
Int J Fract (2021) 229:15–37
https://doi.org/10.1007/s10704-021-00537-8

ORIGINAL PAPER

Continuum damage modeling of dynamic crack velocity,
branching, and energy dissipation in brittle materials

Taufiq Abdullah · Kedar Kirane

Received: 22 September 2020 / Accepted: 7 April 2021 / Published online: 21 April 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract This study is aimed at evaluating contin-
uum scale predictions of dynamic crack propagation
and branching in brittle materials using local dam-
age modeling. Classical experimental results on crack
branching in PMMA and the corresponding nonlocal
modeling results by Wolff et al. (Int J Numer Meth
Eng 101(12):933, 2015) are used as a benchmark. An
isotropic damage model based on a frame-invariant
effective strain is adapted.Mesh objectivity is achieved
by calibrating the damage model for a suitable element
size and subsequently retaining that mesh size in all
subsequent analyses. Crack propagation and branch-
ing are predicted by simulating accurately the test con-
ditions. It is found that a local, rate-independent dam-
agemodel considerably overpredicts the dynamic crack
velocity and the extent of crack branching. Subse-
quently, the effect of various strain rate-dependent phe-
nomena, viz. material viscoelasticity, rate-dependent
strength, fracture energy, and failure strain is evaluated.
Incorporating the material strain rate effects is found to
improve the predictions and match the test data. In this
regard, radially scaling the damage law is found towork
the best. Despite an overprediction ofmicro-branching,
the macro-crack branching is found to occur in agree-
ment with the Yoffe instability criterion. Overall, vari-
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ous experimentally observed aspects of dynamic cracks
are reproduced, including acceleration of cracks to a
steady state velocity, increased micro-branching and
macro-branching with increased strain rates, and crack
velocity dependence of energy dissipation and fracture
surface area.
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1 Introduction

Inmanyengineering applications involving impact/blast
protection and crashworthiness, the energy dissipated
by dynamic fracturing is an indicator of performance
i.e. a design criterion. However, physical testing is
expensive and sometimes infeasible, and designs have
to rely on numerical predictions of the same. So, for
accurate prediction of energy dissipation, it is crucial
for numerical models to correctly predict essential fea-
tures of dynamic fracture. These include crack veloc-
ity and its evolution, crack branching patterns, and the
overall extent and geometry of fracturing.

Numerical modeling of dynamic fracture has been
pursued via

1. Discrete or line crack representations such as the
cohesive crack model (Camacho and Ortiz 1996;
Repetto et al. 2000; Barenblatt 1962; Dugdale
1960; Xu and Needleman 1994; Zhou et al. 2005)
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and extended finite element method or XFEM (Xu
et al. 2014)

2. Smeared or crack band representations based on
continuumdamagemechanics (CDM)or the phase-
field model (Doan et al. 2017)

The cohesive crackmodel simulates the fracture pro-
cess by defining a traction-separation law across the
fracture surface. The cohesive traction is a function
of the separation such that the fracture energy of the
material equals the area under the traction-separation
curve. The cohesive crack model is capable of describ-
ing crack nucleation, propagation as well as branch-
ing. However, the main limitation is the required pre-
specification of cohesive elements or interactions along
the fracture path which needs to be known before-
hand. Hence, when crack branching is expected, FEA
models must be built with cohesive elements along all
possible crack paths, which can be quite cumbersome.
Advanced techniques that allow the addition of cohe-
sive elements on the fly exist too (i.e. dynamic inser-
tion) (Molinari et al. 2007; Pandolfi et al. 1999; Pandolfi
and Ortiz 2002). In these methods as the dynamic anal-
ysis progresses, cohesive elements are inserted at loca-
tions where the stress exceeds a critical value. Various
methods for such dynamic insertion of cohesive ele-
ments have been discussed by Papoulia et al. (2003).
However, these capabilities do not yet exist in most
commercially available finite element programs.

The extended finite element method or XFEM was
developed by Zi et al. (2005) to overcome this limita-
tion. The method has become widely popular to pre-
dict fracture propagation since it yields a mesh inde-
pendent solution with little to no remeshing. However,
crack branching prediction is not automatic and must
be achieved by a branching criterion (Jirásek and Rol-
shoven 2003). Moreover, (Yazid et al. 2009) showed
that the XFEM needs a variable number of degrees of
freedom per node when it is incorporated into an exist-
ing FEM code. It thus takes more processing time to
reach a solution. Also, recently both these line crack
approaches have been shown to not account properly
for damage in the presence of stress triaxiality (Nguyen
et al. 2020).

Phase field modeling (PFM) of fracture has become
popular in recent years (Li et al. 2016; Bleyer et al.
2017; Nguyen and Wu 2018). Bleyer et al. (2017)
demonstrated the application of PFM to dynamic frac-
ture. Their model was able to capture the complex

relationship betweenmicrostructural heterogeneity and
crack branching. The model was also able to replicate
the widening fracture band with an apparent increase
in fracture energy. Another notable work (Bleyer and
Molinari 2017) described the fracture process as a 3D
instability, which showed a strong dependence on the
thickness of the sample. On the other hand, the branch-
ing pattern showed a strong dependence on the assumed
internal length scale of PFM. To overcome this limita-
tion of the internal length scale, a regularized phase
field based cohesive model was introduced recently
(Wu and Nguyen 2018; Wu 2017; Nguyen and Wu
2018). The model was able to capture multiple crack
branching independent of internal length scale (Bleyer
et al. 2017). However, the PFM seems to under-predict
the crack velocity and the distinction between macro-
and micro branching is rather arbitrary. Further, it is
based only on one damage parameter, and it is unclear
if it can handle mixed mode failures under general tri-
axial stress states (Nguyen et al. 2020). Thus overall,
it is not as mature as the other aforementioned tech-
niques, and also is computationally expensive. So fur-
ther developments would be needed for general use in
structural level commercial applications.

