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Abstract Adhesives offer significant advantages

when joining materials since they do not create

discontinuities in the material, unlike bolting or

riveting. Another interest of adhesive joints is the

possibility of joining different materials and the lower

weight. The analysis of the stress singularity in

adhesive joints can provide a better understanding of

joint behaviour, and it is mesh independent. The ISSF

is based on a fracture mechanics concept, the Stress

Intensity Factor (SIF). However, generally, the SIF is

only applicable to cracks in a single material, while the

ISSF is applicable to multi-material corners and does

not require a crack. This work aims to study the stress

singularity of aluminium adhesive joints bonded with

a brittle adhesive with four different overlap lengths

(LO) by determining the singularity’s exponents and its

intensity. A method for joint strength prediction using

the ISSF is also proposed. Additionally, the interface

corner’s stress is studied, with the different singularity

components presented separately to assess their

influence on the overall stress. These predictions are

also compared with the experimental strength to verify

this strength prediction criterion’s accuracy when

applied to brittle adhesives. In conclusion, the ISSF

criterion provides accurate results and can be utilised

for further studies in this area.

Keywords ISSF criterion � Adhesive joints � Finite
Element Method � Single-lap joints

1 Introduction

Optimal structural design is intrinsically associated

with multi-component structures since it is possible to

optimise the specific strength and stiffness by com-

bining different materials, each one tailored for its

function within the structure (Jairaja and Naik 2019),

and also to expedite fabrication and reduce the

associated costs in structures with complex shapes,

which can benefit from division in simpler shapes

joined together (Jeevi et al. 2019). Depending on the

application and design restrictions, varying joining

techniques can be applied. A significant body of

knowledge exists in the literature, including a com-

parison between joining technologies for selected

purposes (Garrido et al. 2018). The most relevant

joining methods for industrial applications are rivet-

ing, bolting, welding, brazing, and adhesive bonding.

Although adhesive joints are used historically, their
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structural use was only widely developed in the first

half of the twentieth century by the aeronautical field.

With the advancements in the adhesives’ formula-

tions, resulting in ever-increasing adhesive and joint

performance, and design tools, consisting of simula-

tion packages and suitable criteria for strength

prediction, adhesive bonding is now essential in

structural applications including aerospace, aeronau-

tical, automotive, sports, civil engineering structures

and electronics (Gui et al. 2018). This option became

possible due to a set of characteristics (over conven-

tional techniques) such as the unnecessity of drilling or

damaging the parent materials to be joined, saving

weight, improving stresses across the bonding regions,

and ease of joining different materials. Possible

limitations are the typical impossibility to disassemble

after joining, required curing time, lack of confidence

in the design, especially for fatigue and long-term

analyses, and large scatter in experimental testing (Du

et al. 2004).

Since the use of adhesive joints has been increasing

in several industries in recent times (Konstanta-

kopoulou et al. 2016), it is important to use design

tools that accurately model and predict the behaviour

of adhesive joints to reduce the amount of experimen-

tal tests needed, which are, usually, costlier and take

more time than numerical simulations. In the early

stages of adhesive joint analysis, analytical methods

were used to determine the stress distributions at the

adhesive layer, namely the Volkersen (1938) model,

the Goland and Reissner (1944) model or the Hart-

Smith (1973) model. However, these models have

severe limitations since, for some, the formulation is

difficult, while for others, the formulation is simple,

but many assumptions are made, rendering the result-

ing stress distribution less accurate. These limitations

mean that in recent years most literature focuses on

numerical methods to analyse adhesive joints,

although examples of analytical models developed in

recent times can still be found, like the work by Carbas

et al. (2014) for graded adhesive joints. A literature

review by Ramalho et al. (2020) found that the most

commonly used method to predict the strength of

adhesive joints is Cohesive Zone Models (CZM), used

together with the Finite Element Method (FEM)

