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Abstract The focus of the present paper is on the

mode-II (shear mode) interlaminar fracture of lami-

nated composite materials with randomly distributed

defects such as those generated due to the manufac-

turing process. The study is conducted using cohesive-

zone Finite Element (FE) models of the Interlaminar

Shear (ILS) and the End Notch Flexure (ENF)

geometries with explicit inclusion of defects on a

representative interlaminar plane. The effective inter-

laminar shear strength and the effective mode-II

fracture energy are obtained by comparing the FE

analysis with explicit defects against corresponding

homogeneous models. Based on the parametric FE

results it was found that the effective ILS strength and

the mode-II fracture energy are significantly affected

by the defects present on the critical interlaminar

fracture plane, and when the defects are small, they

follow a linear scaling with the defect area fraction.

Simulations with various defect sizes reveal that for

defects larger than the size of the delamination

process-zone, the concept of the effective ILS strength

and effective mode-II fracture energy is not valid, and

defects must be represented explicitly in the models.

Keywords Defects � Polymer and ceramic matrix

composites (PMCs and CMCs) � Delamination

fracture � Interlaminar shear strength (ILS) � Mode-II

fracture energy � Cohesive-zone finite elements

1 Introduction

Processing induced defects, inherent in most materi-

als, usually lead to a reduction in the performance of

such materials. This is especially true for heteroge-

neous composite materials such as polymer matrix

composites (PMCs) and ceramic matrix composites

(CMCs) where defects, which form at multiple length

scales due to inherent heterogeneity of the microstruc-

ture, can significantly reduce the elastic, damage, and

fracture response of the material.

The effects of defects on the mechanical behavior

of Polymer Matrix Composites (PMCs) have been

studied extensively (see Talreja 2020 for an over-

view). Briefly, Huang and Talreja (2005) and Tavaf

et al. (2019) studied the effects of defects on the elastic

properties of unidirectional PMCs, and Dong and

Gong (2018) studied the damage behavior in the

presence of defects. In contrast to PMC materials, the

processing methods used for CMCs may generate a

higher percentage of defects. The reduction in the

elastic properties of CMCs due to defects has been

studied by analytical and/or numerical micromechan-

ics approaches by a number of researchers including
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Goldberg et al. (2012), Gowayed et al. (2013),

Nagaraja and Gururaja (2020), and Kumar (2021b).

In structural applications both PMCs and CMCs are

typically used in a laminated form making them

susceptible to interlaminar failure mode. This failure

mode is induced due to high interlaminar tension and/

or interlaminar shear stresses. High interlaminar

stresses are often caused by geometry (e.g., complex

part curvature), internal or external discontinuity such

as ply-drops, cut-outs and notches, and/or loading

conditions (e.g., transverse static and impact loads).

Due to the lack of fibers in the through-thickness

direction in unidirectional and two-dimensional (2D)

woven composites, these materials have lower inter-

laminar properties compared to the in-plane proper-

ties. For the current generation of Polymer

Impregnation and Pyrolysis (PIP)-based CMCs the

interlaminar strength and toughness are quite low (see

Kumar and Welsh 2012; Kumar 2013) compared to

typical aerospace grade PMCs. This difference is

commonly attributed to the higher amount of defects

and/or weak fiber interphase coatings necessary for

damage tolerance in CMCs. Thus, understanding how

the interlaminar properties of CMCs are affected by

the defects is important for successful design and

insertion of these materials in gas turbines and other

high-temperature applications.

The impact of processing induced voids on the

interlaminar strength of polymer matrix composites

has been studied by Gurdal et al. (1991) and Nikishkov

et al. (2014). Ricotta et al. (2008) studied how the

mode-I Strain Energy Release Rate (SERR) in PMCs

is affected by defects, Chadegani and Batra (2011)

studied the effects of voids and disbonds on the SERR

in an adhesively bonded single lap joint, and de Moura

et al. (2006) simulated the propagation of a delami-

nation crack in a single-lap adhesive joint with defects.

However, these studies focused on simplified defect

structures (single or few voids), and, with the

notable exception of de Moura et al. (2006), did not

consider the effects of defects on the delamination

propagation. In a recent work (Kumar 2021a), we

studied the effects of multiple defects on the ILT

strength and the mode-I delamination propagation.

The reader is referred to this work for a more detailed

discussion of the current state-of-the-art.