The smeared crack approach involving continuum
damage mechanics (CDM) (Kachanov 1986) over-
comes these limitations of the discrete approach. It
naturally predicts branching (and merging) of cracks,
accounts for stress triaxiality, and is easy to implement
too. As a result, it is very commonly used for structural
predictions of dynamic fracture in industry/academia.
However, its effectiveness in predicting dynamic crack
velocity evolution and branching is not fully estab-
lished. The best modeling practices to obtain reliable
predictions in this regard are also poorly understood.
This poses a significant risk of developing inadequate
designs.

To this end, this paper is aimed at examining
the effectiveness of the CDM approach in predicting
dynamic fracture, with a specific focus on crack veloc-
ity evolution, crack branching, and energy dissipation.
Recently, benchmark evaluations with a similar moti-
vationwere presented in the excellent study byWolff et.
al. (2015). They evaluated local and nonlocal damage
models for dynamic fracture in PMMAvia comparison
to experiments from (Zhou 1996). The study provided
an excellent benchmark for other numerical models.
Their study emphasized the importance of nonlocal-
ity, and the damage initiation threshold strain. How-
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Continuum damage modeling of dynamic crack 17

ever, in many practical applications, the use of a non-
local model is not always possible. This is because the
treatment of the nonlocal weighting function near the
structure boundary is not straightforward. Also, non-
local models require a sufficiently small mesh size to
capture the nonlocality, and can seriously compromise
the computational efficiency of analyses for large-scale
structures. Thus certain aspects of the local modeling
approach deserve a closer examination. Primarily this
includes the proper strain rate dependent scaling of the
stress–strain law. Here this aspect is examined in detail.
Further studies are pursued by considering important
aspects, such as the mesh geometry and material vis-
coelasticity. We also interpret crack branching in terms
of the crack velocity dependence of energy dissipation
and fracture surface area. The essential objective is to
fully understand the best practices for formulating local
material point level damage models, to obtain accurate
predictions of dynamic fracturing at the structure level.

2 Dynamic crack branching

2.1 Background

Crack branching is a key feature of dynamic fracture.
Unlike quasistatic fracture, under higher strain rates,
the localization of damage into one major crack is sup-
pressed, leading to branching of cracks. In the simplest
terms, this branching can be explained by the excess of
available energy at the crack tip which cannot be dis-
sipated by a single crack (Freund 1998; Sharon et al.
1995; Yoffe 1951).

A variety of experimental and analytical studies
in the past have investigated conditions and criterion
governing branching of a dynamically growing crack
(Zhou 1996; Sharon et al. 1996; Fineberg 1997; Rabbi
et al. 2019). This has led to several observations on
salient behaviors in brittle materials which include:

1. Crack velocity evolution marked by acceleration to
a steady state velocity

2. Relation of the steady state crack velocity to
Rayleigh wave speed, cR

3. Crack branching above a certain threshold crack
velocity

4. Mirror mist hackle patterns on fracture surfaces
indicating crack acceleration

5. Nucleation of sister cracks at some distance away
from the main crack

6. Linear dependence of the relative fracture surface
area on the dynamic crack velocity etc.

Investigations by Ravi-Chandar and Knauss (Ravi-
Chandar andKnauss 1984) have showndynamic cracks
to accelerate to a constant limiting velocity. They also
found that micro-cracks can nucleate due to instabil-
ities caused by high crack tip velocities. An archival
finding in this regard is the Yoffe criterion for crack
branching (Yoffe 1951). According to this criterion,
crack branching is driven by the dynamic instability
of the moving crack tip. The transition from a single
crack to multiple cracks is obtained when the crack
velocity exceeds 60 to 70% of the Rayleigh wave speed
(Sharon et al. 1995; Abraham 2005). It is also evident
from the experimental investigation of Fineberg and
Marder (Fineberg and Marder 1999) that the fracture
surface roughness depends on the crack velocity. Their
investigation showed that the crack surface appears to
be flat at low velocity and at high velocity, surface
roughness from microvoids starts to appear. A coa-
lescence of these microvoids in the fracture process
zone creates dynamic instability and leads to micro-
crack branching. Recent experimental investigations
on a wide range of crack velocities have confirmed
that the surface roughness increases during the con-
stant velocity phase (Broberg 1996; Scheibert et al.
2012). These studies also revealed that the dynamic
instabilities at the crack tip prevent the crack from fur-
ther accelerating. Furthermore, there have been several
studies showing the close dependence of the dissipated
energy and relative fracture surface area on the crack
velocity (Fineberg 1997; Sharon et al. 1995, 1996). It
is essential to assess continuum scale numerical mod-
els for their predictions of these features (especially
dynamic crack velocity and branching) to ensure the
right prediction of energy dissipation.

2.2 Experimental benchmark

For the purpose of evaluating numerical results, the
benchmark experimental results reported by Zhou
(1996) on dynamic fracture of Polymethyl methacry-
late (PMMA) plates will be used (similar toWolff et al.
(2015)). Their investigations were aimed at capturing
the transition from a single localized crack to branched
cracks. A dynamic crack was produced by applying a
displacement preload �u to the top and bottom edges
of the PMMA plates, and then suddenly introducing a
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Fig. 1 Schematics of the PMMA plate used for the numerical
simulation. The right picture shows the crack patterns from the
experimental investigation of Zhou (1996). Adapted from Wolff
et al. (2015) with permission from John Wiley and Sons

pre-crack. Due to the preload, the suddenly introduced
pre-crack propagated dynamically.

Results for three different preload values (�u=0.06
mm, 0.10 mm, and 0.14 mm) were reported. The crack
velocities were measured using vertical electrical con-
ductive lines which were bonded to the plate. For a
preload of�u=0.06mmone single crackwas observed.
Its path was straight, parallel to the precrack, and it
propagated until the plate broke into two pieces. The
corresponding crack velocity was 338m/s. For�u=0.1
mm, the presence of micro-branching off the main
crack was observed and the corresponding velocity of
the main crack was 577 m/s. For �u=0.14 mm, exten-
sive branching of the main crack was observed, and
the leading major crack had a steady-state crack veloc-
ity of 660 m/s. These results are summarized in Fig.
1. Overall, for higher preloads, higher crack velocities
and more branching can be observed. These tests will
be simulated here using various local, continuum scale
damage models.

