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Abstract In this paper, we pose a configurational
optimization problem to derive the sensitivity of an
arbitrary objective to arbitrary motions of one or more
finite-sized heterogeneities inserted into a homoge-
neous domain. In the derivation, we pose an adjoint
boundary value problem and utilize the adjoint fields as
well as the definition of a generalized Eshelby energy-
momentum tensor for arbitrary objectives to express the
final result. The resulting sensitivity may be expressed
as surface integrals with jump terms across the het-
erogeneity boundaries that vanish on homogeneous
domains yielding generalized conservation laws for
arbitrary objectives. We then derive the specific path-
independent forms of the sensitivity of the objective to
arbitrary translation, rotation or scaling of the inserted
heterogeneities.Wenext illustrate the application of the
derived sensitivities to specific objectives common to
fracturemechanics aswell as to structural optimization.
The chosen objectives include strain energy, trade-off
between structural compliance and mass, and an arbi-
trary objective defined entirely on the boundary of the
domain. We show that for the strain energy objective,
the derived sensitivities naturally yield the classical J -,
L- and M-integrals of fracture mechanics. The theory
is implemented within an Isogeometric computational
framework for fracture modeling termed Enriched Iso-
geometric analysis (EIGA). The EIGA computational
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technique is used to optimally identify worst-case loca-
tions for line cracks that are inserted into the domain
as well as to optimally mitigate the risk of fracture due
to a crack at its worst-case location by sequentially
inserting and optimizing the configurations of circu-
lar/elliptical stiff/soft inclusions.

Keywords Configurational optimization · Material
derivative · Generalized conservation laws · Enriched
IGA · Fracture resistant design

1 Introduction

Linear Elastic Fracture Mechanics (LEFM) has served
as a powerful tool for analyzing behaviors of solids in
the presence of cracks. LEFM utilizes the concepts of
Stress Intensity Factor (SIF 1957) and Energy Release
Rate (ERR 1957) to characterize the near-tip singu-
lar stress field and the release of total potential energy
associated with crack extension, respectively. These
concepts togetherwith their experimentally determined
critical values have enabled engineers to assess the risk
of crack growth in a wide variety of materials and
structures. Further pioneering work led to the path-
independent J -integral of Rice (1968) to evaluate ERR
corresponding to self-similar extension of a line crack.
Knowles and Sternberg (1972), motivated by the pio-
neering work of Eshelby (1956), showed that Rice’s J -
integral is one of a class of conservation laws leading
to the J -, L-, and M-path-independent integrals corre-
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sponding to uniform translation, rotation, or scaling of
a homogeneous, elastostatic domain. Budiansky and
Rice (1973) argued based on the mathematical form
of rate of total potential energy that J -, L- and M-
integrals correspond to ERRs associated with transla-
tion, rotation, and scaling of a void or crack. Although
Rice’s J -integral and its applications have been exten-
sively investigated, there appear to be only a few studies
(Budiansky and O’Connell 1976; Freund 1978; He and
Hutchinson 1981; Herrmann andHerrmann 1981; Park
and Earmme 1986; Chen 2001; Chang andChien 2002)
providing physical insights into the properties and uses
of L- and M-integrals.

As mentioned, the path-independent J -, L- and M-
integrals may also be interpreted as providing sensi-
tivities with respect to the total potential energy of a
crack to translation, rotation and scaling. This suggests
that it may be possible to generalize the J -, L- and M-
integrals to derive sensitivities with respect to an arbi-
trary objective, of an arbitrary shaped heterogeneity
to translation, rotation and scaling. Such an approach
is philosophically related to the shape design sensitiv-
ity analysis of heterogeneities in a continuum (Dems
and Mroz 1983, 1984; Haug et al. 1986; Arora and
Cardoso 1992; Sokolowski and Zolesio 1992; Arora
1993) that is widely studied in the context of shape
optimization (see Pironneau 1984; Bennett and Botkin
1986).

Dems and Mroz (1986) first derived the varia-
tion of an arbitrary functional of stress, strain or dis-
placement to translation, rotation or size variation of
heterogeneities within a body. In general, the mate-
rial derivative concept of continuum mechanics has
been argued as being more intuitive for deriving the
sensitivities with respect to shape parameters (Arora
1993). However, such an use of material derivative
to derive general conservation laws with respect to
arbitrary objectives of an arbitrary shaped hetero-
geneity to translation, rotation and scaling does not
appear to exist in the prior literature. Therefore, in
the first part of this work, we pose a configurational
optimization problem with an arbitrary objective and
derive the material derivative to optimally locate het-
erogeneities within a solid. We show that the derived
material derivatives corresponding to translation, rota-
tion and scaling are a generalization of the classical
J -, L- and M-integrals for arbitrary objectives and for
heterogeneities with arbitrary shapes. We show that
the derived sensitivities naturally depend on a gen-

eralized Eshelby-Energy momentum tensor. We also
derive the path-independent forms of the sensitivi-
ties.

One application of the derived sensitivities is to
modify the structure with the goal of mitigating the
risk of catastrophic fracture. Thus, in the second part of
the study, we derive the sensitivities of common struc-
tural optimization objectives to arbitrary motions of
one or more finite-sized heterogeneities (cracks, voids
and inclusions) inserted into a domain. Such analyt-
ical derivatives of arbitrary objectives to configura-
tional changes of arbitrary shaped heterogeneities do
not appear to exist in the literature. Using the sensitivi-
ties numerically evaluated on path-independent inte-
grals, we optimally configure the heterogeneities to
either identify the critical location for a crack or to
ensure superior fracture resistance. The goal of this
second part of this study is closely related to recent
studies where material arrangement to ensure fracture
resistance of the structure has been explored (Russ
and Waisman 2019; Xia et al. 2018; Da and Qian
2020; Russ and Waisman 2020). However, the present
study differs from the above mentioned studies in
that the approach maintains explicit, sharp bound-
aries of the heterogeneities as they are configured
within the domain. In this sense, we utilize meth-
ods of shape optimal design than classical topology
optimization based on homogenization (Bendsøe and
Kikuchi 1988) or material density redistribution (Sub-
barayan Subbarayan). The cracks are also not regu-
larized using the phase field method in the present
study.