(Blackman et al. 2003). CZM generally provide

accurate strength predictions, as long as the cohesive

law shape/formulation and the respective parameters

are appropriate. A simple triangular law can be used

for brittle adhesives, but ductile adhesives generally

require more complex laws, such as the trapezoidal

law or an exponential law (Carvalho and Campilho

2017). Campilho et al. (2013) evaluated the CZM

accuracy of adhesive layers modelled with different

law shapes in predicting the strength of composite

single-lap joints (SLJ) under different geometries. The

obtained results showed that triangular CZM models

are most suitable for brittle adhesives, while ductile

adhesives can be accurately dealt with trapezoidal

CZM laws that capture the high-stress levels after

damage onset. Despite this fact, the relative errors of

these two law shapes were always under 10%,

reinforcing that CZM, which is based on an area

concept for crack propagation, i.e., mainly depending

on the fracture energies, which gives satisfactory

results even with less adequate models. Even though

the strength predictions with CZM are accurate, these

models have a significant drawback in that they

require extensive experimental testing because the

cohesive law parameters change with the adhesive

thickness (tA) and other geometric parameters affect-

ing the damage zone in the adhesive in the advent of

crack propagation. The tA effect in CZM modelling

with a triangular law was addressed by Xu and Wei

(2013) by simulating SLJ with different tA, particu-

larly showing that smaller tA increases the joint

strength. Additionally, the proposed CZM yielded

accurate strength predictions for the brittle adhesive,

although the ductile adhesive joint performance with

the smallest tA is underestimated. Demiral and

Kadioglu (2018) also showed the tA influence on

strength by CZM, namely SLJ strength reduction by

increasing tA, although this effect was much smaller

than that of the overlap length (LO), whose increase

highly benefited the joint strength. Therefore, authors

have also experimented with other methods to predict

joint strength, such as the eXtended FEM (XFEM)

(Stein et al. 2017), sometimes also combined with

CZM (Stuparu et al. 2016), or even the common FEM

using failure criteria based on continuum mechanics

(Sánchez-Arce et al. 2021), fracture mechanics (Jiang

et al. 2021) or damage mechanics (Sugiman and

Ahmad 2017). Some authors have also used the

previous criteria with meshless methods (Ramalho

et al. 2019) or meshless methods combined with CZM

(Tsai et al. 2014) to predict joint strength.

Fracture mechanics, in particular, can assess stress

or strain singularities due to material discontinuities
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(Da Silva and Campilho 2012), which in bonded joints

are usually related to the sharp corners at the overlap

edges at the interface between an adherend and the

adhesive layer. Conventionally, fracture mechanics

can rely on stress intensity factors (Parks 1974; Matos

et al. 1989) or energetic approaches (Lazzarin and

Zambardi 2001), depending on the materials’ fracture

toughness. In the last option, the most widespread

techniques are the J-integral (Rice 1968) and the

Virtual Crack Closure Technique (VCCT) (Rybicki

and Kanninen 1977). More recently, Finite Fracture

Mechanics (FFM) was proposed by Leguillon (2002),

consisting of a coupled stress-energy criterion for

crack initiation and accounting for published work on

adhesive joints (Hell et al. 2014). FFM does not

require an initial crack and, for crack initiation, both a

stress and an energetic criterion should be fulfilled.

However, it is essentially applicable to brittle adhe-

sives. In adhesive joints, as previously discussed, there

exists a stress singularity at the adhesive/adherend

interface corners, whose magnitude is usually called

Intensity of Singular Stress Fields (ISSF) or Gener-

alised Stress Intensity Factor (GSIF). The first pub-

lished works trying to characterise this singularity date

back to the mid-twentieth century (Williams 1959;

Bogy 1968).

This singularity analysis has been performed in

many different types of adhesive joints, including

scarf joints (Wu et al. 2014), butt joints (Afendi et al.

2013), Double Lap Joints (DLJ) (Mintzas and Nowell

2012) and SLJ (Rastegar et al. 2018). Zhang et al.

(2015) proposed a newmethod to calculate the ISSF in

bonded butt joints under tension and bending, due to

the known difficulties in using the FEM because of the

existing singularity. The new method only considers

stresses of the first elements at the end of the interface

between the adhesive and adherend materials. Differ-

ent combinations of materials and values of tA were

analysed and positively validated against experiments

from previous works. It was also found that the ISSF

was dependent on the joint materials and that the ISSF

increased with tA until tA reached the joint width.

Interactions between the singular stress fields at the

two adhesive/adherend interfaces were also found,

although this issue was remitted to future works. In the

work of Li et al. (2018), SLJ and DLJ bonded joints

were used to investigate the adhesive strength by

evaluating and minimising the ISSF at the interface

end. It was shown that the ISSF diminishes by

increasing the adherends’ thickness (tP) and that the

minimum ISSF is achieved for a sufficiently high

adherend thickness. Due to the DLJ having twice the

bonding area and suppressing peel stresses and

transverse deflection, the equivalent strength condi-

tion between identical material SLJ and DLJ was

evaluated by the ISSF, leading to an equal strength

between a SLJ with an adherend thickness of 7 mm

and a DLJ with 1.5 mm. Galvez et al. (2019) applied

the ISSF concept to analyse mixed adhesive joints, i.e.,

with two adhesives in the bond line (with different

stiffness and mechanical properties), to achieve

strength optimisation. Four adhesive combinations

were tested, including the two with single use of each

of the adhesives. The proposed approach was based on

the reciprocal work contour integral method

(RWCIM), and it involved estimating the ISSF for

the reference models (joints with the single adhesive),

which were then applied for the unknown solution

(mixed-adhesive joints). A clear improvement was

found for one of the mixed-adhesive joint configura-

tions, with a 36% reduction in the ISSF, when

compared to the single-adhesive solutions.