3 Continuum damage model

PMMA being a homogeneous isotropic brittle solid,
its failure is largely dominated by tensile failure (espe-
cially so in the tests considered here). So to capture its
dynamic fracture we adapt an isotropic CDM model,
similar to what was done inWolff et al. (2015). We first
present the strain rate independent behavior, and sub-
sequently, strain rate dependence will be incorporated.

3.1 Rate independent behavior

For an isotropic brittle solid, the elastic constitutive
relation is described as,

σi j = Ci jklεkl (1)

where i, j, k=1, 2, 3, σ is the Cauchy stress tensor, ε is
the logarithmic strain tensor, and C is the fourth order
elastic stiffness tensor given by,

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk) (2)

where λ = Eν/(1+ν)(1−2ν) andμ = G = E/2(1+
ν) are the Lamé parameters, E is the Young’s modulus,
G is the shear modulus and ν is the Poisson’s ratio.

To capture damage, we introduce an isotropic dam-
age model which consists of a scalar damage variable
D that varies from 0 to 1. When D = 0, it denotes
the original undamaged material, whereas D = 1 rep-
resents the fully damaged state. The damage is intro-
duced to the material by degrading the elastic modulus
E as,

E = (1 − D)E0 (3)

where E0 is the original undamaged value of the mod-
ulus. The damaged value of E is then used to calculate
the elasticity tensor of the damaged material via equa-
tion 2.

The damage variable, D is driven by a frame-
invariant effective strain, ε, formulated as per Mazars
model (Mazars 1986),

ε =
√

ε2i (4)

where εi represent the principal strains (i = 1, 2, 3).
The evolution of the damage variable is formulated so
as to produce a linear softening, i.e. a linear decrease
in stress with increasing strain. In this framework,
material degradation is assumed to be irreversible, and
unloading occurs towards the origin. This is formulated
as follows (Xue and Kirane 2019),

D =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 i f ε ≤ ε0

ε f

ε f − ε0

[
1 −

(
ε0

ε

)]
i f ε0 ≤ ε ≤ ε f

1 i f ε f ≤ ε

(5)

where ε0 is the value of effective strain at damage ini-
tiation and ε f is the effective strain corresponding to
complete damage. Under uniaxial tensile conditions,
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Continuum damage modeling of dynamic crack 19

Fig. 2 Material point stress–strain diagramwith linear softening

the value of ε0 can be expressed in terms of the uniax-
ial tensile strength Ft , the Poisson’s ratio ν and elastic
modulus E of the material as,

ε0 = Ft
E

√
1 + 2ν2 (6)

Wewill refer to thismodel as the rate independent dam-
age model or RIM. Generally for brittle materials, the
strength and fracture energy is unequal under tensile
and compressive loads. Usually this is accounted for by
introducing an asymmetry in the damage initiation and
completion strain thresholds (Pereira et al. 2015).How-
ever due to lack of data on compression damage (espe-
cially with rate effects), and the predominant focus on
mode I tensile failures, here we assumed symmetric
damage under tension and compression. We verified
that the results were unaltered even after completely
removing compression damage.

3.2 Characteristic length scale

This softening damage law needs to be equipped with
a characteristic length scale, for which the simplest
approach is the crack band model (CBM) (Bažant and
Oh 1983; Bazant and Planas 1997; Červenka et al.
2005). In this approach, the slope of the post-peak
softening branch is to be adjusted when the mesh size
changes. This is done so that elements of varying sizes
always dissipate energy consistent with the material’s
fracture energy. If this is not done, it is well established
that mesh objectivity is lost.

The crack band approach can be easily combined
with continuum damage mechanics. It is typically

implemented by introducing the element size he in the
damage formulation by relating it to the failure strain
as,

ε f = 2GF

Fthe

√
1 + 2ν2 (7)

Here, he is the element size and GF is the fracture
energy, which is related to gF , the area under the uni-
axial stress vs strain curve by

GF = gFhe (8)

This approach has been proven to work for a
wide variety of quasistatic fracture problems.However,
recent findings (Gorgogianni et al. 2020) have shown
that it works only when the damage pattern consists of
clearly localized cracks. When the damage pattern is
diffused (as can be expected for dynamic fracture), it
fails to properly regularize the solution. To overcome
this, a simple strategy is to choose a suitable element
size he, which is small enough to be comparable or
smaller than the crack band width h. The crack band
width h is related to the size of material heterogeneity
and can be obtained by measuring the minimum spac-
ingof parallel tensile cracks smin (Bažant andPijaudier-
Cabot 1989). If smin is not known, it has to be chosen
to be approximately of the order of the material hetero-
geneity. Then the damage model is calibrated to repro-
duce the desired fracture energy using this mesh size
(i.e. as per Eq. 7). Following this, in all subsequent
analyses, all element sizes must equal he. This sim-
ple approach is employed here too, to eliminate mesh
effects. For varying element sizes within one model,
a transitional localization parameter, as described in
Gorgogianni et al. (2020) is necessary.

3.3 Strain rate dependence

Themost important aspect to consider inmaterial mod-
els for dynamic fracture is the time dependence of frac-
ture propagation, which typically has two sources of
material behavior:

1. The rate process of bond breaking at the crack tip
which causes the damage evolution to be strain rate-
dependent

2. Viscoelasticity of the bulk material
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Fig. 3 Material point stress–strain curve with damage delay
method

The first point above is a feature of great interest for
dynamic fracture (Le et al. 2018; Needleman 1988).
It is manifested as an increasing strength and frac-
ture energy with increasing strain rate (Le et al. 2018;
Bazant and Planas 1997; John and Shah 1986; Bažant
and Gettu 1992). In addition, at the structural level,
effects of stress waves and inertia also become impor-
tant, but most explicit dynamic finite element solvers
automatically account for those.