Although the present study does not consider nucle-
atingheterogeneities, identifying the location for nucle-
ating new heterogeneities, introducing an initial seed
geometry at the site and optimizing its shape was
carried out in the pioneering work of Eschenauer
termed the “bubble method” (Eschenauer and Kobelev
1974). The mathematical field of topological deriva-
tive (Sokolowski and Zochowski 1999; Cea et al.
2000) for nucleating infinitesimal spherical holes in the
domain represents a generalization of the theory behind
the bubble method. Later, Lin and Subbarayan (2013)
demonstrated that a configurational derivative associ-
atedwith a finite sized heterogeneity will yield the clas-
sical topological derivative when reduced to the spe-
cial case of infinitesimally small spherical inclusions
or holes.
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The numerical examples in the present study use a
general isogeometric analysis (IGA 2005) framework
based on Non-Uniform Rational B-Splines (NURBS)
for optimal design in the presence of cracks. The earli-
est demonstrations of the use of NURBS basis func-
tions for optimal design was by Renken and Sub-
barayan (2000) and by Natekar et al. (2004). Natekar
et al. used Boolean compositions of primitive geome-
tries of identical dimension to mathematically describe
and analyze a complex geometry. Later, Tambat and
Subbarayan (2012) developed enriched isogeometric
analysis (EIGA) that enabled one to compose and ana-
lyze geometrically lower-dimensional features such as
cracks or boundaries with known behavioral condi-
tions on an underlying higher-dimensional domain.
In this paper, we model cracks using EIGA. We
implement general path-independent sensitivity cal-
culation for arbitrary objectives and carryout opti-
mal design in the presence of heterogeneities such as
cracks, elliptical inclusions or voids. We solve numer-
ical examples to (a) identify locations in a structure
where a crack would cause the maximum damage
and (b) the optimal arrangement of heterogeneities
(voids/inclusions) that mitigate the influence of an
existing crack.

The rest of the paper is organized as follows. We
begin with the derivation of a generalized conservation
law valid for an arbitrary objective function by pos-
ing a configuration optimization problem in Sect. 2,
and deriving the material derivative of the Lagrangian
as the optimality condition to the posed problem. The
material derivative is thendescribedusing ageneralized
Eshelby energy-momentum tensor in Sect. 3. A sur-
face integral form of the material derivative is derived
in Sect. 4. The general material derivative is simpli-
fied for specific configurational changes of translation,
rotation and scaling to yield the generalized conserva-
tion laws in Sect. 5. The special forms of the general-
ized conservation law for various objectives including
strain energy and structural compliance are illustrated
in Sect. 6. Several numerical examples are solved in
Sect. 8 to illustrate the identification of worst-case con-
figuration for a crack as well as mitigation of a crack
through insertion of single as well as multiple hetero-
geneities. The results are discussed in Sect. 9, and the
paper is concluded in Sect. 10.

Fig. 1 Definition of the configurational optimization problem

2 Configurational optimization problem and
configurational derivative

In this section, we derive the configurational derivative
for an arbitrary objective function. We first introduce
the configurational optimization problem, and derive
configurational derivative by posing an adjoint bound-
ary value problem.

Given a solid domain � containing a heterogeneity
�p as shown in Fig. 1, the linear elastic responsewithin
the domain at any instant of time t is governed by the
principle of virtual work statement:

∫
�

ε : C : εa d� −
∫

�

b · ua d� −
∫

�t

t · ua = 0 (1)

where ε represents the infinitesimal strain tensor; εa

and ua are compatible virtual strains and displace-
ments, respectively; b denotes the body forces pre-
scribed in the domain; t denotes the surface tractions
prescribed on the domain boundary; C is the fourth-
rank tensor defining the linear elastic constitutive rela-
tion σ = C : ε between the stress σ and strain ε in the
domain. Implicit in the above statement is the require-
ment that ua = 0 on the portion of the boundary �u

where displacement boundary conditions are applied.
Also, �t is the portion of boundary where tractions are
prescribed, and the boundary of the domain is such that
� = �u ∪ �t and �u ∩ �t = ∅.
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In general, the heterogeneity can be either stiff or
soft. The goal of the configuration optimization prob-
lem is to optimally determine the reference location
xp of the heterogeneity, the orientation np of a refer-
ence axis passing through xp, and a rotation θ about
the reference axis as well as the heterogeneity shape
to achieve the greatest/least effect on a performance
objective defined in the domain and/or on the bound-
ary.

The configurational optimization problem is math-
ematically posed as the following instantaneous opti-
mization problem: determine, at any instant, the posi-
tion xp(t) and axis orientationnp(t), and rotation about
the axis θ(t) to:

minimize f (t) =
∫

�

ψ(u, ε, ξ ; t) d� +
∫

�

φ(u, η; t) d�

subject to c(t) =
∫

�

σ : εa d� −
∫

�

b · ua d� −
∫

�

t · ua d�

xp ⊆ �s ⊂ �

‖np‖ = 1 (2)

where ψ and φ are arbitrary design criteria evaluated
at the instant of time t in the domain and its bound-
ary, respectively; ξ and η are arbitrary design variables
defined on the domain (such as the domain material
cost) and boundary respectively that are not directly
connected to the configurational variables xp(t), np(t),
and θ(t). All the strain and displacement terms as well
as the design variables are allowed to be functions of
time. The time may correspond to the physical time or
a fictitious design time.