The present paper builds upon our previous work

(Kumar 2021a) on mode-I fracture, utilizing similar

modeling strategy to study the impact of multiple

randomly distributed defects on the mode-II interlam-

inar fracture. The mode-I interlaminar properties (ILT

strength and mode-I fracture energy) of PMCs and

CMCs are typically lower than the corresponding

mode-II fracture properties (ILS strength and mode-II

fracture energy). However, despite this characteristic,

under many common loading scenarios, delaminations

in laminated composite materials tend to propagate

under mode-II or mixed-mode conditions as they are

constrained to remain on well-defined weak planes

between the plies. This behavior is different from that

observed in isotropic materials where, under mode-II

or mixed-mode loading condition, the crack turns in

such a way that mode-I condition prevails at the crack

tip. Therefore, for a complete characterization both the

mode-I and mode-II behaviors must be studied. The

objective of the present paper is to study the role of

defects on the mode-II delamination fracture in

composite materials in order to: (1) determine the

reduction in the ILS strength and the mode-II fracture

toughness of the material and (2) to determine under

what conditions, if any, we can define and use an

effective ILS strength and an effective mode-II

fracture energy in structural models, thereby, avoiding

explicit modeling of the defects in the structural

models. Similar to our previous work (Kumar 2021a),

we use computational fracture mechanics for analysis

and demonstrate the results using the properties

representative of a PIP derived CMC material. How-

ever, it should be noted that the results are of general

applicability and should apply to the mode-II inter-

laminar fracture in PMCs and bonded joints. We also

note that defects in CMCs occur at multiple length-

scales. However, our focus in the present paper is on

defects at the ply-thickness length-scale. Lower

length-scale defects are assumed to be implicitly

modeled via elastic properties of the plies determined

using an appropriate micromechanics method (see

Kumar 2021b for one such method). Furthermore, as

the focus of the present work is on the interlaminar

strength and delamination crack propagation, we

assume that the effects of the defects are felt only

via their intersection on the plane of the crack

propagation. Thus, it is implicitly assumed that the

3D aspect of these defects is accounted for via the

homogenized elastic properties of the plies.

The organization of the paper is as follows: the FE

modeling approach is described in Sect. 2. The results

from the Finite Element Analysis (FEA) and
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parametric simulations are discussed in detail in

Sect. 3. Here we also outline the procedure for

deriving the effective strength and fracture properties.

The conclusions derived from this study are summa-

rized in the final Sect. 4.

2 Numerical models

Similar to our previous work (Kumar 2021a), we use

FE models wherein the defect structures are explicitly

represented in an idealized manner. Cohesive-zone

FEA is used to model the delamination crack initiation

and propagation. Corresponding models without any

defects are also analyzed for comparison. Further

details regarding the cohesive model used in the

present work, including the formulation details, load-

ing–unloading behavior, and meaning of the damage

parameters to be discussed later, can be found in the

users and theory manuals of Abaqus FE code (Abaqus

2018).

The numerical models and simulation results

presented in this paper use the material properties

representative of a CMC material. However, the

approach and main conclusions are expected to apply

to any layered composite such as PMCs and CMCs.

The material properties and the [0/90]4s layup consid-

ered are same as that used in our previous work

(Kumar 2021a), as listed in Table 1 for completeness.

It should be noted that the cohesive parameters listed

in Table 1 are assumed to correspond to the pristine

(no defects) case even though we fully realize that the

experimental data is obtained from specimens with

certain level of defects. Thus, the absolute values of

the ILS strength and fracture energy reported in

Sect. 3 for various defect levels should be interpreted

relative to the defect area fraction in the test

specimens. As the experimental data is taken from

our prior work where the defects were not fully

characterized, the exact defect area fraction corre-

sponding to the experimental data in Table 1 is not

known. However, the typical range of the defect area

fraction in these composites is from 10–20%.

2.1 FE model of ILS strength configuration

The ILS strength of composite materials can be

determined experimentally using two methods stan-

dardized by the ASTM. The first method, recom-

mended for PMCs, is the Short Beam Shear (SBS) test

using the ASTM D2344/D2344M-16 (2016). On the

other hand, for CMC materials ASTM C1292-16

(2016) recommends a Double Notch Shear (DNS) test

method. However, researchers have also used the SBS

method to determine the ILS strength of CMCs. In

fact, unpublished FE calculations by the present author

have shown that the Double Notch Shear (DNS) can

yield artificially lower shear strength due to the effect

of stress singularity at the tip of the two notches. On

the other hand, the SBS configuration does not suffer

from that limitation, and hence, can yield accept-

able shear strength, provided the mode of failure is

indeed the interlaminar shear mode, and not, for

example, a bending failure or failure due to the stress

concentration at the loading roller.

Table 1 S200H CMC

material properties used in

the FEA (Kumar 2021a)

Property Value

A. Elastic properties (assigned to continuum elements)

E11 = E22 138.6 GPa

E33 45.9 GPa

m12 0.11

m13 = m23 0.15

G12 50.3 GPa

G13 = G23 8.6 GPa

B. Interlaminar strength & fracture properties (assigned to cohesive elements)

ILT strength 14.5 MPa

GIc 78.81 J/m2

ILS strength 44.1 MPa

GIIc 262.69 J/m2
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Instead of modeling any of the experimental

configurations commonly used, in the present work,

we adopt an idealized model where a simple shear

loading is applied to a cuboidal domain representing

the CMC material, as shown schematically in Fig. 1.

The dimensions of the simulation domain are

25.4 mm 9 25.4 mm 9 5.4 mm. The thickness of

5.4 mm corresponds to a nominal thickness of a 16-

ply S200H CMC. Without any loss of generality, we

model the interlaminar fracture at the mid-plane of the

specimen, and hence, the defects are also explicitly

represented only on this plane. We only consider the

simulation of the ILS stress component r13, which is

representative of both the r13 and r23 cases. The

boundary conditions simulating simple shear loading

is indicated in this figure: the bottom face is

constrained in all the three directions while the top

face is constrained in y� and z� directions and

displacement is specified in the x� direction.

A three-dimensional (3D) FE model of the ILS

setup is shown in Fig. 1. As the fracture is considered

only on the mid-plane of the domain, cohesive

elements are embedded there. The remainder of the

domain is modeled with continuum (brick) elements.

Themesh was designed in such a way that the cohesive

elements shared their nodes with the adjacent

continuum elements at the mid-plane. As the in-plane

dimensions of the cohesive elements and the contin-

uum elements are same, a highly refined mesh was

used wherein the element size was equal to the ply

thickness of 0.34 mm. As will be discussed later, this

consideration also sets the minimum size of the defects

that can be simulated. As will be shown in Sect. 3,

convergent solutions are obtained with this level of

mesh refinement. The material properties assigned to

the solid elements as well as the fracture properties

assigned to the cohesive elements are listed in Table 1.