3.3.1 Rate-independent failure strain

A rate dependent damage model which has a rate inde-
pendent failure strain (i.e. strain at complete damage
ε f ) was employed by Ladeveze (1992), Allix and Deü
(1997) and Pontiroli (1995). This approach is called
the damage delay method or DDM. In this study, we
adapt Pontiroli’s formulation. Here the damage initia-
tion strain ε0 is made a function of the strain rate, to
match the increased strength with increased strain rate.
However, the failure strain i.e. the complete damage
threshold is kept rate independent. This is formulated
as,

ε0,dyn = min

[
ε0

{
1 +

( |ε̇|
a

)}
, 0.999ε f

]
(9)

ε f,dyn = ε f (10)

where ε0,dyn is the strain at which the failure initiates
and a is the shape parameter that needs to be cali-
brated. Figure 3 shows the material point stress–strain
curves for various strain rates for the DDM formula-
tion. These correspond to a=34,000 s−1 (calibration
described later).

It can be seen that the strength (and fracture energy
too) shows an increase with increasing strain rate.
After the peak load is reached, the slope of the strain-
softening branch changes to maintain the final damage
threshold constant or rate independent. (The value of
ε f = 0.05, corresponds to GF = 300 N/m, Ft = 75
MPa, ν = 0.35 and he = 0.16 mm whose choice is
explained later).

This was also the formulation adapted in (Wolff
et al. 2015) for their local modeling approach. How-
ever, upon closer inspection, it can be seen that this
formulation remains stable only in a limited range of
strain rates, since ε f is rate independent, but not ε0.
So, beyond certain strain rates one can expect ε0 > ε f

making the slope of the postpeak positive i.e. unsta-
ble. To avoid this, an artificial cap on the ε0,dyn has
to be introduced, as shown in Eq. 9. Thus, the DDM
approach is viable as long as ε0 < ε f .

3.3.2 Rate-dependent failure strain

An alternative approach is considered here which over-
comes this limitation. In this approach, the failure strain
is also rate dependent. This approach has also been used
in several studies e.g. Bazant and Li (1997) and proven
to be effective. Here, this is formulated by adjusting the
DDM formulation, to cause a radial shift in the stress–
strain law, so that the slope of the softening branch does
not change with increasing strain rate. To achieve this
shift, the damage thresholds are modified as follows,

ε0,dyn =ε0

{
1 +

( |ε̇|
b

)}
(11)

ε f,dyn =ε f

{
1 +

( |ε̇|
b

)}
(12)

where ε0,dyn is the effective strain at which the damage
initiates and ε f,dyn is the effective strain corresponding
to complete damage. Here, b is the shape parameter
which needs to be calibrated.Wewill refer to thismodel
as the radially scaled model or RSM.

Figure 4 shows the material point stress–strain
curves at different strain rates for the RSM formulation
with b=210,519.90 s−1 (whose calibration is described
later).

(The rate independent value ε f = 0.05, corresponds
toGF=300N/m, Ft=75MPa, ν=0.35, and he=0.16mm
whose choice is explained later). It is evident that the
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Continuum damage modeling of dynamic crack 21

Fig. 4 Material point stress–strain curve with radially scaled
model

RSM formulation poses no limitation on the range of
applicability of strain rates, since it ensures a negative
postpeak slope for all strain rate values. Thus it has a
clear advantage over the DDM.

3.3.3 Material viscoelasticity

The second source of rate dependence is the material
viscoelasticity. A variety of studies in the past have
investigated viscoelastic fracture (Willis 1967; Knauss
1970; Sluys et al. 1993; Schapery 1989). For poly-
mers (including PMMA), it could become an impor-
tant source of time-dependence in fracture (Bazant
and Li 1997; Williams 1972; Wang et al. 2014; Rabbi
and Chalivendra 2019; Fenghua et al. 1992). Here, the
Maxwell model is used to account for the viscoelastic-
ity of PMMA (Hernández-Jiménez et al. 2002; Jo et al.
2005; Graebling et al. 1993; Jia et al. 2007).

It uses a combination of spring and dash-pot to
describe the time dependence of the elastic modulus.
The spring in the Maxwell model is the Hookean ele-
ment and its behavior is described by σ = K ε which
represents the elastic stretching of the material bonds.
On the other hand, the Newtonian dash-pot describes
the viscous behavior of thematerial and can bemodeled
as σ = ηε̇. Here ε̇ is the strain rate and η is the vis-
cosity. The ratio of viscosity to stiffness is the measure
of the material’s viscoelastic response and is known as
relaxation time, τ .

In a generalized Maxwell model the applied strain
is equal in each branches. So we can write,

ε = ε j = εsj + εdj (13)

where εs and εd indicates the strain in spring and dash-
pot respectively. The total stress is the sum of stresses
applied to each branch:

σ = σ∞ +
N∑
j=1

σ j (14)

where subscript j indicates the jth branch of the
Maxwell model. The superposition principle and stress
relaxation constant gives the stress at time t ,

σ(t) = σ∞ +
N∑
j=1

σ0exp

(−t

τ j

)
(15)

The elastic modulus of such a system can be written as,

E(t) = E∞ +
N∑
j=1

E0exp

(−t

τ j

)
(16)

Here we consider only a singleMaxwell branch (which
involves one spring and one dashpot in series). For such
a system, the previous equation simplifies to,

E(t) = E0exp

(−t

τ

)
(17)

Here, the value of the relaxation time, τ is taken
as 766 s, as obtained from (Hernández-Jiménez et al.
2002). Figure 5 shows the generalized Maxwell model
and material point stress–strain curve with viscoelas-
ticity along with stress and strain histories in a relax-
ation test. From the figure, it is seen that the addition of
viscoelasticity has not affected the stress–strain curve
appreciably, even at a strain rate of 10,000/s. This is
likely because the time scale under consideration is
much smaller than τ . So we do not expect it to affect
the short term dynamic fracturing response consider-
ably. Nevertheless, this will be verified.