The Lagrangian corresponding to this problem is:

G(t) = f (t) − c(t) =
∫

�

ψ̄ d� +
∫

�

φ̄ d� (3)

where the usual Lagrange multiplier has been absorbed
into the arbitrary, but compatible virtual displacements
ua . Also, ψ̄ = ψ − σ : εa + b · ua and φ̄ = φ + t · ua
and the arguments of the functions have been left out
for ease of reading. The material time derivative of the
lagrangian is the following

Ġ(t) =
∫

�

˙̄ψ d� +
∫

�

˙̄φ d� +
∫

�

ψ̄(∇ · v) d�

+
∫

�

φ̄(∇ · v − n · ∇v · n) d� (4)

In the above equation, ˙̄ψ and ˙̄φ can be simplified by
introducing σ a = C : εa − ∂ψ

∂ε
, ba = ∂ψ

∂u and ta = ∂φ
∂u :

˙̄ψ = ∂ψ

∂t
− σ : ε̇a − σ a : ε̇ + ḃ · ua + b · u̇a + ba

· u̇ + ∂ψ

∂ξ
ξ̇ (5)

˙̄φ = ∂φ

∂t
+ ṫ · ua + t · u̇a + ta · u̇ + ∂φ

∂η
η̇ (6)

Now, given ε̇ = 1
2

(∇u̇T + ∇u̇
) − 1

2

(∇uT · ∇vT

+∇v · ∇u), assuming u̇ and 1
2

(∇u̇T + ∇u̇
)
are com-

patible, u̇ may be considered as a virtual displacement
leading to the following adjoint boundary value prob-
lem for the solution to ua :

∫
�

σ a : 1
2
(∇u̇T + ∇u̇) d� −

∫
�

ba · u̇ d�

−
∫

�t

ta · u̇ d� = 0 (7)

where

σ a = C : εa − ∂ψ

∂ε
in � (8)

ba = ∂ψ

∂u
in � (9)

u̇ = 0 on �u (10)

ta = ∂φ

∂u
on �t (11)

Similarly, given Eq. (1) and given ε̇a = 1
2

(
∇u̇aT

+∇u̇a)− 1
2

(
∇uaT · ∇vT + ∇v · ∇ua

)
, assuming u̇a

and 1
2

(
∇u̇aT + ∇u̇a

)
are compatible, terms in Eq. (4)

can be further simplified as

∫
�

˙̄ψ d�

+
∫

�

˙̄φ d�

=
∫

�

σ : (∇v · ∇ua) d�

+
∫

�

σ a : (∇v · ∇u) d�

+
∫

�

(
∂ψ

∂t
+ ∂ψ

∂ξ
ξ̇ ) d� (12)
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+
∫

�

(
∂φ

∂t
+ ∂φ

∂η
η̇) d�

+
∫

�

ḃ · ua d� +
∫

�

ṫ · ua d�

Thus, thematerial time derivative of the Lagrangian,
Eq. (4), reduces to the following:

Ġ(t) =
∫
�

[ψ − σ : εa

+ b · ua](∇ · v) d� +
∫
�

σ : (∇v · ∇ua) d�

+
∫
�

σa : (∇v · ∇u) d�

+
∫
�
[φ + t · ua](∇ · v − n · ∇v · n) d�

+
∫
�
ḃ · ua d� +

∫
�
ṫ · ua d�

+
∫
�

(
∂ψ

∂t
+ ∂ψ

∂ξ
ξ̇

)
d�

+
∫
�

(
∂φ

∂t
+ ∂φ

∂η
η̇

)
d�

(13)

The time derivative Ġ(t) is termed here as the config-
urational derivative. This derivative is identical to the
material derivative of the objective f (t) if the virtual
work constraint c(t) = 0 is satisfied at every instant.

3 Generalized Eshelby energy-momentum tensor
for arbitrary objectives

In this section, we introduce a generalized Eshelby
energy-momentum tensor �, which is not only helpful
to simplify Eq. (13), but also to derive the path inde-
pendent integrals later. Gathering the terms in Eq. (13),
we write

∫
�

[
ψ − σ : εa + b · ua] (∇ · v) d�

+
∫

�

σ : (∇v · ∇ua) d� +
∫

�

σ a : (∇v · ∇u) d�

=
∫

�

[
(ψ − σ : εa + b · ua)I + σ · ∇uaT + σ a

·∇uT
]

: ∇v d� =
∫

�

� : ∇v d�

(14)

Fig. 2 Path integral with many heterogeneities

where, the generalizedEshelby energy-momentum ten-
sor � is defined as,

� = (
ψ − σ : εa + b · ua) I + σ · ∇uaT + σ a · ∇uT

(15)

Thus, the configurational derivative of Eq. (13) can be
stated using the Eshelby energy momentum tensor as

Ġ =
∫

�

� : ∇v d� +
∫

�

[
φ + t · ua]

(∇ · v − n · ∇v · n) d� +
∫

�

ḃ · ua d�

+
∫

�

ṫ · ua d� +
∫

�

(
∂ψ

∂t
+ ∂ψ

∂ξ
ξ̇

)
d�

+
∫

�

(
∂φ

∂t
+ ∂φ

∂η
η̇

)
d�

(16)

4 Simplification to a surface integral

We begin by observing that

� : ∇v = ∇ · (� · v) − (∇ · �) · v (17)

Now, applying the divergence theorem, the first term
on the right hand side of Eq. (17) can be expressed on a
domain containingmultiple heterogeneities (see Fig. 2)
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as,

∫
�

∇ · (� · v) d� =
N∑
i=1

(∫
�pi

�n · �� · v d�

)

+
∫

�

n · � · v d� (18)

where,v is assumedcontinuous across�p , and the jump
term is defined as �•� = [•+ + •−]. Next, it is derived
and shown in Appendix A.1 that

∇ · � = −ε : ∇C : εa + ∇b · ua (19)

Thus, if ∇C = 0 and ∇b = 0 at a point in the domain,
then we obtain the useful property,

∇ · � = 0 (20)

Next, to simplify the material derivative of Eq. (16),
the following may be reasonable assumptions for most
problems:

– v = 0 and ∇v = 0 on �, assumed for convenience
since v is arbitrary.

– C and b have no local spatial variation in Eq. (19),
i.e., ∇ · � = 0

– Design criteria do not possess explicit dependence
on design time t , i.e, ∂ψ

∂t = ∂φ
∂t = 0.

– Applied body force in the domain and tractions on
the boundary do not vary with design time, i.e.,
ḃ = ṫ = 0.