The present work aims at studying the singularity in

SLJ, with different LO, bonded with a brittle adhesive

and proposing a method to determine joint strength

using the ISSF. The ISSF analysis and the strength

predictions are performed using the FEM. This

analysis is done to a material combination that was

never previously studied using the ISSF. The stress

around the interface corner is also studied, with the

different singularity components presented separately

to assess their influence on the overall stress. Addi-

tionally, a comparison between the stress obtained

with the ISSF formula and the stress extracted from the

FEM for the different LO is compared to validate the

formulation used to obtain the ISSF. The mesh

independence of this approach is also assessed by

studying two different mesh refinement levels. Finally,

these predictions are also compared with the experi-

mental strength to verify this strength prediction

criterion’s accuracy when applied to brittle adhesives.

123

Fracture mechanics approach to stress singularity 79



2 Experimental work

2.1 Joint geometry

In this work, SLJ made of aluminium adherends

bonded with the adhesive Araldite� AV138 were

studied. The geometry and boundary conditions of the

numerical model are shown in Fig. 1. The SLJ was

fixed at the left boundary, and a displacement (d) was
imposed at the right boundary. Four different LO were

tested, from 12.5 to 50 mm in increments of 12.5 mm.

The other relevant geometrical properties are the

adherend thickness tP = 3 mm, the adhesive thickness

tA = 0.2 mm, the total joint length LT = 180 mm and

the joint width B = 25 mm.

2.2 Materials

The SLJ were fabricated from Al6082-T651 alu-

minium alloy adherends. The adherend material is

commonly used for structural appliances since it has

good strength and ductility. Full characterisation of

this aluminium is presented in previous works

(Campilho et al. 2011a,b), consisting of tensile bulk

testing and subsequent data analysis of the load–

displacement (P–d) curves. The collected data is

presented in Table 1 (E is Young’s modulus, m the

Poisson coefficient, ry the tensile yield stress, rf the
tensile strength and ef the tensile failure strain).

Application of the ISSF to bonded joints was

assessed by SLJ bonded with the Araldite� AV138, a

strong but brittle epoxy adhesive. This adhesive has a

tensile strength of approximately 40 MPa, which is

significant for modern adhesives, but its brittleness

highly limits the associated bonded joints’ perfor-

mance, especially for high LO. For short LO, in which

stresses in the bond line tend to bemore uniform due to

smaller shear-lag and rotation effects, this adhesive

still manages to compete with ductile adhesives, but it

quickly fails to work for high LO, in which stress

gradients become significant. These findings were

reported in reference (Campilho et al. 2011a). This

adhesive was evaluated by different testing architec-

tures to acquire the required data to input into the

models. The tensile mechanical properties (E, ry, rf
and ef) were acquired from tensile tests to bulk

specimens, considering the French standard NF T

76–142 indications for the geometry and fabrication

process. The mechanical shear properties (shear

modulus—G, shear yield stress—sy, shear strength—
sf and shear failure strain—cf) were obtained from

Thick Adherend Shear Tests (TAST). For this test, the

11003-2:1999 ISO standard was followed regarding

the fabrication and testing procedures. Thus, all

specimens were cured in a rigid mould to ensure the

proper adherends’ longitudinal alignment, and DIN

C45E steel adherends were used to minimise adher-

end-induced deformations affecting the obtained

results. Table 2 collects all data for the adhesive. It

should be mentioned that Hooke’s law relationship for

isotropic materials (between E and G), and also the

expected sy/ty relationship by Tresca or von Mises

criteria, are not met in the obtained data due to

different restraint conditions (unrestrained adhesive in

the bulk tests vs. restrained adhesive in the TAST

tests).

Fig. 1 Geometry and boundary conditions of the SLJ (dimen-

sions in mm)

Table 1 Mechanical prop-

erties of the aluminium

adherends (Campilho et al.

2011a,b)

Property Value

E (GPa) 70.1 ± 0.83

m 0.30

ry (MPa) 261.67 ± 7.65

rf (MPa) 324.00 ± 0.16

ef (%) 21.70 ± 4.24

Table 2 Mechanical prop-

erties of the adhesive (De

Sousa et al. 2017)

aData from the

manufacturer

Property AV138

E (GPa) 4.89 ± 0.81

m 0.35a

ry (MPa) 36.49 ± 2.47

rf (MPa) 39.45 ± 3.18

ef (%) 1.21 ± 0.10

G (GPa) 1.56 ± 0.01

sy (MPa) 25.1 ± 0.33

sf (MPa) 30.2 ± 0.40

cf (%) 7.8 ± 0.7
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2.3 Fabrication and testing

For the joint fabrication, it was initially necessary to

prepare the bonding surfaces. This process consisted

of the adherends sandblasting with corundum sand

followed by cleaning the surface with acetone until no

traces of contaminants exist that can prevent a good

bond. After the surface preparation, it was necessary to

prepare the joints for bonding. With this purpose, the

adherends should be aligned in a bonding jig and, to

assure the designated tA for the joints, calibrated nylon

wires with 0.2 mm diameter were attached to the

adherends at the overlap ends to stop the adherends’

from entering contact when pressed and acquire

tA = 0.2 mm. The adherends were then bonded

together by applying adhesive to one of the elements

and subsequent position the other adherend correctly.