4 Finite element modeling

4.1 Choice of element size

As pointed out previously, the issue of mesh objectiv-
ity is circumvented here by choosing an element size,
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(a) (b)

(c) (d)

Fig. 5 a Generalized Maxwell model, b material point stress–strain curve with viscoelasticity, c strain history, and d stress history in
a relaxation test

calibrating the damage model with this size, and then
using this mesh size in all models. The element size
should ideally be comparable to the crack band width.
It can be estimated to be comparable to thematerial het-
erogeneity size, or the minimum possible spacing smin

between parallel tensile cracks (Bažant and Pijaudier-
Cabot 1989).

Since smin is not known, an alternate considera-
tion in choosing he is that the softening branch of the
stress–strain curve at material point level should have
a negative slope, i.e. the failure strain should be greater
than the initiation strain. For the material properties
for PMMA, it can be calculated that for he = 0.35 mm,
ε f = ε0 indicating a vertical drop instead of softening.
This sets the upper bound for element size. An element
size equal to or larger than0.35mmwould lead to unsta-
ble results (unless a transitional localization parameter
suggested in Gorgogianni et al. (2020) is used.) A suit-
able assumption is ε f = 2ε0 which ensures a negative

slope and leads to an element size of 0.16 mm or 160
µm. It can be seen that this value of he is comparable
to Irwin’s characteristic length lc = EGF/F2

t . From
the material properties of PMMA summarized in Table
1, lc turns out to be 0.1648 mm or 164.8 µm.

4.2 Numerical implementation

The damage model was implemented in commer-
cial FEA software Abaqus/Explicit using user-defined
material subroutine VUMAT (Simulia 2017). The
VUMAT subroutine is invoked at each material point
k in each time increment. The FEA solver provides the
strain increment�εt,k for each time increment,�t. The
incremental strain, �εt,k is then used to calculate the
current strain εt,k at each material point as well as the
strain rate ε̇t,k as:
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Continuum damage modeling of dynamic crack 23

Table 1 Properties of the PMMA used in this study (Wolff et al.
2015; Hernández-Jiménez et al. 2002)

Properties Values

Elastic modulus, E 3,090 MPa

Poisson’s ratio, ν 0.35

Density, ρ 1,180 kg/m3

Fracture energy, G f 300 N/m

Ultimate strength, Ft 75 MPa

Relaxation time, τ 766 s

Shape parameter, a 34,000 s−1

Shape parameter, b 210,519.90 s−1

ε̇t,k = �εt,k

�t
(18)

These are then used to obtain the damage increment
�dt,k at that point, and finally the stress σt,k using the
constitutive relation.

4.3 Specimen geometry and simulation steps

A finite element model of the PMMA plate of a 32
mm x 16 mm was built as shown in Fig. 6. The numer-
ical simulations were carried out using a plane stress
assumption. Dynamic fracturingwas achieved bymim-
icking the steps of the experiments. In the first step, the
PMMA-platewas stressed using constant displacement
in the ±y direction without the plate being constrained
in any other direction. The displacement field without
any damagewas computed to satisfy static equilibrium.

In the next step, the previously calculated stress field
was transferred and was used as an initial condition
in the step file of the Abaqus/Explicit simulation. All
material properties, boundary conditions, and meshing
parameters were kept same for a successful transfer of
these initial conditions to the second step of the analy-
sis. In the second step, the damage model is activated
after adding a straight pre-crack (of length 4 mm) in
the structure. This pre-crack was created by deleting
the corresponding elements. The stress concentration
at the crack tip causes the growth of a dynamic mode-I
crack in the structure, exactly as seen in the tests.

With this modeling strategy, a series of simulations
were conducted on the PMMA plate. Primarily, the
three different displacement preloads of �u=0.06 mm,
�u=0.10mm, and�u=0.14mmwere considered, sim-

Fig. 6 PMMA plate used for dynamic crack propagation with
prescribed displacement boundary condition on the top and bot-
tom edges

ilar to the experiments. The predicted fracture pattern
and crack velocity evolution are summarized and dis-
cussed in the following sections. Results are compared
with the experimental investigation of Zhou (1996).
Later on, additional preload cases are simulated, and the
dissipated energy and fracture surface area predicted
from the simulations are analyzed and compared with
other experimental results by Sharon et al. (1996).

5 Results

5.1 Structured vs random mesh

The mesh which is generated by default in most com-
mercial FEA software (such as Abaqus) for a rectangu-
lar geometry is a structured mesh, where all the mesh
lines are parallel to one of the plate edges. However
in local CDM models, the predicted fractures can tend
to artificially propagate along the mesh lines, poten-
tially hampering the prediction accuracy (Jirásek and
Bauer 2012). This tendency is known as the directional
mesh bias dependence.While the crack bandmodel can
alleviate the mesh size dependence, it remains highly
prone to mesh bias dependence even for finer meshes,
as shown by Jirásek andGrassl (2008).While complete
elimination of mesh bias dependence appears impos-
sible in a local damage model, a randomized unstruc-
tured mesh possessing no preferential path direction
can considerably alleviate this issue, as shown in var-
ious studies (Leon et al. 2014; Bolander and Sukumar
2005; Ebeida and Mitchell 2011). For complete elim-
ination of these effects a gradient based or a nonlocal
model would be required. Here too, a randomizedmesh
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Fig. 7 Fracture pattern obtained for the structured mesh (top
image) and Crack pattern obtained for the non-structured mesh
(bottom image)

with no apparent directional bias was found preferable,
as shown next.

For this purpose, two meshes were created using 4-
noded general-purpose shell elements (S4 in Abaqus),
one structured and one random. In both cases, the ele-
ment size was specified to be 0.16mm× 0.16mm. The
meshes can be seen in Fig. 7.