– ψ and φ do not depend on any arbitrary design
variable, i.e., ∂ψ

∂ξ
= ∂φ

∂η
= 0, or, alternatively, ξ̇ =

η̇ = 0, i.e., ξ and η do not evolve at points in their
respective domains.

Under these assumptions, using Eq. (17), the material
derivative of Eq. (16) can be reduced to

Ġ(t) =
N∑
i=1

(∫
�pi

�n · �� · v d�

)
(21)

Clearly, on a homogeneous domain where the jump
terms vanish, Ġ(t) = 0. Therefore, Ġ(t) is a conserved
integral.

Finally, using Eq. (18), the integration can be carried
out in an arbitrary subdomain �s and its boundary �s

(see Fig. 2) rather than evaluate the jump term:

Ġ(t) =
N∑
i=1

(∫
�pi

�n · �� · v d�

)

=
∫

�s

� : ∇v d� −
∫

�s

n · � · v d� (22)

The choice between usingEqs. (21) and (22) to evaluate
thematerial derivative is one of computational accuracy
and convenience.

5 Sensitivity to translation, rotation and scaling

In this section, we derive the forms of the configura-
tional derivative corresponding to specific configura-
tional changes of translation, rotation, and scaling.

We begin by considering a general transformation
of the following form to describe the velocity in the
domain �s :

v = A(t) · x + c(t) (23)

where, A is a second-order tensor and c is a first-order
tensor. The final result in their path-independent forms
are presented below for succinctness, but the detailed
derivation is included in Appendix A.

5.1 Translation

Translation of the heterogeneity is described by setting
v ≡ c and∇v ≡ 0 in�s , with c being a constant vector.
Substituting the velocity into Eq. (22) we get:

ĠT =
N∑
i=1

(∫
�pi

�n · �� d�

)
· c (24)

= −
∫

�s

n · � · c d� (25)

5.2 Rotation

Rotation is described by v = Wx = w × x and ∇v =
WT in�s . Here,W is a constant anti-symmetric tensor
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andw is the constant vorticity vector which definesW.
Substituting for velocity, Eq. (21) yields:

Ġ R =
N∑
i=1

(∫
�pi

x × �n · �� d�

)
· w (26)

Now, under rotation, the first term on the right hand
side of Eq. (22) is simplified in Appendix A.2 as

∫
�s

� : ∇v d�

=
∫

�s

(
σ · εa + σ a · ε

) : WT d�

−
∫

�s

(
tua + tau

) : WT d�

−
∫

�s

(
bua + bau

) : WT d�

(27)

For an isotropicmaterial (σ = λ tr(ε) I + 2μ ε, σ a

= λ tr(εa) I + 2μ εa − ∂ψ
∂ε

)
, the following further

simplification is possible,

(
σ · εa + σ a · ε

) : WT =
[
λ

(
tr(ε) I · εa + tr(εa) I · ε

) + 2μ
(
ε · εa + εa · ε

) − ∂ψ

∂ε
· ε

]
: WT =

(
−∂ψ

∂ε
· ε

)
: WT (28)

since, the scalar product of the symmetric tensors
with the anti-symmetric tensorW vanish. Furthermore,
if ∂ψ

∂ε
is of the form ∂ψ

∂ε
= C : ε = p I+ q ε, where, C

is a fourth rank isotropic tensor with major and minor
symmetries, and p and q are invariant to rotation, then,

(
σ · εa + σ a · ε

) : WT = 0 (29)

Under these assumptions,

∫
�s

� : ∇v d� = −
[∫

�s

(
t × ua + ta × u

)
d�

+
∫

�s

(
b × ua + ba × u

)
d�

]
· w
(30)

and

Ġ R = −
{∫

�s

[x × (n · �) + t × ua + ta × u] d�

+
∫

�s

(b × ua + ba × u) d�

}
· w (31)

5.3 Uniform scaling

Scaling results when v = αx and ∇v = αI in �s ,
where α determines the expansion rate. Substituting
into Eq. (21) we get:

ĠS =
N∑
i=1

(∫
�pi

�n · �� · x d�

)
α (32)

As with rotation, the first term on the right hand side
of Eq. (22) is simplified in Appendix A.3 as

∫
�s

� : ∇v d� = α

[
dm

∫
�s

ψ d� − dm

∫
�s

t · ua d�

+
∫
�s

(
t · ua + ta · u)

d� +
∫
�s

(
b · ua + ba · u)

d�

]

(33)

where, dm is the dimension of the problem (2 or 3).
Thus, substituting into Eq. (22), we obtain,

ĠS = −
[∫

�s

(n · � · x − t · ua−ta · u) d�+dm

(∫
�s

t · ua d�−
∫

�s

ψ d�

)
−

∫
�s

(b · ua+ba · u) d�

]
α

(34)

6 Examples of objective functions for
configurational optimization

In this section, we illustrate the forms of the configura-
tional derivative for various objectives. In general, for
any choice of objective function, one needs to solve the
adjoint boundary value problem in Eq. (7) to determine
σ a , εa , and ua . Using these adjoint quantities, the gen-
eralized Eshelby energy-momentum tensor, Eq. (15), is
evaluated. Substituting the Eshelby energy-momentum
tensor into Eqs. (25), (31) and (34), one obtains the
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appropriate configurational derivatives. In the forms
derived below, we assume the elasticity tensor C to
be homogeneous and isotropic as required for Eq. (20)
and Eq. (29).