It should be noted that the cohesive strength of the

traction–separation law is taken to be equal to the

experimentally determined interlaminar strength

listed in Table 1. In order to model the fracture

behavior correctly, the initial stiffness of the traction–

separation response was set to 6895 GPa in both the

modes, consistent with the recommendations in Turon

et al. (2007). Furthermore, we use a power law

(power = 1.0) to model the mixed mode behavior. All

the analyses were conducted using Abaqus implicit FE

software (Abaqus 2018).

Fig. 1 FE model of the ILS strength geometry
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2.2 FE model for mode-II delamination growth

The propagation of the shear mode (or Mode-II)

delamination in composite materials is characterized

by the mode-II critical strain energy release rate or

mode-II fracture energy. Experimentally this property

is determined using an End Notch Flexure (ENF) test

method using the procedure in ASTM standard

D7905/7905 M (2019). Thus, we use a model of the

ENF configuration to simulate mode-II delamination

propagation with and without defects (Fig. 2). Similar

to the ILS model we assume the delamination growth

on a single plane spanning the pre-crack. In all the

simulations, the specimen width (B) was taken to be

12.7 mm, which is typically used in the ENF exper-

iments with CMC materials. Similarly, the beam span

(L), the pre-crack length (a0), and the beam thickness

(h) used in the simulations are 101.6 mm, 25.4 mm,

and 5.4 mm, respectively, typical of a 16-ply S200H

CMC specimen. The support and the loading rollers

are modeled as analytical rigid surfaces with a radius

of 3.175 mm for both. All the degrees of freedom of

the reference point associated with the support rollers

are constrained. Similarly, all the degrees of freedom

of the loading roller are constrained except for the z�
direction through which displacement is specified. We

assume a frictionless contact interaction between the

CMC beam and the rollers as well as between the crack

faces as the effect of the friction on the delamination

propagation is not expected to alter the conclusion.

The ENF specimen is modeled using 3D continuum

elements with orthotropic elastic properties (see

Table 1). The delamination initiation and growth are

simulated using zero-thickness cohesive elements at

the mid-plane. These cohesive elements share the

nodes with the adjacent brick elements. The fracture

properties assigned to the cohesive elements are same

as that used for the ILS specimen (Table 1). Similar to

the ILS geometry, a very fine uniform mesh with

element size of 0.34 mm is used, which also dictates

the lower bound of the defect size to be equal to the

ply-thickness (see Sect. 2.1). As will be discussed in

Sect. 3, a convergent solution is obtained with this

level of mesh refinement.

2.3 Defect representation in the FE models

The approach for representing the defects in the FE

models of the ILS and the ENF specimen is exactly the

same as that discussed in Kumar (2021a) for the mode-

I interlaminar fracture study. While the detailed

discussion can be found in Kumar (2021a), we briefly

summarize the approach for completeness. For the

purposes of interlaminar fracture, we approximate the

volumetric defects as 2D planar ‘‘disbonded’’ regions

located on a single interlaminar plane, as shown in

Fig. 3.

As discussed in Kumar (2021a), defects on the

delamination propagation or fracture plane are intro-

duced by eliminating certain number of cohesive

Fig. 2 FE model of the ENF setup
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elements until a desired defect area fraction is

achieved. Furthermore, a random process is used to

decide which cohesive elements to remove. Clearly,

this approach places a limit on the minimum defect

size. However, no such limit is placed on the

maximum size of the defects as removal of adjacent

cohesive elements would lead to a larger defect size.

Some representative defect structures generated using

this procedure are shown in Fig. 4. It is interesting to

note that this approach can generate realistic and

complex defect structures (see, for example, Gowayed

(2013) and Santhosh (2018) for representative defect

structures in CMCs).

3 Results and discussion

The FE analysis of the ILS and the ENF configura-

tions, with and without defects were conducted using

the Abaqus implicit FE software (Abaqus 2018). The

simulation results are discussed in the following.

3.1 Interlaminar shear strength

Analysis of the ILS strength configuration was con-

ducted with various defect area fraction ranging from

10 to 80%. It should be noted that a typical range of

defect area fraction in CMCs is 10–20%. Here a wider

range of defect area fraction is considered to determine

if percolation of defects at higher area fraction leads to

a sudden drop in the strength. As the defects are

generated randomly, we consider three realizations of

defect structures for each defect area fraction case.

Furthermore, we also simulate the case with no defects

for comparison purposes.

From the simulations, the average interlaminar

shear stress (r13) vs. the applied displacement (u1)

plots are obtained. The average shear stress is obtained

by dividing the total nodal reaction force in the x-

direction from all the constrained nodes on the bottom

(z ¼ 0) plane of the model by the total area of the

interlaminar fracture plane (L2), see Fig. 1. The results

are summarized in Fig. 5 where the responses with and

without the defects are shown.

In all the cases, the overall shear stress increases

linearly until a peak is reached followed by a sudden

reduction in the stress indicating a complete failure. In

the models with defects a small nonlinearity is visible

immediately before the peak stress, and furthermore,

this nonlinearity is more pronounced when defects

with higher area fraction are present. The effective ILS

strength can be inferred from Fig. 5 as the peak

interlaminar shear stress. It may be noted that for the

defect-free case, the peak stress of 41.0 MPa (5958

psi) is * 7% lower than the ILS strength of 44.1 MPa

(6400 psi) specified for the cohesive elements. This

slight under-prediction, likely to be due to the free

edge effects, does not affect the conclusion drawn in

this work as the models with defects will also have the

same effect, and furthermore, our interest is only in the

relative difference in the ILS strength. It is also evident

from Fig. 5 that the ILS strength reduces with the

defect area fraction. Furthermore, the variation of the

ILS strength with the area fraction of defects (Fig. 6)

shows an approximately linear reduction in the

Fig. 3 Idealization of voids as planar defects on delamination propagation plane
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strength. This linear scaling of the ILS strength (SILS)

can be described by

SILS ¼ S0ILS 1� Ad
f

� �
ð1Þ

where S0ILS is the ILS strength with no defects and Ad
f is

the area fraction of the defects intersecting with the

fracture plane.