With both these meshes, we proceed to predict
dynamic cracking by the method described before.
The rate independent damage model was used and the
preload case of �u = 0.06 mm was simulated. The
predicted fracture pattern was visualized by creating a
contour plot of the damage variable D as shown in Fig.
7. From the plot for the structured mesh, it can be seen
that crack branching is almost always predicted at right
angles to themain crack. This is clearly an artifact of the
mesh geometry and contrasts with many experimental
observations, including the tests under consideration
here. On the other hand, the random mesh predicted
branching angles commonly seen in dynamic fracture
experiments (Freund 1998; Zhou 1996). This clearly
shows the advantage of using a random, unbiased mesh
and thereforewill be the chosenmesh for all subsequent
analyses.

5.2 Rate independent analysis

The three preload cases were then simulated with the
rate independent damage model (RIM), and the ran-
dommesh. The fracture pattern was obtained as before,
by plotting the damage variable D. Secondly, the pre-
dicted crack velocity Vc was also analyzed in detail.
For this purpose, a numerical methodology was devel-
oped, to mirror the experimental procedure of Zhou
(1996). The fastest growing crack which propagated
through the structure was considered as the main i.e.
the leading crack. From the simulation results, in each
time step, all damaged elements were identified and the
coordinates of their centroid were extracted. Then, the
instantaneous position of the main crack tip was iden-
tified as the highest x-coordinate of these centroids.
These coordinate locations were then used to compute
instantaneous crack velocity inX-direction at each time
step using a MATLAB utility routine. (Since this was
the velocity reported in the experimental and numeri-
cal benchmark study as well (Wolff et al. 2015; Zhou
1996).

The predictions from the rate independent damage
model are shown in Fig. 8. For the smallest preload
(�u=0.06 mm), one major crack is observed, which
propagated horizontally. In addition, some macro-
crack branches are observed. However, no branches
were observed in the experimental study for this
preload case. These macrocrack branches are seen to
become much more prominent and denser for higher
values of the preload, as shown in Fig. 8c, e. For these
preloads (�u=0.1 mm and 0.14 mm) extensive crack
branching is predicted. This is greatly in excess when
compared to the experiments.

Figure 8b, d, and f show the velocity evolution of
the main i.e. the leading crack (Vc). It should be noted
that the small drops in the velocity evolution plot corre-
spond to instants when crack branching occurs. It can
be seen that the model does predict an initial accelera-
tion of the crack followed by the attainment of a steady
state velocity. The model also predicts an increase in
steady state velocity with an increase in preload. This
agrees with experimental observations but only in a
qualitative sense. The average predicted crack velocity
(Vc) is 477 m/s for preload �u=0.06 mm, 682 m/s for
�u=0.10 mm, and 697 m/s for �u=0.14 mm. How-
ever, these velocities are much higher than measured
in the experiments (338 m/s, 577 m/s, and 660 m/s).
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Fracture pattern and leading crack velocity (Vc) evolution predicted by the rate independent damage model (RIM) for preloads
of a, b �u = 0.06 mm, c, d �u = 0.10 mm, and e, f �u = 0.14 mm
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Further, the extent of branching is also much greater
than observed.

This is due to the fact that the energy dissipated
by each material point is limited to the rate indepen-
dent, static fracture energy value. Thus, to dissipate the
excess available energy, the predicted fractures must
extensively branch. Thus it appears that for a better
quantitative agreement with the tests, incorporating
strain rate dependence is necessary.

5.3 Damage delay method (DDM)

The analyses are now repeated by introducing rate
dependence in the damagemodel, via the damage delay
method i.e. DDM. Unlike the rate independent damage
model, an additional material parameter i.e. the shape
parameter a is required. It is calibrated similar to the
method inWolff et al. (2015) bymatching the predicted
velocity Vc for the smallest preload case (�u = 0.06
mm). The calibrated value of a turned out to be 34,000
s−1 which yielded a velocity Vc of 344 m/s, matching
fairly well with the experimental crack velocity = 338
m/s.

The results for all three preloads are shown in Fig. 9.
It can be seen that the extent of fracturing for each case
is decreased compared to the RIM, and agrees better
with experiments to a certain extent. For �u=0.06 mm
one major crack with little to no branching is observed,
similar to tests. However for the intermediate case of
�u=0.1mmconsiderablemacrobranching is observed,
whichwas not seen in the tests. For the case of�u=0.14
mm, the extent of macrobranching seems to agree with
the tests. The predicted average crack velocities (Vc)
were 344 m/s, 584 m/s, and 628 m/s for the three
preloads, which agree well with the measured values
of 338 m/s, 577 m/s, and 660 m/s.

Thus the incorporation of DDM decreased the pre-
dicted crack propagation velocity as well as the extent
of fracturing when compared to the rate independent
formulation. The steady state average velocity of the
primary crack agrees well with the test data. However,
the extent of macro-crack branching is overpredicted.

5.4 Radially Scaled model (RSM)

The three preload cases were then simulated with the
radially scaled damagemodel (RSM). Similar toDDM,

the shape parameter b needs calibration. It is calibrated
similar to before, by matching the predicted velocity
for the smallest preload case (�u = 0.06 mm). The
calibrated value of b turned out to be 210,519.90 s−1

which yielded a velocity (Vc) of 341 m/s, matching
fairly well with the experimental crack velocity = 338
m/s. The predictions are shown in Fig. 10. It is found
that the results obtained (on the fracture pattern) are
qualitatively rather different from the previous ones.