6.1 Strain energy

Choosing strain energy as the objective, that is, setting
ψ = 1

2ε : C : ε, φ = 0, and b = 0, the boundary con-
ditions of the adjoint boundary value problem Eqs. (8),
(9), (10) and (11) yields:

σ a = C : (εa − ε), ba = 0, ta = 0 (35)

As a result of the above conditions, the adjoint bound-
ary value problem Eq. (7) becomes

∫
�

ε : σ a d� = 0,
which yields the following local conditions:

σ a = 0, εa = ε, ua = u (36)

Substituting the adjoint solution into Eqs. (15), (25),
(31) and (34) one obtains:

� = −ψI + σ · ∇uT (37)

ĠT =
{∫

�s

[
ψn − t · ∇uT

]
d�

}
· c (38)

Ġ R =
{∫

�s

[
ψ(x × n) − x × (t · ∇uT ) − t × u

]
d�

}
· w
(39)

ĠS =
{∫

�s

[
ψ(n · x) − t · ∇uT · x − (

dm − 2

2
)t · u

]
d�

}
α

(40)

The integrals within the curly braces in the above sen-
sitivities are identical to the classical J−, L− and
M−integrals. In other words, the classical integrals
are the solution to the more general configurational
optimization problem when the chosen objective is the
strain energy.

6.2 Trade-off between compliance and mass

Structural compliance is a common objective during
design optimization.We next consider an objective that
may be considered as a trade-off between structural
compliance and mass: ψ = (1 − w)ε : C : ε + wρ =
(1−w)ψε+wψρ ,φ = 0, andb = 0.Here,ρ is themass

density of the inclusion, the parameter w represents
user preference for either the compliance or the mass,
and for various values of w, one obtains the Pareto-
optimal family of non-dominated solutions. Following
the procedure adopted before, the boundary conditions
of the adjoint boundary value problem Eqs. (8), (9),
(10) and (11) yield:

σ a = C : [εa − 2(1 − w)ε], ba = 0, ta = 0 (41)

Again, the adjoint boundary value problem becomes∫
�

ε : σ a d� = 0, which yields the local conditions:

εa = 2(1 − w)ε, ua = 2(1 − w)u, σ a = 0 (42)

Now, substituting the adjoint solution into Eq. (15)
gives:

� = −(1 − w)
[
(ε : C : ε) I − 2σ · ∇uT

]
+ wρI

(43)

= −(1 − w)�ε + w�ρ (44)

Given the above split in the Eshelby energymomentum
tensor, to derive the sensitivities in this problem, it is
convenient to rewrite Eq. (22) as:

Ġ(t) = −(1 − w)

[∫
�s

�ε : ∇v d� −
∫
�s

n · �ε · v d�

]
+

w

N∑
i=1

(∫
�pi

�
n · �ρ

� · v d�

)
(45)

Now, if the densities are constant on either side of the
particle boundary �pi , then,

∫
�pi

�nρ� d� =
∫

�pi

x × �nρ� d� = 0 (46)

This is as expected since there is no change in the mass
of the structure due to translation or rotation of the
heterogenieties. Thus, the sensitivities to translation,
rotation and scaling for this problem are:

ĠT =
{
(1 − w)

∫
�s

n · �ε d�

}
· c (47)

Ġ R =
{
(1 − w)

∫
�s

[x × (n · �ε) − 2t × u] d�

}
· w
(48)
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ĠS =
{
(1 − w)

∫
�s

[n · �ε · x − (dm − 2)t · u] d�

+w

N∑
i=1

∫
�pi

�nρ� · x d�

}
α (49)

6.3 An arbitrary boundary objective function

Finally, we consider an objective that is defined only
on the boundary ψ = 0, φ = n ·A · u, and b = 0, with
A being a symmetric second rank tensor. If A were to
be the stress tensor at the boundary with the normal n,
then the boundary objective may be interpreted as the
potential of the applied tractions, which is related to
structural compliance. For this objective, the boundary
conditions for the adjoint problem become

σ a = C : εa, ba = 0, ta = A · n (50)

and the adjoint boundary value problem is
∫
�

ε :
σ a d� = ∫

�t
n · A · u d�, which yields the following

solution:

σ a = A, εa = C−1 : A, σ = A, ε = C−1 : A (51)

Substituting the adjoint solution into Eqs. (15), (25),
(31) and (34) we get:

� = − (A : ε) I + 2A · ∇uT (52)

ĠT = −
{∫

�s

n · � d�

}
· c (53)

Ġ R = −
{∫

�s

[x × (n · �) + 2t × u] d�

}
· w (54)

ĠS = −
{∫

�s

[n · � · x + (dm − 2)t · u] d�

}
α (55)

7 Isogeometric enriched field approximations for
modeling of heterogeneous structures containing
cracks

An isogeometric analysis computational procedure
(Hughes et al. 2005; Natekar et al. 2004) is used in
the numerical examples described later to carryout frac-
ture resistant design. Specifically, isogeometric enrich-
ments of cracks or other heterogeneities embedded

in the domain, termed enriched isogeometric analysis
(Tambat and Subbarayan (2012)) is used. The compu-
tational methodology is briefly described below.

Boundaries with specified behavior, phase bound-
aries, crack surfaces or singular points are, geometri-
cally speaking, lower-dimensional features relative to
two- or three-dimensional geometrical domains. Often,
the distinguishing characteristics of the behavior at
these features are known a priori and may be exploited
to enrich isogeometricmodels.Motivated by this obser-
vation, geometrically explicit, but behaviorally implicit
enrichments (meaning enrichments on geometries with
explicitly known boundaries) of boundary conditions,
discontinuities, and singularities were constructed by
Tambat and Subbarayan (2012). In EIGA, the behav-
ioral approximation is constructed to form a partition
of unity as follows:

f (x) =
(
1 −

ne∑
i=1

wi (x)

)
f�(x)+

ne∑
i=1

wi (x) f�i (P(x))

(56)

where f� is the continuous approximation associated
with the underlying domain � and f�i is the enrich-
ment approximation defined isoparametrically on the
i th external/internal boundary �i . Not only can the
enrichment f�i be a known function to apply bound-
ary/interface conditions, it may also contain unknowns
corresponding to the a priori knowledge of local behav-
ior. Also, to infer the influence of the enrichment at a
spatial location x, a projection P(x) is necessary tomap
the spatial point to the corresponding external/internal
boundary �i . The influence of the enriching field must
decay with distance from the enriching geometrical
entity, and therefore, theweight fields are required to be
monotonically decreasing functions of distance.Here, a
cubic function of the form given below is used although
other choices are possible.

w

(
d

d0

)
=

⎧⎪⎪⎨
⎪⎪⎩
1 − 3

(
d

d0

)2

+ 2

(
d

d0

)3

for
d

d0
≤ 1

0 for
d

d0
> 1

(57)
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where d is a monotonic measure of distance from the
enriching geometry, d0 is the maximum influence (or
cutoff) distance from the external/internal boundary.