While the FE models predict a slightly lower

strength compared to the linear scaling, the difference

is very small. Thus, the linear relationship of Eq. (1)

can be considered as a good approximation. This

observation is consistent with the linear reduction of

the ILT strength with the defect area fraction presented

in Kumar (2021a). As with the ILT strength (see

Kumar 2021a) percolation of defects on the fracture

plane does not lead to catastrophic drop in the ILS

strength. It may also be noted from Fig. 6 that the

scatter in the ILS strength between different realiza-

tions of the defect structures is very small.

In order to gain further insight into the interlaminar

shear failure process, we examine the spatial variation

of the interlaminar stress (r13) in Fig. 7. Here the

contours of the interlaminar shear stress are shown in

the cohesive elements corresponding to various points

on the loading path (as shown in Fig. 5) for one

Fig. 4 Representative defect structures in a ILS and b ENF configurations
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specific simulation case (defect area fraction,

Ad
f = 0.2). It is clear that the interlaminar shear stress

concentration develops in the vicinity of the defects

very early in the loading process (stage (b) in Fig. 5

and Fig. 7). With further increase in the overall

applied load the high stress region continues to

increase in size (stages (c) through (e)). Finally, at

the critical peak stress/load almost the entire fracture

plane reaches the specified interlaminar shear strength

for the cohesive elements. Beyond this point all the

Fig. 5 Overall response of the ILS configuration with and without defects (Af represents the defect area fraction)

Fig. 6 Normalized ILS

strength (SILS=S
0
ILS) from

FEA for various defect area

fraction [R1, R2, R3 indicate

different realizations and

linear-scaling refer to

Eq. (1)]
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cohesive elements on the fracture plane fails suddenly,

leading to a sudden drop of the average interlaminar

stress from the maximum to zero. Thus, a gradual

propagation and coalescence of few cracks from

certain defects is not seen. This behavior may explain

the linear reduction of the ILS strength with the defect

area (or the remaining intact area) on the interlaminar

fracture plane (Eq. 1). It should be noted that the

nature of the failure at the critical fracture plane

(instantaneous vs. gradual) may depend on the choice

of the cohesive parameters. As discussed in the

foregoing, in the present case of S200H CMC

Fig. 7 Interlaminar shear stress (r13) in the cohesive elements for ILS geometry (Ad
f ¼ 0:2) and labels (a)–(f) correspond to those in

Fig. 5)
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material, the cohesive parameters are such that an

instantaneous interlaminar failure occurs under the

ILS loading. Furthermore, this behavior is qualita-

tively similar to that observed in the mode-I ILT

fracture studied in Kumar (2021a).

Similar to what was noted for the ILT strength

variation with the defect area fraction in Kumar

(2021a), the present result is also of practical impor-

tance. The ILS strength of specimens with defects can

be estimated using the linear relationship of Eq. (1) in

conjunction with an experimental determination of

defect area fraction using, for example, X-ray CT-

scan. In such an approach, the critical ply interface can

be considered as the one with the highest defect area

fraction.

3.2 Mode-II delamination propagation

The overall behavior of the ENF specimen can be

gleaned from the force vs. displacement plot, where

the force and the displacement correspond to the

reaction force and the applied displacement, respec-

tively, of the central loading roller. The force–

displacement response of the ENF configuration with

no defects is shown in Fig. 8. The FEA results are

presented for two mesh sizes: a baseline mesh (Mesh

1) with an element size of 0.34 mm and a refined mesh

(Mesh 2) with an element size of 0.17 mm. It is seen

that the responses from the two meshes are very close,

and hence, the baseline mesh is considered to give a

converged solution. The force–displacement response,

as obtained from the FEA, shows that the force

increases linearly before reaching a maximum. After

reaching the peak value, the load drops precipitously,

reaches a local minimum point, and then increases

again. From the simulation it is noted that the crack

propagation starts at the peak load, grows suddenly to

a certain length during the descending part of the load–

displacement curve, followed by a gradual growth

during which the load increases again. The slow-down

of the delamination crack and the corresponding rise in

the load is associated with the interaction of the

delamination crack front with the compressive stress

field of the central loading roller.

The response from the FEA can be compared

against an analytical LEFM theory. This theory

applied to the ENF geometry (Hashemi et al. 1990)

gives the loading point displacement (d) and the

corresponding force (P) during the delamination

propagation via two parametric equations:

GIIc ¼
9P2a2

16B2E11h3
ð2Þ

d
P
¼ 3a3 þ 2L3ð Þ

8Bh3E11

ð3Þ

where a is the crack length, B is the specimen width,

GIIc is the mode-II fracture energy, E11 is the elastic

modulus of the material, L is the half span, and h is the

half thickness of the ENF specimen. The peak force

(P0) and corresponding displacement (d0) can also be

calculated using Eqs. (2) and (3) by using the pre-

Fig. 8 Force–displacement

curve of the ENF specimen

without defects (Mesh 1—

element size 0.34 mm;

Mesh 2—element size

0.17 mm)
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crack length (a0). The response predicted from the

FEA is compared against the analytical LEFM solu-

tion in Fig. 8. It is seen that the initial linear behavior

and the peak load (associated with the onset of the

delamination) from the two models agree well; small

nonlinearity in the FEA is due to the development of

the process-zone in the cohesive FE model. The

analytical LEFM model also shows a sudden decrease

in the force once the delamination starts to propagate

in qualitative agreement with the FEA results. How-

ever, the curves differ in the decreasing portion of the

load. In fact, the analytical LEFM shows a snap-back

behavior with the displacement decreasing along with

the load drop during the initial propagation phase.

