toolbox. Moreover, the crack generated in elastic wave

simulator is linear and random. Notwithstanding these

limitations, this study suggests that machine learning

could be useful for crack characterization and detec-

tion. Further research is required to develop a new

framework that incorporates machine learning and

physics-based simulation models with the propagation

of mechanical discontinuities.
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Appendix A: Visualization of the generalization

performance

See Figs. 8 and 9.
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Fig. 8 Visualization of the predictions of location, orientation,

and size of the discontinuity for six randomly selected material

samples from the testing dataset. Predictions were obtained

using the k-nearest neighbor regressor. Known discontinuity is

shown in red and the predicted discontinuity is shown in blue
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Fig. 9 Visualization of the predictions of location, orientation,

and size of the discontinuity for six randomly selected material

samples from the testing dataset. Predictions were obtained

using the support vector regressor. Known discontinuity is

shown in red and the predicted discontinuity is shown in blue

123

232 R. Liu, S. Misra



References

Abdi H, Williams LJ (2010) Principal component analysis.

Wiley Interdiscip Rev: Comput Stat 2(4):433–459

Allen J (1977) Short term spectral analysis, synthesis, and

modification by discrete Fourier transform. IEEE Trans

Acoust Speech Signal Process 25(3):235–238

Altman NS (1992) An introduction to kernel and nearest-

neighbor nonparametric regression. Am Stat

46(3):175–185

Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ

(2007) Algorithms and applications for approximate non-

negative matrix factorization. Comput Stat Data Anal

52(1):155–173

Bhoumick P, Sondergeld C, Rai C (2018) Mapping hydraulic

fracture in pyrophyllite using shear wave. In: 52nd US rock

mechanics/geomechanics symposium

Bingham E, Mannila H (2001) Random projection in dimen-

sionality reduction: applications to image and text data. In:

Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining

Castagna JP, Batzle ML, Eastwood RL (1985) Relationships

between compressional-wave and shear-wave velocities in

clastic silicate rocks. Geophysics 50(4):571–581

Chakravarty A, Misra S, Rai CS (2020) Hydraulic fracture

visualization by processing ultrasonic transmission wave-

forms using unsupervised learning A

Chakravarty A, Misra S, Rai CS (2021) Visualization of

hydraulic fracture using physics-informed clustering to

process ultrasonic shear waves. Int J Rock Mech Min Sci

137:104568

De Lathauwer L, DeMoor B, Vandewalle J (2000) Amultilinear

singular value decomposition. SIAM J Matrix Anal Appl

21(4):1253–1278

Fix E (1951) Discriminatory analysis: nonparametric discrimi-

nation, consistency properties. USAF School of Aviation

Medicine, Dayton

Godin N, Reynaud P, Fantozzi G (2018) Challenges and limi-

tations in the identification of acoustic emission signature

of damage mechanisms in composites materials. Appl Sci

8(8):1267

Hamada G, Joseph V (2020) Developed correlations between

sound wave velocity and porosity, permeability and

mechanical properties of sandstone core samples. Pet Res

5(4):326–338

Han Y, Misra S (2018) Joint petrophysical inversion of multi-

frequency conductivity and permittivity logs derived from

subsurface galvanic, induction, propagation, and dielectric

dispersion measurements. Geophysics 83(3):D97–D112

He J, Li H, Misra S (2019) Data-driven in-situ sonic-log syn-

thesis in shale reservoirs for geomechanical characteriza-

tion. SPE Reserv Eval Eng 22(04):1–225

Kabir S, Rivard P, He D-C, Thivierge P (2009) Damage

assessment for concrete structure using image processing

techniques on acoustic borehole imagery. Constr Build

Mater 23(10):3166–3174

Kanasewich ER, Phadke SM (1988) Imaging discontinuities on

seismic sections. Geophysics 53(3):334–345

Keogh E, Chakrabarti K, Pazzani M, Mehrotra S (2001)