The EIGA formulation adopted here for modeling
cracks is based on Chen et al. (2021). The displacement
field is discontinuous across the crack face and may be
described by enriched displacements fields from crack
faces (u f0 and u f ) and crack tips (ut0 and ut ) as fol-
lowing:

u = wcuc+w f
(
u f0 + H(x)u f

)+wt
(
ut0 + ut

)
(58)

where uc is the displacement associated with under-
lying domain, u f0 is the displacement associated with
crack face, u f is the measure of opening of the crack,
ut0 is the displacement associated with crack tips, and
ut is the asymptotic displacement. H(x) is the Heav-
iside function that takes the value of 1 on one side of
the crack face and −1 on the other side to create a
discontinuity across the crack.

The general solution for asymptotic displacement
are given in Seweryn andMolski (1996); Luo and Sub-
barayan (2007) and can be express as a matrix-vector
multiplication by the basis function [Nt ] and unknowns
{vt }:

ut =
{
ur
uθ

}
= [Nt ]{vt } = rλ

[
cos (1 + λ)θ sin (1 + λ)θ cos (1 − λ)θ sin (1 − λ)θ

− sin (1 + λ)θ cos (1 + λ)θ − κ+λ
κ−λ

sin (1 − λ)θ κ+λ
κ−λ

cos (1 − λ)θ

]
⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭

(59)

where the four independent constants A, B,C, D and
the eigenvalue λ are obtained after applying the bound-
ary conditions. The eigenvalue for a crack under Mode
I loading is λ = 1

2 Seweryn and Molski (1996). κ is
the Kolosov constant which has a value 3 − 4ν under
plane strain condition, and (3−ν)/(1+ν) under plane
stress condition, with ν being the Poisson ratio. The
weight terms in Eq. (58) satisfy wc + w f + wt = 1
everywhere in the domain. Fig. 3 shows the distribu-
tion of weight function contours around a line crack.
The weight functions monotonically reduce from 1 to
0 in the vicinity of interface that allows enriched field
approximation of a crack. In general, the weights w f

and wt correspond to lower-dimensional enrichments

and are such that:

w� = w f + wt (60)

wc = 1 − w� (61)

8 Numerical examples

In this section, several numerical examples are solved.
The fracture-resistant design demonstrated here unifies
the assessment of risk (worst-case location of crack that
leads to the largest value of the objective function) as
well as the mitigation strategy (locations of stiffeners
or voids to minimize the objective).

8.1 Configurational optimization of a line crack

First, numerical examples using both a domain objec-
tive function and a boundary objective function are pre-
sented to illustrate both theworst-case and the best-case
configurations (location and orientation) of a line crack
inserted into a homogeneous plate. The mathematical
forms of the chosen objective functions were:

f� =
∫

�

ψ d� =
∫

�

1

2
ε : C : ε d� (62)

f� =
∫

�

φ d� =
∫

�

n · A · u d� (63)

where, A = [(− |x − 0.5| + 0.5)y] I.
The plate geometry as well as the selected crack

length (2a = 0.2), material properties (Young’s mod-
ulus E = 1 and Possion’s ratio ν = 0.3), loading and
boundary conditions are illustrated in Fig. 4.

At every iteration, the chosen objective function
( f� and f� was evaluated on a fixed boundary �s

close to the external boundary of the plate, illus-
trated by a dashed line in the figure. Using the sen-
sitivities in Eqs. (38) and (53), at each iteration,
the steepest ascent/descent direction was identified to
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Fig. 3 The weight function contours of a w� b wt c w f

Fig. 4 Geometry, loading and boundary conditions for illustrat-
ing the identification of the worst or best configurations for a
crack in a structure. The dashed contour represents the integra-
tion path for the sensitivities

increase/decrease the objective function. The initial
value of the function was used to normalize the objec-
tive during the iterations to assure better scaling and
numerical stability in step size determination. A min-
imum distance (d = 0.1) between the crack and the
boundary was enforced as a stop criterion to prevent
the moving crack from intersecting the boundary. The
iterations were continued until the worst or the best
configuration for the crack was identified. The worst
configuration for the crack was observed to be at the
center of the plate in x direction, but near the top bound-

ary in y direction regardless of the chosen objective or
the initial location of the crack, as shown in Fig. 5a.
The increase in the value of the objectives with each
iteration is plotted in Fig. 5b. The least harmful (or best)
location for the crack required a move away from the
boundary with the loading in all cases. But, the opti-
mal location along the x direction was sensitive to the
initial location as shown in Fig. 6. The decrease in the
value of the objective with iteration count is plotted in
Fig. 6b.

8.2 Optimal mitigation of a crack through
configuration of an inserted heterogeneity

A strategy of inserting and optimizing the configura-
tion of a circular or elliptical heterogeneity (void or
inclusion) to mitigate the risk due to a crack is next
illustrated. Four types of configurational changes are
illustrated: (a) translation only (b) scaling only (c) both
translation and rotation (meaningful only for ellipti-
cal heterogeneities) and (d) both scaling and rotation
(meaningful only for elliptical heterogeneities). The
geometry, loading and boundary conditions are iden-
tical to that used earlier in Fig. 4 except for the initial
crack and heterogeneity locations. In all simulations,
the crack was held fixed at the worst-case configura-
tion identified earlier as (0.5,0.9), shown in Fig. 5. The
circular/elliptical void or inclusion was then optimized
to mitigate the influence of the crack. The void was
modeled as a soft material with an elastic modulus of
E = 10−3, and the elastic modulus of the stiff inclu-
sion was chosen as E = 103. As before, the value of
the strain energy in the initial configuration, U0, was
used to normalize the objective. At each iteration, ĠT ,
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Fig. 5 Worst-case configurations for the strain energy or the
boundary objective function of a line crack inserted into a square
plate: a Optimal locations of the crack obtained using the two
objective functions. b Increase in the value of the objective with

the iteration count. Solid lines correspond to the strain energy
objective iterates starting from the two different initial locations.
Dash-dotted line corresponds to the boundary objective function