Clearly the FEA does not capture this snap-back

behavior. In addition, the nature of the curve during

the unstable propagation of the crack in the FEA

model is also likely to be dependent on a small amount

of damage stabilization used. We also note that the

analytical LEFM model used in the present work

cannot predict the load increase due to the interaction

of the delamination crack with the loading roller,

whereas that behavior is naturally captured in the FE

model.

In any case, despite the differences between the

overall load–displacement curves between the FE and

the analytical models, there is an excellent agreement

in the predicted peak load. Furthermore, as this peak

load correspond to the onset of the delamination

growth characterized by the mode-II fracture energy

GIIc, it can be used for comparing the FE models with

defects against an equivalent homogenized analytical

LEFM model, as will be discussed later.

We now consider the propagation of the mode-II

delamination in the presence of the defects. For this

study we take the specimen with the defect area

fraction of 0.2 and generate three realizations of the

defect structures, all with an element size of 0.34 mm,

labeled as Mesh 1. The obtained force–displacement

responses are plotted in Fig. 9. Also shown in this

figure is the response with a refined mesh (Mesh 2;

element length 0.17 mm). It is seen that the force–

displacement response with defects is qualitatively

similar to that without the defects (as seen in Fig. 8).

The maximum force predicted by the finer mesh is

slightly lower than that predicted by the baseline

mesh; however, as the computational cost associated

with the fine mesh is quite high, all the remaining

simulations used the baseline Mesh 1 with element

size of 0.34 mm. As all the defect cases will use the

same baseline mesh, the slight over-prediction of the

peak load compared to the refined mesh will not

change the overall conclusion.

In order to quantify the effects of various defect

area fractions on the delamination growth, a number of

parametric simulations of the ENF specimen were

conducted. As was noted for the ILS specimen (see

Sect. 3.1), the defect area fraction was varied in the

range 10% to 80%. Again, three realizations were

considered for most cases; however, only a single

realization was considered for higher defect area

fraction cases to save on computational costs. The

predicted load–displacement responses are shown in

Fig. 10.

It is observed that for all the cases the response is

linear (with slight nonlinearity before the peak load)

up to the maximum load. Thereafter, a sudden

decrease in load occurs because of an unstable delam-

ination growth. Once the delamination slows down

due to the compressive stress field associated with the

central loading roller, the force begins to increase

again. It is also seen that the post-peak responses from

different realizations are slightly different due to the

variation in the defect structures amongst them. It is

also interesting to note that, in contrast to the mode-I

behavior discussed in Kumar (2021a), almost no local

oscillations in the force–displacement response are

seen. It was argued in Kumar (2021a) that the

oscillatory response was due to the interaction of the

mode-I delamination crack front with the defect

structures. Clearly, the mode-II delamination crack

in the ENF specimen also interacts with the distributed

defects as it propagates. However, the absence of the

small perturbations in the force–displacement

response during the mode-II delamination growth in

the ENF specimen is likely due to the unstable growth.

Additionally, the lack of the oscillation during the

post-peak load increase can be attributed to the strong

effect of through-thickness compressive stress field

induced by the central loading roller. As a final

remark, we note that peak force decreases monoton-

ically with the defect area fraction.

We now examine the propagation of the delamina-

tion front on the critical fracture plane where the

defects are located. In Fig. 11 we depict various stages

of the delamination propagation for one realization of

the ENF specimen where the defect area fraction was

0.2. In this figure the crack front and the fracture

123

Mode-II interlaminar fracture of composite materials in the presence of randomly distributed… 211



Fig. 9 Load–displacement curve of the ENF specimen (Ad
f ¼ 0:2)

Fig. 10 Effect of defect area fraction on the load–displacement curves of the ENF specimen
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process zone are identified via the cohesive damage

parameter which ranges from 0.0 to 1.0, with a value

of 1.0 leading to the deletion of the cohesive element

and formation of a traction-free crack. The labels (a) –

(h) indicated in Fig. 11 correspond to the points shown

on the load–displacement curve in Fig. 9. It is seen

Fig. 11 Sequence of mode-II delamination propagation in the ENF specimen (Realization 1 with Ad
f ¼ 0:2); cohesive damage

parameter shown corresponding to the labels shown in Fig. 9
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that right up to the maximum load (stage (c)) there is

no delamination growth from the pre-crack front.

However, during this pre-peak regime, the cohesive

elements ahead of the pre-crack develop some damage

(i.e., softening) and the length of this process-zone

increases from stage (b) to stage (c). The mild

nonlinearity in the force–displacement response from

stage (b) to (c) in Fig. 9 is due to the formation and

increase of this damage zone. The onset of the

delamination propagation occurs at stage (d) and

continues while the force decreases (stages (d)–(f)).