For �u = 0.06 mm, the RSM formulation pre-
dicts a single straight crack which agrees well with the
experiments. For higher preloads, an interesting behav-
ior is observed. Unlike the DDM, extensive micro-
branching is predicted, to such an extent that the entire
fracture pattern appears like a thickened band. This is
very similar to the experiments, and also, the results
from Wolff et al. (2015). However, the microbranch-
ing does appear to be overpredicted than experiments.
Further, for �u=0.14 mm, a similar thickened frac-
ture band is predicted, which then branches, leading
to two thick bands. This branching of the thick bands
is viewed here as “macro-branching”. However, the
formed macrobranches do not further rebranch as seen
in the tests. Thus, thismodel overpredictsmicrobranch-
ing, but underpredicts macrobranching. The predicted
average crack velocities (Vc) are 341 m/s, 557 m/s, and
623 m/s which agree well with the measured values of
338 m/s, 577 m/s, and 660 m/s. The velocity increases
before the crack branching and a sharp instantaneous
drop in velocity is observed when crack branching
occurs, after which the velocity returns to the steady
state value.

Overall, it is found that the radially scaled damage
model has an edge over the damage delay method. The
agreement from RSM is slightly better with the exper-
imental data. While the DDM underpredicts micro-
branching and overpredicts macrobranching, the RSM
overpredictsmicrobranching and underpredictsmacro-
branching. However the RSM approach is applicable to
all values of strain rates, unlike the DDM, and there-
fore should be the preferred strategy for incorporating
rate dependence in damage models. In general, con-
sidering the quantitative results on crack velocities and
energy dissipation are more helpful in deciding which
results are more realistic. However, analyzing the frac-
ture patterns can provide a qualitative picture, proving
to be valuable in aiding the quantitative conclusions.
This is found especially true here, which shows a dra-
matic difference in the predictions caused by changing
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Fracture pattern and leading crack velocity (Vc) evolution predicted by the damage delay method for preloads of a, b�u = 0.06
mm, c, d �u = 0.10 mm, and e, f �u = 0.14 mm
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Fracture pattern and leading crack velocity (Vc) evolution predicted by the radially scaled model for preloads a, b �u = 0.06
mm, c, d �u = 0.10 mm, and e, f �u = 0.14 mm
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the manner of scaling the stress–strain damage law.
Overall, the local damage model is found to capture
various finer features of dynamic fractures.

5.5 Effect of material viscoelasticity

As discussed before, material viscoelasticity did not
have a significant effect on the stress–strain curve. Nev-
ertheless, we evaluate its effect on dynamic fracture
predictions, when used in conjunction with the RSM
formulation. The three preload cases were simulated
accordingly. Figure 11 shows the predicted fracture pat-
tern and crack velocities. These results look very simi-
lar to those obtained fromRSMwithout viscoelasticity.
The predicted velocities (Vc) for the three preload cases
are 349 m/s, 554 m/s and 610 m/s, which again did not
alter appreciably. This suggests that for dynamic frac-
ture of PMMA,viscoelasticity is not a critical effect and
need not be included in material models. This is likely
due to the relaxation time constant of 766 seconds,
which is much longer than the total crack propagation
times. Viscoelasticity will be important for longer term
fracture problems such as creep and fatigue, but not for
short term dynamic fracture.

5.6 Initial damage threshold

The results in Wolff et al. (2015) also indicated a
disagreement with experiments in terms of extent of
branching. As a potential remedy, they suggested intro-
ducing a strain rate threshold, belowwhich the response
is strain rate independent. Here too, it is seen that the
RSM approach underpredicted themacrocrack branch-
ing for the large imposed displacement (�u=0.14mm).
This is likely due to the overprediction of microbranch-
ing.

Hence, in this section, we investigate if raising the
strain rate threshold affects the results. This is formu-
lated as,

ε0,dyn = max

[
ε0

{
1 +

( |ε̇|
a

)}
, ε0,ini t

]
(19)

For this study,we consider the initial damage threshold,
ε0,ini t to be 0.030 and 0.040. Figure 12 shows the pre-
dicted fracture pattern and crack velocity. In both cases,
raising the initial damage threshold reduced the extent

of microbranching, and slightly increased the macro-
branching. The average crack velocity (Vc) however
decreased to 603 m/s and 599 m/s for ε0,ini t = 0.030
and 0.040 respectively. Thus adjustment of the dam-
age initiation threshold, did aid in reducing the micro-
branching, but at the cost of greater errors in crack
velocity.

5.7 3D crack branching simulations

Crack branching was described by Bleyer and Moli-
nari (2017) as a 3D instability and their work showed
the impact of structural thickness on crack branching.
To verify if the 2D plane stress assumption was valid,
here two of the analyses were repeated with a full 3D
model. Similar to before, a 3D domain with dimen-
sions of 32 mm × 16 mm × 0.16 mm was created. All
the other modeling parameters, viz. material proper-
ties, and boundary conditions were kept the same. The
damage model with the highest preload case (�u =
0.14 mm) was simulated using DDM and RSM and the
results are shown in Fig. 13. The leading crack veloc-
ity Vc evolution and the degree of crack branching are
largely similar to 2D simulations. It shows an initial
acceleration followed by the attainment of a steady-
state value. The fracture pattern for DDM formula-
tion shows extensive macrobranching with little micro-
branching. On the other hand, the RSM formulation
predicts, like before, a dense band of fracturing with
substantial microbranching and little macrobranching.

6 Additional analyses

The results so far suggest that the best results were
obtained with the RSM formulation, which we now
evaluate further. Additional simulations were per-
formed using the RSM formulation for preloads equal
to 0.08 mm, 0.12 mm, and 0.16 mm to observe the pre-
dicted fracture patterns and corresponding crack veloc-
ities. Results that are largely consistent to before were
observed. E.g. for�u=0.08mm, amostly straight crack
with some micro-branches was observed with an aver-
age crack propagation velocity (Vc) of 488 m/s (which
is intermediate to �u=0.06 mm and �u=0.1 mm). For
�u=0.12 mm, a diffused crack with macro-branches is
obtained for an applied displacement of 0.12 mm with
an average crack velocity (Vc) of 581 m/s and finally,
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Fracture pattern and leading crack velocity (Vc) evolution predicted by the radially scaled model implemented with viscoelas-
ticity, for preloads of a, b �u = 0.06 mm, c, d �u = 0.10 mm, and e, f �u = 0.14 mm

123



Continuum damage modeling of dynamic crack 31

(a) (b)

(c) (d)

Fig. 12 Fracture pattern and leading crack velocity (Vc) evolution predicted with the initial damage threshold a, b ε0,ini t = 0.030, and
c, d ε0,ini t = 0.040

for �u= 0.16 mm an even more intricate pattern of
cracks with extensive branching is predicted with an
average crack velocity (Vc) of 649 m/s. In addition to
themain crack andmacro-crack around themain crack,
two more cracks also appeared near the boundary of
the structure due to high-stress concentration in those
regions as can be seen in Fig. 14e. These results fit well
with the previous predictions and are now collectively
analyzed further.