Then, pressure was applied with grips to reach the

required thickness and cast out the excess adhesive,

which was later removed after its cure. Due to the low

pressure applied to the joints (minimum to expel the

excess adhesive and promote the adherend/wire/

adherend contact), it was assumed that the associated

wires’ deformation was negligible, and that tA would

be accurately achieved by this process. Moreover, the

tA accuracy was checked after adhesive curing by

direct measurements. The removal of the excess

adhesive is done after its cure to achieve the joint’s

theoretical layout without adhesive flaws at the joint

boundaries. For testing, the joints were placed

between the Universal Testing Machine (UTM)

clamps using LT = 180 mm for all LO. All the joints

were experimentally tested using a UTM Shimadzu

AG-X 100 with a 100 kN load cell. The tests were

performed with a constant speed of 1 mm/min. The

average failure load from each set was considered as

the experimental maximum load (Pm).

3 Numerical work

3.1 ISSF technique

The SIF is mainly used to characterise the stress fields

of sharp cracks. However, the ISSF also allows the

evaluation of multi-material corners with the most

diverse geometries. Figure 2 presents an example of

these corners for the geometry used in this work, i.e.,

SLJ. The stress near the interface corner can be

described, in polar coordinates (r,h), such as those

presented in Fig. 3, using the interface singularity as:

rij ¼
X1

n¼1
Hnr

kn�1fij kn; hð Þ: ð1Þ

Additionally, the displacement in the same region,

using the same coordinate system, can be described as:

uj ¼
X1

n¼1
Hnr

kngj kn; hð Þ; ð2Þ

where n is the number of exponents (k), which varies

with the geometry of the interface corner, and Hn is a

scalar value representing the ISSF. The exponents are

determined by finding the solution for the following

equation (Qian and Akisanya 1999):

0 ¼ e2 þ b2 � kcð Þ2� kdð Þ2; ð3Þ

where the equations to determine the parameters e, b, c

and d can be found in Appendix 1. In these equations,

h1 and h2 are the angles of the material interface

corner, and a and b are the Dundurs parameters

(Dundurs 1969), defined as follows:

a ¼ G1 j2 þ 1ð Þ � G2 j1 þ 1ð Þ
G1 j2 þ 1ð Þ þ G2 j1 þ 1ð Þ ð4Þ

b ¼ G1 j2 � 1ð Þ � G2 j1 � 1ð Þ
G1 j2 þ 1ð Þ þ G2 j1 þ 1ð Þ ð5Þ

where jm = 3 - 4mm in plane strain cases and Gm is

the shear modulus of material m. The subscripts 1 and

2 in j and l represent the two materials. Having

Fig. 2 Example of multi-material corners in SLJ that the ISSF

can evaluate

Fig. 3 Polar coordinates system
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determined k using Eq. (3), it is then possible to

calculate the fij(kn, h) and gj(kn, h) by solving the

following system of equations:

gmrr gmh f mrr f mhh f mhf gT¼ NmXmY; ð6Þ

where m indicates the material and the matrices Nm

and Xm, and vector Y, are defined as (Qian and

Akisanya 1999):

X1 ¼

1 0

0 1

v31 v32
v41 v42

2
664

3
775; X2 ¼

v51 v52
v61 v62
v71 v72
v81 v82

2
664

3
775; Y ¼ y1

y2

� �
;

ð8Þ

being the components of Xm and Y given by the

equations in Appendix 2 (Qian and Akisanya 1999).

There are several ways to determine the Hn using

numerical methods. A popular method is performing

an integration over a line, or area, encircling the

interface corner as Qian and Akisanya (1999) did.

Alternately, the Hn values can also be determined by

extrapolating to the corner the Hn from values near the

corner (Klusák et al. 2009). This was the method used

in this work. For a n number of k, a n number of points

at different angles (h) is needed to determine the Hn

values at a fixed radius (r), by solving the following

system of equations for the H vector:

rk1�1fhh k1; hnþ1ð Þ � � � rkn�1fhh kn; hnþ1ð Þ
..
. . .

. ..
.

rk1�1fhh k1; hnþnð Þ � � � rkn�1fhh kn; hnþnð Þ

2

64

3

75
H1

..

.

Hn

8
><

>:

9
>=

>;

¼
rhh r; hnþ1ð Þ

..