Note also that the growth of the delamination from

stage (d) to (f) is rather sudden with a sharp drop in the

load. Also note from Fig. 11 that at stage (f), which is

very close to the minimum load point (see Fig. 9), the

delamination front as well as its process zone are very

close to the central loading roller. Further increase in

the delamination length and the corresponding load

increase (stages (f) – (h)) is associated with some

interaction with the compressive stress field of the

central loading roller. In fact, as seen in stage (h) of

Fig. 11, the main delamination crack is arrested by the

loading roller, and a new delamination crack has

formed on the other side of the loading roller. Finally,

we note that the overall delamination growth behavior

with the defects is similar to that of the ENF specimen

without any defects, the only difference is that the

delamination crack front is jagged when the defects

are present.

Similar to the mode-I delamination growth problem

discussed in Kumar (2021a), we are interested in

defining an effective mode-II fracture energy that can

implicitly account for the effects of small manufac-

turing induced distributed defects. Following the same

approach as in Kumar (2021a), we derive the effective

mode-II fracture energy by matching the force–

displacement response obtained from the FEA anal-

ysis of the ENF configuration with explicit defect

structure against a corresponding homogeneous ana-

lytical LEFM model. Furthermore, as discussed ear-

lier, due to the unstable nature of the delamination

growth, we only compare the peak load, which, as we

have seen, corresponds to the onset of the delamina-

tion growth. Thus, using the analytical LEFM model

(Eqs. 2–3), we vary the fracture energy GIIc (all the

remaining parameters including the pre-crack length

are known from the geometry of the ENF specimen) to

obtain a best-fit to the maximum force obtained from

the FEA with explicit defects. The value of the GIIc

that gives the best agreement of the peak force with the

FEA results is taken as the effective mode-II fracture

energy, Geff
IIc , for that defect area fraction. All the

results from this procedure are summarized in Fig. 12.

The solid lines in this figure are the best fit analytical

LEFM solution corresponding to the defect case

modeled explicitly within FEA. The results show that

a unique Geff
IIc can be defined, and it captures the effect

of distributed defects on the mode-II fracture energy.

Of course, the analytical model used here is unable to

capture the response after the peak load due to the

instability of the delamination growth and its further

interaction with the loading roller, as discussed earlier.

It may be noted that instead of using the analytical

LEFM solution, one can compare the simulation

results against an equivalent homogenized FE model

to derive the effective GIIc, albeit at a significantly

more computational expense. As an illustration, such

homogenized cohesive FE simulations were con-

ducted for the defect area fraction of 0.2 and 0.4 using

the effective GIIc obtained from the analytical LEFM

(here it should be noted that mode-II cohesive strength

is also scaled as per Eq. (1), and furthermore, both the

mode-I cohesive strength and the mode-I fracture

energy GIc were similarly scaled, based on the

conclusion reached in Kumar 2021a). The result from

these simulations are also shown in Fig. 12, where it is

seen that the cohesive-zone FEA with an effective

mode-II fracture energyGeff
IIc is able to better match the

entire load–displacement response of the FE models

where defects are explicitly modeled. Of course, the

homogeneous FE models can be further calibrated, as

needed, to better match the results from the FEA

models with defects. One may also note from Fig. 12

that larger defect area fraction leads to an increased

nonlinearity in the force–displacement response prior

to the peak load.

The effective mode-II fracture energy,Geff
IIc , derived

using the procedure discussed above is summarized in

Fig. 13. This plot shows that the effective mode-II

fracture energy reduces in a more-or-less linear

manner with the defect area fraction. Thus, similar

to the ILS strength, Geff
IIc scales linearly with the intact

area on the fracture plane. This scaling can be

described by:

Geff
IIc ¼ G0

IIc 1� Ad
f

� �
ð4Þ
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In Fig. 13, this equation is plotted as a dashed line.

It is seen that the linear scaling is able to capture the

overall trend well. However, for larger defect area

fraction the FEA results yield slightly lower value of

the Geff
IIc compared to that obtained from the linear

scaling relationship of Eq. (4).

The result that the Geff
IIc decreases linearly with the

area fraction of defects is consistent with the mode-I

delamination case reported in Kumar (2021a). The

mode-II delamination crack front locally interacts

with the same net area (total area minus defect area) of

the interlaminar plane due to the uniformly distributed

nature of the defect structure considered. Thus, on

average the mode-II fracture energy scales with the

intact area fraction (1� Ad
f ).

3.3 Effects of defect size

So far, we have not considered the effect of defect size

explicitly. Recall from Sect. 2 that the defects were

generated in such a manner that their minimum size

was fixed by the underlying FE mesh (element

size = 0.34 mm), but the maximum size was not

specified. Thus, while coalescence of the individual

Fig. 12 Calculating

effective GIIc by comparing

FEA results with explicit

defects and analytical

LEFM solution; results from

homogenized cohesive FEA

models with Ad
f of 0.2 and

0.4 are also shown

Fig. 13 Reduction in the normalized effective mode-II fracture energy (Geff
IIc=G

0
IIc) with the area fraction of defects
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defects led to an increase in the defect size, especially

for higher defect area fractions, there was no control

over the maximum defect size. We now turn our

attention to a systematic study of the effects of defect

size keeping the defect area fraction constant.

3.3.1 ILS strength

First, we study the effects of the defect size on the ILS

strength. For this study we fix the area fraction of

defects at 20% and vary the defect size (length of a

square shaped defect). In addition to the defect size of

0.34 mm considered previously, we consider three

additional sizes: 1.0 mm, 1.68 mm, and 4.36 mm.