Fig. 6 Best-case configurations for the strain energy or the
boundary objective function of a line crack inserted into a square
plate: a Optimal locations of the crack obtained using the two
objective functions. bDecrease in the value of the objective with

the iteration count. Solid lines correspond to the strain energy
objective iterates starting from the two different initial locations.
Dash-dotted line corresponds to the boundary objective function
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Ġ R and ĠS in Eq. (38), Eq. (39) and Eq. (40) were
evaluated on a circular path �s that was the largest
dimension of the heterogeneity plus a small offset dis-
tance (0.04 for circle and 0.064 for ellipse). This choice
of circular path was convenient for evaluating the con-
figurational derivatives for a rotating elliptical void or
inclusion at all intermediate iterations as the config-
uration of the heterogeneity changed. The iterations
were stopped when any of the following conditions
was smaller than its preset criterion: (a) the difference
in strain energy between two iterations (b) the distance
between the void/inclusion and the crack tips (c) the
distance between the void/inclusion and the boundary.

Theoptimal configurations for a circular void/inclusion
with only translation to mitigate the influence of the
crack are illustrated in Fig. 7 and Fig. 8. The optimal
configurations of the elliptical void/inclusion with only
translation being allowed from the initial configuration
are illustrated in Figs. 9 and 10. The optimal configu-
rations for a circular void/inclusion with only scaling
to mitigate the influence of the crack are illustrated in
Figs. 11 and 12. The optimal configurations when both
translation and rotation of the introduced heterogeneity
are allowed are illustrated in Figs. 13 and 14. The opti-
mal configurations when both scaling and rotation of
the introduced heterogeneity are allowed are illustrated
in Figs. 15 and 16.

To minimize the strain energy in the domain, the
void tended to move away from the crack (Figs. 7a, 9a
and 13a) and to be as small as possible (Figs. 11a and
15a) as expected intuitively. The inclusion, on the other
hand, tended to move closer to the crack tips (Figs. 8a,
10a and 14a) and to be as large as possible (Figs. 12a
and 16a) to mitigate the crack. The optimal orientation
of both the void and the inclusion tended to be aligned
with the loading direction and perpendicular to the line
crack. The solutions were in general non-unique and
depended on the initial location of the introduced het-
erogeneity.

8.3 Optimal mitigation of a crack through insertion
and configuration of multiple heterogeneities

Consideringmultiple heterogeneitieswithin thedomain,
two mitigations are illustrated: (a) identifying the loca-
tion of the crack with least risk for a given set of hetero-
geneities (b) optimizing the configuration of multiple
heterogeneities for a given location of the crack. The

geometry, loading and boundary conditions are iden-
tical to those used earlier and shown in Fig. 4. Four
heterogeneities (two voids and two inclusions) and a
line crack are modeled in the two cases. In the case
where the location of the crack with least risk is iden-
tified, the crack is only translated. In the second case,
three of the four inserted heterogeneities are allowed to
translate, rotate, and uniformly scale, while one ellipti-
cal inclusion is only allowed to translate and rotate. The
opimal configuration of the heterogeneities is achieved
using Eq. (21) and (22). The results of the optimiza-
tion are shown in Figs. 17 and 18. In these two cases,
the same trends may be observed: (a) risk is mitigated
when the crack is moved away from loading (b) voids
tend to move away from the crack and will shrink to be
as small as possible (c) inclusions tend to get closer to
crack tips and to be as large as possible.

9 Discussion

In Sect. 8, numerical examples were solved to illustrate
the optimal configuration of either a single inserted het-
erogeneity or multiple heterogeneities in the presence
of a line crack. During the course of optimization, the
heterogeneities may merge to create a new heterogene-
ity. While this is theoretically permissible, the numeri-
cal solution procedure however needs to be adapted to
consider the configuration of the merged heterogene-
ity. The newmerged entity requires one to define a new
integration path for calculating the sensitivities. The
numerical solution challenge is illustrated in Fig. 19.
When two heterogeneities are in close proximity, as
shown in Fig. 19a, smaller steps should be applied to
prevent the two heterogeneities from overlapping sud-
denly. When the two heterogeneities merge, as shown
inFig. 19b, a new integral path is needed for thismerged
heterogeneity.
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Fig. 7 Optimal configuration of a circular void inserted into
the plate with a crack: a Optimal locations of the void starting
from different initial locations. The dashed contour enclosing the

voids represents the integration path for the sensitivities. b Strain
energy decrease with iterations

Fig. 8 Optimal configuration of a circular inclusion inserted into the plate with a crack: a Optimal locations of the inclusion starting
from different initial locations. b Strain energy decrease with iterations
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Fig. 9 Optimal configuration obtained by translating an elliptical void inserted into the plate with a crack: a Optimal locations of the
void starting from different initial locations. b Strain energy decrease with iterations

Fig. 10 Optimal configuration obtained by translating an elliptical inclusion inserted into the plate with a crack: a Optimal locations
of the inclusion starting from different initial locations. b Strain energy decrease with iterations

10 Summary

In this study, a configurational optimization problem
was proposed for determining the optimal location, ori-
entation, and the scaling of a finite-sized heterogene-
ity inserted into a homogeneous domain. The material

derivative of an arbitrary objective with respect to arbi-
trary design modifications of the heterogeneity, termed
as the configurational derivative, was derived using an
adjoint boundary value problem. The configurational
derivative was shown to be expressible in terms of a
generalized Eshelby energymomentum tensor for arbi-
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Fig. 11 Optimal configuration obtained by scaling a circular
void inserted into the plate with a crack: a Optimal radius of the
void - starting from thewhite circle then shrinking to the gray cir-

cle. As before the dashed contour indicates the integration path.
b Strain energy decrease with iterations