.

rhh r; hnþnð Þ

8
><

>:

9
>=

>;
:

ð9Þ

The solution of Eq. 9 is obtained for several

different r, and it is then extrapolated to r = 0 mm,

from an r interval where it is stable, to obtain H at the

interface corner.

3.2 Modelling conditions

A FEM analysis was performed to validate the ISSF

criterion. For that, a MATLAB based tool was used,

where the finite element discretisation was created,

and the natural and essential boundary conditions were

imposed. A script was added to this tool with the

previously described ISSF formulation. The SLJ was

modelled accordingly to Fig. 1. The left boundary was

considered fixed (Ux = Uy = Uz = 0), while d was

imposed in the right boundary. The simulations were

executed considering plane strain, linear elastic mate-

rial behaviour and small deformations. For these

simulations, four-node quadrilateral elements were

chosen to describe the whole model. Two different

refinements near the interface corner were applied to

discretise the interface corner in order to evaluate the

mesh’s influence on the results of the ISSF analysis.

Nm ¼

jm � kð Þ cos k� 1½ �hð Þ
2Gm

jm þ kð Þ sin k� 1½ �hð Þ
2Gm

� k2 � 3k
� �

cos k� 1½ �hð Þ

k2 þ k
� �

cos k� 1½ �hð Þ

k2 � k
� �

sin k� 1½ �hð Þ

�jm þ kð Þ sin k� 1½ �hð Þ
2Gm

jm þ kð Þ cos k� 1½ �hð Þ
2Gm

k2 � 3k
� �

sin k� 1½ �hð Þ

� k2 þ k
� �

sin k� 1½ �hð Þ

k2 � k
� �

cos k� 1½ �hð Þ

� cos kþ 1½ �hð Þ
2Gm

sin kþ 1½ �hð Þ
2Gm

�k cos kþ 1½ �hð Þ

k cos kþ 1½ �hð Þ

k sin kþ 1½ �hð Þ

sin kþ 1½ �hð Þ
2Gm

cos kþ 1½ �hð Þ
2Gm

k sin kþ 1½ �hð Þ

�k sin kþ 1½ �hð Þ

k cos kþ 1½ �hð Þ

2
6666666666664

3
7777777777775

ð7Þ
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These discretizations near the corner were the same for

all the studied LO. The more refined mesh had

approximately double the number of nodes when

compared with the baseline mesh in this region. The

radial region of the two discretizations used in the

ISSF analysis is presented in Fig. 4a and b, with

Fig. 4c showing the dimensions and the number of

nodes in the region near the corner that was discretized

in the same manner for all LO. After these simulations

were solved, the Pm values were determined through

the ISSF criterion and then compared to the experi-

mental data. An analysis of the stress in the mid-

thickness line of the adhesive was also performed. To

do this, a new set of discretizations for each LO was

needed. An example of this discretization at the left

end of the overlap for the joint with LO = 25 mm is

shown in Fig. 4d. For the other LO, the discretizations

are similar. This discretization has 14 elements along

the adherend thickness and six elements along the

adhesive thickness. These simulations were performed

under the same assumptions as the ISSF simulations,

namely plane strain, linear elastic material behaviour

and small deformations.

4 Results

4.1 Experimental data and analysis

Every single one of the SLJ tested presented cohesive

failure in the adhesive layer. On top of that, none of the

adherends displayed plastic deformation, as it can be

proved by the load–displacement curves from Fig. 5,

considering the sample cases of LO = 12.5 (a) and

50 mm (b). All curves show a small loss of linearity

between 3 and 4 kN, but this issue was experimentally

identified as a minor gripping problem in the testing

machine. In all cases, failure takes place without

visible plasticization. This, allied to the experimental

data’s low variation, proves that the specimens were

correctly prepared. Figure 6 presents the average Pm

sustained by the joints for each LO tested. From the

observation of this graph, it is perceptible that the joint

Fig. 4 Baseline (a) and
refined (b) discretisation
near the interface corner,

dimensions and the number

of nodes in the region near

the corner (c) and
discretization for the stress

analysis (d)
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strength increases with each increment of LO. This fact

is in line with previous works where different adhesive

types were tested, including the one used in this

analysis (De Sousa et al. 2017). However, although the

curve is nearly linear, Pm is not proportional to LO, in

the sense that the Pm/LO ratio markedly diminishes for

higher LO, thus emphasizing the joints’ performance

reduction. This behaviour is due to the adhesive’s

brittleness, which does not accommodate the increas-

ing peak stresses with LO and fails prematurely, and

contrasts with that of ductile adhesives, which usually

manage to produce proportional Pm–LO curves up to

some extent (Nunes et al. 2016).