Note that while each individual defect is of square

shape, a complex defect structure emerges due to the

intersection of various defects (see Fig. 14). It should

be noted that due to the sequential nature of the defect

generation algorithm discussed in Sect. 2.3, it is not

always possible to achieve the exact specified defect

area fraction. In the ILS models, the average defect

area fraction achieved was 0.181, 0.179, and 0.162

corresponding to the defect size of 1.0 mm, 1.68 mm,

and 4.36 mm, respectively. Using the same procedure

as discussed in Sect. 3.1, the mode-II fracture of the

ILS geometry was simulated, and the corresponding

ILS strength was derived from the peak load–dis-

placement curves. These results are presented in

Fig. 14 along with the associated defect geometry

for one realization associated with each defect size.

The average ILS strength from the three realizations is

taken as the ensemble average. This figure also shows

the ILS strength if it follows the linear scaling as

specified by Eq. (1). Here it is important to note that

the line specified by Eq. (1) is not horizontal (i.e., with

a zero slope) as an exact defect area fraction of 0.2 is

not realized in the simulations, but it decreases slightly

with the defect size. In any case, it is clear from Fig. 14

that the ILS strength is sensitive to the size of the

defect. Specifically, the ILS strength decreases with

the size of the defect even when the area fraction of the

defect is constant. Thus, larger defects are more

Fig. 14 Variation of the ILS strength with defect size (Ad
f � 0:2)
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detrimental to the ILS strength. This result is different

from the conclusion reached in Kumar (2021a) where

it was shown that the ILT strength was insensitive to

the defect size. Furthermore, it is seen that the area-

fraction-based scaling model is not accurate in

predicting the ILS strength, especially for larger

defect size. Specifically, the difference between the

area fraction-based scaling and the ensemble average

ILS strength from the explicit models is 3%, 6%, 7%,

and 20% for 0.34 mm, 1.0 mm, 1.68 mm, and

4.36 mm defect sizes, respectively. It is also interest-

ing on note that there is a considerable scatter in the

predicted ILS strength for the largest defect size, while

the scatter is significantly less for the three smaller

defect sizes. Thus, depending on the desired accuracy

(typically 10%), we can still model defects with size

up to 1.68 mm using the effective strength model. On

the other hand, larger defects would require an explicit

representation in the structural models as the effective

strength is unable to describe the ILS strength

accurately.

In order to understand the reason for the size effect

on the ILS strength, we examine the evolution of the

delamination growth on the fracture plane of the ILS

configuration. Figure 15 presents the contours of the

cohesive damage parameter for one of the realizations

of the ILS specimens with different defect sizes.

Recall that the cohesive damage of 1.0 implies that the

element has failed completely and is removed from the

mesh. The top row in the figure shows the cohesive

damage state at the peak applied load/stress, whereas

the bottom row shows the damage state during the

descending portion of the stress-displacement

response. It is clear that the size and the distribution

of the defects lead to differences in the pattern and

distribution of the cohesive damage parameter. It is

also seen that high cohesive damage region occurs in

the regions where there are defect clusters. The

propagation of the delamination proceeds from these

higher damage region as shown by the second row. It is

clear that the distribution of the cohesive damage

becomes more non-uniform with an increase in the

defect size. This non-uniformity leads to the differ-

ences in the critical load at which the catastrophic

mode-II failure ensues, leading to an increased scatter

Fig. 15 Nature of delamination evolution on the fracture plane of the ILS configuration with defects of various sizes (Ad
f � 0:2)
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as well as the size effect in the ILS strength as

observed in Fig. 14.

3.3.2 Mode-II delamination propagation

We now examine the defect size effect on the mode-II

delamination propagation. The models of the mode-II

delamination propagation discussed in Sect. 3.2 con-

sidered many distributed small defects. Furthermore,

for smaller defect area fraction these defects are

located farther apart without much overlap. We now

study the effect of defect size keeping the defect area

fraction constant. Our primary objective here is to

determine whether the effective mode-II fracture

energy is still a valid concept for larger defect size.

In order to conduct this study, we use a fixed defect

area fraction of Ad
f � 0:2 and generate defects of

various minimum sizes using a constrained version of

the approach discussed Sect. 2.3. We consider four

minimum defect sizes (ld) of 0.34 mm, 1.0 mm,

1.67 mm, and 4.36 mm in the ENF configuration, as

shown in the inset of Fig. 16. The force–displacement

responses from the simulations are shown in Fig. 16 as

well. It should be noted that for each defect size, two

realizations (R1 and R2) of the defect structures were

considered. For comparison, the response from the

analytical LEFM model with the effective mode-II

fracture toughness (Geff
IIc) determined earlier for this

defect area fraction case (see Fig. 12) is also shown.

An interesting range of behavior is seen in the load–

displacement response with various defect size. First,

we note that for the defect size of 0.34 mm, 1.0 mm,

and 1.68 mm the two realizations give fairly close

responses. On the other hand, for the largest defect size

of 4.36 mm, the force–displacement response displays

a significant scatter in the peak force as well as in the

overall shape of the curves. With the larger defect size,

the number of defects generated on the fracture plane

is small, and hence, the location of the defect structure

with respect to the pre-crack front can be significantly

different from one realization to another, thereby

leading to a significantly different response for the two

cases. Comparing the peak force, it appears that for the

three smaller defect sizes, the peak load increases with

the defect size. This counterintuitive behavior is likely

to be due to the details of the defect structure in the

process-zone of the pre-crack at the peak load. In any

case, it should be noted that the difference in the peak

force is small: the average peak force for 0.34 mm,

1.0 mm, and 1.68 mm defect sizes are, respectively,

436 N, 442 N and 459 N, a variation of * 5%. In

addition, we note that the peak forces are within *
± 3% of the peak force predicted by the best fit

analytical LEFM model. Thus, the effective mode-II

fracture energy determined earlier (for the case with

Fig. 16 Load–displacement behavior of the ENF specimen (Ad
f � 0:2) with various sizes of defects
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Ad
f ¼ 0:2) can still be considered as a good approx-

imation for the defect size of 1.0 mm and 1.68 mm.