Fig. 12 Optimal configuration obtained by scaling a circular inclusion inserted into the plate with a crack: a Optimal radius of the
inclusion - starting from the black circle then expanding to the gray circle. b Strain energy decrease with iterations
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Fig. 13 Optimal configuration obtained by translating and rotating an elliptical void inserted into the plate with a crack: a Optimal
locations of the void starting from different initial locations. b Strain energy decrease with iterations

Fig. 14 Optimal configuration obtained by translating and rotating an elliptical inclusion inserted into the plate with a crack: a Optimal
locations of the inclusion starting from different initial locations. b Strain energy decrease with iterations

trary objectives that depended on the solutions to both
the original boundary value problem as well as the
adjoint boundary value problem. Following the deriva-
tion of the configurational derivative, equivalent path-
independent integral forms for sensitivity with respect
to the general objective for translation, rotation, and
scaling of the heterogeneity were derived. The specific

forms of the sensitivities for various objective func-
tions, including the strain energy and compliance were
derived. The strain energy objective was shown to nat-
urally lead to the J−, L− and M−integrals of fracture
mechanics. The developed theory was implemented in
an enriched isogeometric analysis code (EIGA) and
several illustrative examples were solved. The first set
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Fig. 15 Optimal configuration obtained by scaling and rotating
an elliptical void inserted into the plate with a crack: a Optimal
configuration of the void - starting from the white ellipse with

30 degree inclination then shrinking to the gray ellipse with 90
degree inclination. b Strain energy decrease with iterations

Fig. 16 Optimal configuration obtained by scaling and rotating
an elliptical inclusion inserted into the plate with a crack: aOpti-
mal configuration of the inclusion - starting from the black ellipse

with 30 degree inclination then expanding to the gray ellipsewith
90 degree inclination. b Strain energy decrease with iterations
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Fig. 17 Optimal location obtained by translating a line crack to minimize the strain energy of the plate while holding the configuration
of the voids and inclusions fixed: a Optimal location of crack. b Strain energy decrease with iterations

Fig. 18 Optimal configuration of four heterogeneities tominimize the strain energy of the platewith a line crack: aOptimal configuration
of the four heterogeneities. b Strain energy decrease with iterations

of examples identified the worst or best configurations
of a horizontal crack with respect to two chosen objec-
tives. Finally, we presented a fracture-resist design
strategy that mitigates the risk of fracture by sequen-
tially inserting one or more heterogeneities and opti-
mizing their configuration. While the theory described
in the paper is general, any explicit boundary computa-

tional method such as the one used in the present study
is challenged by the ability to generate complex topolo-
gies. The advantage of the computational strategy, how-
ever, is its ability to apply sharp interface derivations
directly without needing to derive equivalent diffuse
interface forms.
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Fig. 19 Merging of
heterogeneities: a two
heterogeneities in close
proximity b heterogenities
post merging to create a
larger heterogeneity

Appendix A

A.1 The Divergence of Generalized Eshelby Energy-
Momentum Tensor

We derive below the general form of the divergence
∇ · � and show that the result reduces to ∇ · � = 0 if
C and b are homogeneous in their domains.

∇ · � = ∇ ·
[(

ψ − σ : εa + b · ua) I + σ · ∇uaT + σ a · ∇uT
]

= ∇ψ − ∇(σ : εa) + ∇(b · ua) + ∇ · (σ · ∇uaT ) + ∇ · (σ a · ∇uT )

= ∇ψ − ∇(σ : εa) + ∇(b · ua) + (∇ · σ ) · (∇uaT ) + σ : ∇(∇uaT ) + (∇ · σ a) · (∇uT ) + σ a : ∇(∇uT )

= ∇ψ − ∇σ : εa − σ : ∇εa + ∇b · ua + b · (∇uaT ) − b · (∇uaT ) + σ : ∇εa − ba · (∇uT ) + σ a : ∇ε

= ∇ψ − ∇σ : εa + ∇b · ua − ba · (∇uT ) + σ a : ∇ε

= ∂ψ

∂u
· ∇uT + ∂ψ

∂ε
: ∇ε − ∇σ : εa + ∇b · ua − ∂ψ

∂u
· (∇uT ) + (C : εa − ∂ψ

∂ε
) : ∇ε

= −ε : ∇C : εa + ∇b · ua
(64)
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A.2 Simplification for Rotational Transformation

Rotation is described by v = Wx = w × x and ∇v =
WT in �s .

∫
�s

� : ∇v d� =
∫
�s

(
ψ − σ : εa + b · ua) I : WT d�

+
∫
�s

(
σ · ∇uaT

)
: WT d� +

∫
�s

(
σ a · ∇uT

)
: WT d�

=
∫
�s

(
σ · ∇uaT + σ T · ∇ua

)
: WT d�

+
∫
�s

(
σa · ∇uT + σ aT · ∇u

)
: WT d�

+
∫
�s

[
(∇ · σ ) ua − ∇ · (

σua
)] : WT d�

+
∫
�s

[(∇ · σa) u − ∇ · (
σau

)] : WT d�

=
∫
�s

(
σ · εa + σa · ε

) : WT d�

−
∫
�s

(
tua + tau

) : WT d� −
∫
�s

(
bua + bau

) : WT d�

(65)

A.3 Simplification for Scaling Transformation

Scaling results when v = αx and ∇v = αI in �s , where α is
an expansion parameter.

∫
�s

� : ∇v d� =
∫
�s

[(
ψ − σ : εa

+b · ua) I + σ · ∇uaT + σa · ∇uT
]

: αI d�

= α

[
dm

∫
�s

ψ d� − dm

∫
�s

(
σ : εa − b · ua) d�

+
∫
�s

σ : εa d� +
∫
�s

σa : ε d�

]

= α

[
dm

∫
�s

ψ d� − dm

∫
�s

t · ua d�

+
∫
�s

(
t · ua + ta · u)

d� +
∫
�s

(
b · ua + ba · u)

d�

]

(66)

where, dm is the problem dimension (2 or 3).
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