Fig. 5 Load–displacement curves for the SLJ bonded with the Araldite� AV138: LO = 12.5 (a) and 50 mm (b)

Fig. 6 Average Pm sustained by the joints for each LO tested

Fig. 7 ryy (a) and sxy (b) stresses along the adhesive layer
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4.2 Stress analysis in the adhesive layer mid-

thickness

The stress distributions along the adhesive layer are

also crucial in this analysis. Figure 7 shows the peel

(ryy) (a) and shear (sxy) (b) stresses along the adhesive
layer mid-thickness, marked in red in the diagram of

Fig. 7a. The adhesive length was normalised by LO to

allow an easier comparison. The mesh used to obtain

these stresses had to be different from the radial mesh

because this mesh cannot provide a steady set of nodes

along the mid-thickness of the adhesive. Thus, a

structured mesh was considered for this analysis only

(Fig. 4d), while the other conditions remain equal. In

this work, significant ryy stresses were observed at the
overlap ends, mainly due to the joint rotation during

the experimental tests. In fact, this is a common

problem found in SLJ, and it arises since the overall

joint deformation is ruled by the stiffer adherends,

while the compliant adhesive is forced to follow the

adherends separation at the overlap edges due to their

opposed curvature. Owing to the same effect, com-

pressive stresses are found towards the centre of the

overlap (Fernandes et al. 2015). The singularity effect

should also be considered, but it was numerically

found that this effect was negligible since stresses

were taken at the adhesive mid-thickness. Analysing

the stress variation with LO, it was concluded that

incrementing this parameter led to higher ryy peak

stresses. As a result, Pm averaged to the bonded area

reduces by increasing LO. sxy stresses are also present

in this joint type. The characteristic distribution

consists of a small load towards the centre of the

overlap, while in the ends, sxy stresses increase. This
distribution is related to each adherend’s varying

longitudinal strains along the overlap (Jiang and Qiao

2015). Similarly to ryy stresses, sxy peak stresses

increase with LO. This fact is again related to the

higher longitudinal strains of the adherends for bigger

LO (Campilho et al. 2011a). Based on this analysis,

higher LO should affect the joint strength, especially

for this type of adhesive.

4.3 ISSF calculation

The SLJ geometry presents anti-symmetry, shown in

Fig. 8, allowing the ISSF calculation for only one

interface corner. The ISSF calculation was performed

using the extrapolation method described in Sect. 3.1.

The procedure started with the determination of the

eigenvalues (kn) following Eq. (3). Considering the

combination of materials and geometry of the joints

tested, as presented in Fig. 8, with h1 = p/2 rad and

h2 = p rad, two different exponents were found:

k1 = 0.6539 and k2 = 0.9984. Therefore, according

to Eq. (9), two different angles are needed to perform

the extrapolation, equal to the number of exponents.

The angles chosen were: h3 = p/4 rad and h4 = - 3p/
4 rad, because this way the determination ofH1 andH2

is based on nodes in the two materials, being one in the

ascending part of the rhh curve (h4) and the other in the
descending part of the rhh curve (h3).

Considering LO = 37.5 mm as an example, the

values of H1 and H2 were extrapolated to r = 0 mm

from the values in the interval 0.01\ r\ 0.02 mm,

which are close enough to the corner tip to be

influenced by other singularities. This extrapolation

was performed when the reaction forces equalled the

experimental failure at the joint end where d was

imposed. The process is the same for the other LO.

Figure 9 presents the H1 extrapolations with the

baseline discretization (a) and the refined discretiza-

tion (b) for the LO = 37.5 mm case. This figure only

presents the first singularity (H1) component since it is

the most important. However, the same extrapolation

can be used to obtain the second singularity (H2)

component. The comparison between the discretisa-

tions in Fig. 9 reveals that this calculation is discreti-

sation independent. The graphs also show the H1

extrapolations for the other LO. These were performed

at an imposed d where H1 would be the same as the H1

of LO = 37.5 mm at failure displacement. The com-

parison between the different LO shows a more

pronounced slope in the extrapolation for larger LO.Fig. 8 Anti-symmetry of the SLJ and corner geometry
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Fig. 9 H1 extrapolation for the LO = 37.5 mm SLJ using the FEM with the baseline discretisation (a) and the refined discretisation (b)

Fig. 10 Stress components using the FEM with the refined discretisation compared to the analytical stress
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Figure 10 compares the stresses obtained from the

numerical simulations and the ones predicted by the

analytical formula. The numerical stresses were

obtained at r = 0.02 mm from the interface corner

and when H1 was the same for all LO. In Fig. 10, it can

be observed that the analytical stress is very similar to

the numerical stress, thus proving that the analytical

functions obtained with Eq. (6) fit well the numerical

stresses for the three different components and show-

ing that the stress singularity dominates this region.

The comparison of the numerical results shows that

the stress components are almost the same for all LO,

which would be expected in a case where H1 was the

same for all LO.