Dimensionality reduction for fast similarity search in large

time series databases. Knowl Inf Syst 3(3):263–286

Klema V, Laub A (1980) The singular value decomposition: its

computation and some applications. IEEE Trans Autom

Control 25(2):164–176

Klimentos T, McCann C (1990) Relationships among com-

pressional wave attenuation, porosity, clay content, and

permeability in sandstones. Geophysics 55(8):998–1014

Kosari E, Ghareh-Cheloo S, Kadkhodaie-Ilkhchi A, Bahroudi A

(2015) Fracture characterization by fusion of geophysical

and geomechanical data: a case study from the Asmari

reservoir, the Central Zagros fold-thrust belt. J Geophys

Eng 12(1):130–143

Lee DD, Seung HS (1999) Learning the parts of objects by non-

negative matrix factorization. Nature 401(6755):788–791

Lee D, Seung HS (2000) Algorithms for non-negative matrix

factorization. Advances in neural information processing

systems 13

Lee I-M, Truong QH, Kim D-H, Lee J-S (2009) Discontinuity

detection ahead of a tunnel face utilizing ultrasonic

reflection: laboratory scale application. Tunn Undergr

Space Technol 24(2):155–163

Liu R,Misra S (2022) A generalized machine learning workflow

to visualize mechanical discontinuity. J Pet Sci Eng

210:109963

Martin E, Jaros J, Treeby BE (2019) Experimental validation of

k-Wave: nonlinear wave propagation in layered, absorbing

fluid media. IEEE Trans Ultrason Ferroelectr Freq Control

67(1):81–91

Misra S, Wu Y (2020) Machine learning assisted segmentation

of scanning electron microscopy images of organic-rich

shales with feature extraction and feature ranking. Gulf

Professional Publishing, Houston, pp 289–314

Misra S, Li H (2019) Noninvasive fracture characterization

based on the classification of sonic wave travel times.

Mach Learn Subsurf Charact. https://doi.org/10.1016/

b978-0-12-817736-5.00009-0

Misra S, Chakravarty A, Bhoumick P, Rai CS (2019) Unsu-

pervised clustering methods for noninvasive characteriza-

tion of fracture-induced geomechanical alterations. Mach

Learn Subsurf Charact, 39

Osogba O, Misra S, Xu C (2020) Machine learning workflow to

predict multi-target subsurface signals for the exploration

of hydrocarbon and water. Fuel 278:118357

Pyrak-Nolte LJ, DePaolo DJ, Pietraß T (2015) Controlling

subsurface fractures and fluid flow: a basic research

agenda. USDOE Office of Science (SC) (United States)

Paatero P, Tapper U (1994) Positive matrix factorization: a non-

negative factor model with optimal utilization of error

estimates of data values. Environmetrics 5(2):111–126

Shalaby MR, Islam MA (2017) Fracture detection using con-

ventional well logging in carbonate Matulla Formation,

Geisum oil field, southern Gulf of Suez, Egypt. J Pet Explor

Prod Technol 7(4):977–989

Shensa MJ (1992) The discrete wavelet transform: wedding the

a trous and Mallat algorithms. IEEE Trans Signal Process

40(10):2464–2482

Siddiqui S, Khamees AA (2004) Dual-energy CT-scanning

applications in rock characterization. In: SPE annual

technical conference and exhibition

123

Machine learning assisted detection and localization of mechanical discontinuity 233

https://doi.org/10.1016/b978-0-12-817736-5.00009-0
https://doi.org/10.1016/b978-0-12-817736-5.00009-0


Stein ML (2012) Interpolation of spatial data: some theory for

kriging. Springer, New York

Szwedzicki T, ShamuW (1999) The effect of discontinuities on

strength of rock samples. In: Proceedings of the Aus-

tralasian Institute of Mining and Metallurgy

Treeby BE, Cox BT (2010a) k-Wave: MATLAB toolbox for the

simulation and reconstruction of photoacoustic wave

fields. J Biomed Opt 15(2):021314

Treeby BE, Cox BT (2010b) Modeling power law absorption

and dispersion for acoustic propagation using the fractional

Laplacian. J Acoust Soc Am 127(5):2741–2748

Treeby BE, Jaros J, Rendell AP, Cox B (2012) Modeling non-

linear ultrasound propagation in heterogeneous media with

power law absorption using ak-space pseudospectral

method. J Acoust Soc Am 131(6):4324–4336

Treeby BE, Jaros J, Rohrbach D, Cox B (2014) Modelling

elastic wave propagation using the k-wave matlab toolbox.

In: 2014 IEEE international ultrasonics symposium

Weinstein S, Ebert P (1971) Data transmission by frequency-

division multiplexing using the discrete Fourier transform.

IEEE Trans Commun Technol 19(5):628–634

Wu Y, Misra S (2019) Intelligent image segmentation for

organic-rich shales using random forest, wavelet trans-

form, and hessian matrix. IEEE Geosci Remote Sens Lett

17(7):1144–1147

Ye J, Janardan R, Li Q (2004) Two-dimensional linear dis-

criminant analysis. Adv Neural Inf Process Syst

17:1569–1576

Yi B-K, Faloutsos C (2000) Fast time sequence indexing for

arbitrary Lp norms

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

234 R. Liu, S. Misra


	Machine learning assisted detection and localization of mechanical discontinuity
	Abstract
	Introduction
	Motivation

	Introduction to the workflow
	Simulation model
	k-Wave simulation
	Experimental design
	Transmitter-receiver (source-sensor) configuration
	Mechanical discontinuity
	Compressional and shear wave measurements

	Description of the dataset

	Feature reduction
	Piecewise aggregate approximate (PAA)
	Non-negative matrix factorization (NMF)
	Description of the dimensionally reduced dataset

	Regression models to detect and locate the mechanical discontinuity
	Regression models used in this study
	Performances of the regression models

	Sensitivity of the regressors to noise in data
	Noise generation
	Impact of noise on algorithms

	Analysis of sensor importance
	Conclusions
	Data availability
	Appendix A: Visualization of the generalization performance
	References