While the peak force predicted by the analytical

LEFM model also seems to be close to the average

peak force for the defect size of 4.36 mm, this

outcome is fortuitous. For the largest defect size of

4.36 mm, the scatter in the peak force is quite large

and the shape of the post-peak response of the two

realizations are significantly different. The reason for

the different behavior is, of course, the local defect

Fig. 17 Evolution of mode-II delamination process zone in models with defects of various sizes (Ad
f � 0:2)
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structure close to the pre-crack. As seen from the inset

in Fig. 16, which shows the defect structure for

realization R1, a large defect intersects the pre crack

front. On the other hand, it was verified that for the

realization R2 of the same defect size, there was no

intersection of any defect with the pre-crack front.

This explains why realization R2 gives a higher peak

force compared to realization R1. All these observa-

tions suggest that, for a large defect size, it may not be

appropriate to model the delamination propagation

behavior using the effective mode-II fracture energy.

We now examine the delamination propagation

behavior as it traverses through the defects. This is

shown in Fig. 17 where the cohesive damage param-

eter is plotted for two stages: (1) at the maximum load

which corresponds to the onset of the propagation and

(2) a state after some arbitrary amount of delamination

propagation. This figure also shows the location of the

pre-crack and the process zone of the delamination,

which is determined by the cohesive elements with

non-zero damage parameter.

It is observed that the delamination front is more

jagged when the defect size is larger. In fact, there is a

considerable variation in the delamination length along

the width of the specimen for the largest defect case due

to the preferential location of all the defects on one edge

of the specimen. Furthermore, it is seen that there are

significantly lesser number of defects spanning the

process zone of the delamination for the larger defect

size. In fact, the size of the delamination process-zone is

much smaller than the defect size for the largest defect

case. This observation along with the previous result

that the force–displacement response for the largest

defect case cannot be adequately described by an

effective mode-II fracture energy, Geff
IIc , suggests that

the ratio of the defect size and the fracture process-

zone size must be considered. Thus, consistent with

the work on mode-I delamination (Kumar 2021a), a

practical guideline is as follows: if the defect size is

greater than the size of the delamination process-zone,

it is not appropriate to approximate them via a

homogeneous effective fracture energy, and hence,

they must be explicitly modeled. On the other hand,

explicit modeling of defects is not necessary, and a

homogeneous model with an effective mode-II frac-

ture energy is appropriate, when the size of the defects

is smaller than the delamination process zone size.

4 Conclusions

In the present paper we studied the mode-II interlam-

inar fracture of laminated composites in the presence

of randomly distributed defects on the interlaminar

fracture plane. The study was conducted using cohe-

sive-zone FE models with defects modeled explicitly.

Without any loss of generality, the 3D defects were

idealized as planar 2D disbonds on the fracture plane.

These disbonds or defects were generated by randomly

eliminating cohesive elements from the mesh until a

specific level of defect area is achieved.

From the FEA results of the ILS configuration it

was found the interlaminar shear stress was amplified

in the vicinity of the defects. However, this stress

concentration did not result in a gradual onset and

propagation of the fracture, which is consistent with

what has been observed for mode-I fracture by

Needleman (1990) and Kumar (2021a). As a result

of this behavior the ILS strength was found to depend

linearly on the intact (or equivalently the defect) area

fraction on the critical interlaminar plane. A study of

the effect of the defect size (for a fixed defect area

fraction) revealed that the concept of the effective ILS

strength is applicable for small defect sizes (up to

1.68 mm for defect area fraction of 0.2); however, it

breaks down for larger defect sizes. Thus, large defects

must be modeled explicitly rather than represented via

an effective ILS strength property.

The mode-II delamination propagation behavior,

studied using the ENF geometry, showed that defects

can reduce the peak load corresponding to the onset of

the delamination growth. Furthermore, it was shown

that the onset of mode-II delamination growth in the

presence of defects can be described using an effective

mode-II fracture energy. This effective mode-II frac-

ture energy was calculated by matching the response

from the FEAwhere the defects are explicitly resolved

with an equivalent homogeneous model, which can

either be an analytical or numerical fracture model

such as cohesive-zone models. Consistent with the

mode-I behavior reported in Kumar (2021a), it was

shown that when the defect size is small the effective

mode-II fracture energy reduces linearly with the area

fraction of the defects, though slightly more scatter

was noted compared to the mode-I behavior in Kumar

(2021a). Simulations of the ENF configuration with

varying defect sizes at a fixed defect area fraction

showed that that larger defects lead to a more jagged
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delamination front as well as increased oscillation in

the force response in the post-peak regime. It was

shown that defect size smaller than the delamination

process zone size can still be homogenized and

modeled via an effective mode-II fracture energy.

On the other hand, when the defect size was greater

than the size of the delamination process zone, the

force–displacement response, including the peak

force, showed a considerable scatter making the

concept of effective mode-II fracture energy invalid.

The present paper quantifies the sensitivity of the

mode-II interlaminar strength and fracture energy due

to the distributed defects. In critical load-bearing

applications, the effects of defects must be carefully

accounted for in structural models. In this regard,

based on the approach and results provided in this

paper, appropriate decisions can be made whether to

treat the effects of the defects in a homogenized

manner or to model them explicitly.
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