4.4 Strength prediction

In order to predict the joint strength, it is necessary to

determine the critical ISSF (Hc). However, there is no

standardized purely experimental test that allows this

determination. The widespread methods to obtain this

parameter are usually based on integrals and their

implementation is often considerably intricate. There-

fore, a combination of numerical simulations and

experimental data was used. This type of hybrid

experimental/numerical approach to determine failure

criteria has been used previously for other criteria,

such as the CLS criterion (Ramalho et al. 2021), but

also to determine Hc (Akhavan-Safar et al. 2017). The

method proposed here consists of experimentally

testing a SLJ of a given LO and determining its Pm.

Afterwards, a numerical simulation of the same joint is

to be performed using the previously determined Pm as

the imposed load. Then, the extracted singularity (Hn)

components (n = 1 or n = 2) were used as the critical

ISSF for both singularities (Hnc), which make possible

the Pm prediction for different LO. Since H1 compo-

nent is the most significant one, this method was used

to obtain the H1c estimates for each experimentally

tested LO.

Figure 11 shows that theH1c values predicted using

the two different discretisations present differences

below 1%. It also shows that the H1c estimated using

LO = 37.5 mm and LO = 50 mm are similar, but for

smaller LO, the H1c estimates are lower. This occurs

because even an adhesive as brittle as this has a small

amount of plasticity in longer LO, which means that

some energy would have to be spent in plasticizing the

adhesive before a crack would form. Furthermore, in

longer LO, the crack can propagate stably for a few

moments, but for shorter LO, the joints fail as soon as

there is a crack. Finally, Pm was predicted using each

one of those H1c. For example, using the H1c obtained

with the experiments and numerical simulations of

LO = 12.5 mm, Pm was numerically predicted for the

other LO (25, 37.5 and 50 mm). The same procedure

was done for the H1c obtained with the other LO.

Figure 12 presents the strength predictions only for the

refined mesh since the results are similar to those

obtained with the baseline mesh. On the other hand, it

is observable that, as LO increases, the curve slopes

also increase. This fact is contrary to the experimental

results where, for larger LO, increasing LO diminishes

the returns in strength. However, this slope increase is
Fig. 11 Comparison of the predicted H1c values for the

different LO and discretisations

Fig. 12 Strength predictions using the FEM with the refined

discretisation
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minimal, and it is not a significant issue in the LO range

tested. For the largest LO, the predicted strength

increase is in line with what was verified experimen-

tally, i.e., approximately a 1 kN strength increase

between LO = 37.5 mm and LO = 50 mm. For the two

shortest LO, the predicted strength increases when LO
increases are smaller than those found experimentally,

i.e., the strength prediction increase between LO-
= 12.5 mm and LO = 25 mm is smaller than 1 kN,

while the experimental strength increase was over 1

kN.

By analysing the strength predictions for the

LO = 12.5 mm, it is perceptible that the nearest

prediction (beyond its own H1c curve) is the curve of

H1c determined with LO = 25 mm. However, the joint

strength is overpredicted, and the percentual deviation

between this prediction and the experimental data is

9.75%, which can be considered high. The other two

predictions are also higher than the experimental

value, being the LO = 37.5 mm case the furthest away

with a percentual deviation of 17.33%. For LO-
= 25 mm, similar behaviour is observed for the two

highest LO. Nonetheless, for the LO = 12.5 mm pre-

diction case, the joint strength is underpredicted with a

percentual deviation of 8.92%. For the largest LO, it is

clear that the predictions are identical, with a

percentual deviation of 0.84% when a LO = 50 mm

was used to predict the strength of the LO = 37.5 mm

joint and the same percentual deviation on the contrary

case. For both these cases, the worst-case scenario is

predicting the strength with a LO = 12.5 mm, where

percentual deviations over 16% were found.

5 Conclusions

The present work focused on the ISSF criterion,

comparing the numerical analysis performed through

FEM with experimental data. This work’s geometry

and material combination lead to the existence of two

components that characterise the stress singularity at

the adhesive/adherend interface corner, being the first

singularity the most significant one. The extrapolation

method used to determine H1 showed independence

from the discretisation. This is a major advantage

when compared to the stress, which is affected by the

stress singularity in the corner, meaning that finer

discretisations lead to higher stress levels in this

region. The method proposed to determine H1c

showed some variance depending on which LO is

used, except when comparing the H1c obtained with

LO = 37.5 mm with the one obtained with LO-
= 50 mm, which were similar. The strength predic-

tions were lower than the experiments when the H1c

determined with a smaller LO was used to predict a

larger LO’s joint strength. However, joint strength was

over predicted when an LO smaller than the LO with

which H1c was determined was used. The only

exceptions to this rule are the two largest LO, because

the H1c predicted with those two LO are similar,

meaning that the strength predictions for LO-
= 37.5 mm using the H1c determined with LO-
= 50 mm, and vice-versa, are identical to the

experimental Pm. Since it is better to have conserva-

tive Pm predictions due to safety reasons, it would be

advisable to only predict Pm of joints with LO larger

than the LO used to determineH1c. The results found in

this work revealed to be very promising, with very

accurate results achieved, considering the simplicity

of the method applied to determine H1c. Although the

method’s validity was only checked for a specific

adhesive system, this technique can be further studied

in the field of adhesive joints and applied to different

systems/joint types, provided that further validation is

accomplished.
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Appendix 1
e ¼ a� bð Þ cos 2kh1½ � � cos 2kh1 � 2kh2½ �ð

þk2 cos 2h1ð Þ � cos 2h1 þ 2h2ð Þ � 1þ cos 2h2ð Þ½ �
�

þ 1þ að Þ 1� cos 2kh1½ �ð Þ � 1� bð Þ 1� cos 2kh2½ �ð Þ
ð10Þ

b ¼ a� bð Þ sin 2kh1½ � � sin 2kh1 � 2kh2½ �ð
�k2 sin 2h1ð Þ � sin 2h1 þ 2h2ð Þ þ sin 2h2ð Þ½ �

�

� 1þ að Þ sin 2kh1ð Þ � 1� bð Þ sin 2kh2ð Þ
ð11Þ

c ¼ a� bð Þ cos 2kh1½ � � cos 2kh1 þ 2h2½ � þ cos 2kh2½ �ð
� cos 2kh2 � 2h1ð Þ � 1þ cos 2h1ð ÞÞ
þ 1þ að Þ 1� cos 2h1½ �ð Þ � 1� bð Þ 1� cos 2h2½ �ð Þ

ð12Þ

d ¼ a� bð Þ sin 2h1½ � þ sin 2kh2 � 2h1½ � � sin 2kh1½ �ð
þ sin 2kh1 þ 2h2ð Þ � sin 2h2ð ÞÞ
� 1þ að Þ sin 2h1ð Þ � 1� bð Þ sin 2h2ð Þ

ð13Þ

Appendix 2

v31 ¼ � cos 2kh1ð Þ � k cos 2h1ð Þ ð14Þ

v32 ¼ sin 2kh1ð Þ � k sin 2h1ð Þ ð15Þ

v41 ¼ sin 2kh1ð Þ þ k sin 2h1ð Þ ð16Þ

v42 ¼ cos 2kh1ð Þ � k cos 2h1ð Þ ð17Þ

v51 ¼
1� bþ a� bð Þ k� cos 2kh1ð Þ � k cos 2h1ð Þð Þ

1þ a
ð18Þ

v52 ¼
a� bð Þ sin 2kh1ð Þ � k sin 2h1ð Þð Þ

1þ a
ð19Þ

v61 ¼ � a� bð Þ sin 2kh1ð Þ þ k sin 2h1ð Þð Þ
1þ a

ð20Þ

v62 ¼
1� b� a� bð Þ kþ cos 2kh1ð Þ � k cos 2h1ð Þð Þ

1þ a
ð21Þ

v71 ¼
a� bð Þ sin 2kh1½ � þ k sin 2h1½ �ð Þ sin 2kh2½ � � k sin 2h2½ �ð Þ

1þ a

� 1� bþ a� b½ � k� cos 2kh1ð Þ � k cos 2h1ð Þ½ �ð Þ cos 2kh2½ � þ k cos 2h2½ �ð Þ
1þ a

ð22Þ

v72 ¼ � a� bð Þ sin 2kh1½ � � k sin 2h1½ �ð Þ cos 2kh2½ � þ k cos 2h2½ �ð Þ
1þ a

� 1� b� a� b½ � kþ cos 2kh1ð Þ � k cos 2h1ð Þ½ �ð Þ sin 2kh2½ � � k sin 2h2½ �ð Þ
1þ a

ð23Þ

v81 ¼ � a� bð Þ sin 2kh1½ � þ k sin 2h1½ �ð Þ cos 2kh2½ � � k cos 2h2½ �ð Þ
1þ a

� 1� bþ a� b½ � k� cos 2kh1ð Þ � k cos 2h1ð Þ½ �ð Þ sin 2kh2½ � þ k sin 2h2½ �ð Þ
1þ a

ð24Þ

v82 ¼ � a� bð Þ sin 2kh1½ � � k sin 2h1½ �ð Þ sin 2kh2½ � þ k sin 2h2½ �ð Þ
1þ a

� 1� b� a� b½ � kþ cos 2kh1ð Þ � k cos 2h1ð Þ½ �ð Þ cos 2kh2½ � � k cos 2h2½ �ð Þ
1þ a

ð25Þ

y1 ¼
c� e

k kþ 1� cos 2kh1ð Þ � k cos 2h1ð Þ½ � c� e½ � þ bþ dð Þ ð26Þ

y2 ¼
bþ d

k kþ 1� cos 2kh1ð Þ � k cos 2h1ð Þ½ � c� e½ � þ bþ dð Þ
ð27Þ
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