6.1 Dissipated energy

Experimental measurements in the past have suggested
that the dissipated fracture energy during dynamic frac-
ture increases with increasing crack velocity (Sharon
et al. 1996). The predictions from the RSM analyses
were evaluated for this aspect too. Similar to Wolff

et al. (2015) and Sharon et al. (1996), the dissipated
energy was calculated from the strain energy as,

U = 1

2

∫ D

0
εT .C .ε.dD (20)

The total fracture energy dissipated by the structure
then can be calculated by,

Gc = U

l
(21)

where l is 28 mm.
Figure 15 shows the dissipated fracture energy as a

function of average crack velocity for different models
used in this study. It is clear that more energy is dissi-
pated as the crack velocity is increased. The simulation
results from RSM show a close agreement with the

123



32 T. Abdullah, K. Kirane

(a) (b)

(c) (d)

Fig. 13 Fracture pattern predicted using a 3D model with a DDM formulation and c RSM formulation; Comparison of the leading
crack velocity (Vc) evolution predicted by 2D and 3D models, b DDM formulation, d RSM formulation

experimental outcome of Sharon et al. (1996). How-
ever, the RIM and DDM formulation under-predict the
dissipated energy for higher crack velocities. This sug-
gests that the RSM formulation is most consistent in
terms of energy dissipation for a broad range of crack
velocity values. The increase in fracture energy with
strain rate, in the DDM approach is likely not adequate.

6.2 Relative surface area

Another aspect of dynamic fracture, emphasized in
Sharon et al. (1996) is the relative surface area as a
function of crack velocity. This is an effective way to
observe the increased crack branching with increasing
crack velocity. This is defined as the ratio of the total
fracture area created, to that created by a single straight

crack. (Thus a value of one indicates no branching, and
greater the value, more the branching). In Sharon et al.
(1996) a linear relationship between this ratio and the
corresponding steady state crack velocity was found.
In this study, these calculations were performed for
the predictions for all three modeling approaches (i.e.,
RIM, DDM, and RSM). The results are plotted in Fig.
16.

It can be seen that the models indeed capture the
increase in fracture surface area with increasing crack
velocity. Moreover, the relationship is seen to be linear,
consistent with the experiments. It is seen that for RSM
formulation as the velocity reaches close to 650 m/s,
the amount of surface created due to branching reaches
over four times the surface formed by a sharp single
crack.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Fracture pattern and leading crack velocity (Vc) evolution predicted by the radially scaled model for preloads of a, b�u = 0.08
mm, c, d �u = 0.12 mm, and (e, f) �u = 0.16 mm
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Fig. 15 Dissipated fracture energy compared to the experimen-
tal data of Sharon et al. (1996)

Fig. 16 The surface area formed per unit crack extension as a
function of average crack velocity

6.3 Crack branching criterion

The macro-crack branching predicted here is analyzed
further and compared to the Yoffe instability crite-
ria (Yoffe 1951). According to this criterion, for a
high speed crack propagating normal to the maxi-
mum tensile stress, there is a critical velocity (70%
of the Rayleigh wave speed (Abraham 2005)), above
which the crack tends to becomeunstable and branches.
Beyond this critical velocity, the mean acceleration of
the crack decreases and the crack velocity starts to
oscillate. This oscillation leads to the dynamic instabil-
ity of the moving crack tip and the main crack sprouts
side branches in the structure.

For PMMA under consideration, the shear wave
speed cS(= √

G/ρ) = 984.81 m/s. Then, the Rayleigh

wave speed cR is given by Freund (1998)

cR = cS
0.862 + 1.14ν

1 + ν
(22)

This computes to 919.89 m/s. Here, macro-crack
branchingwasobtainedwhen the crackvelocity reached
660 m/s which is nearly 71% of cR which agrees
remarkably well with the Yoffe instability criterion.
This suggests that as long as the damagemodel embod-
ies the right strain rate dependent fracture energy, the
crack branching instability can be automatically cap-
tured and that it is not essential to really capture local
crack tip stresses and strains. This agrees with findings
of a similar nature, but at themolecular scale (Abraham
2005).

7 Conclusions

This work presents a detailed numerical investiga-
tion of the predicted dynamic crack propagation and
branching in a brittle material, using various local,
rate dependent continuum damagemodels. Themodels
were used to predict the fracture pattern, crack velocity,
branching, and energy dissipation in a pre-cracked 2D
PMMA plate loaded under tension. The results were
compared to experimental data as well as previous
modeling results from Wolff et al. (2015). The main
conclusions are as follows:

1. A local damagemechanics basedmodel can capture
many aspects of dynamic fracture. This includes
crack acceleration to a steady state velocity and
increased crack branching with increased crack
velocity

2. A rate independent damage model considerably
overpredicts the dynamic crack velocity and the
extent of fracturing. This implies that incorporat-
ing fracturing rate effects is a must for dynamic
fracture analyses of brittle materials like PMMA

3. Incorporating the fracturing rate effects, by mak-
ing the strength and fracture energy rate dependent
improves the predictions significantly

4. Two ways of incorporating fracturing rate effects
were evaluated here viz, the damage delay method
(DDM) and the radial scaling method (RSM). In
the former, the strain at complete damage, is rate
independent, causing the post peak slope to be rate
dependent.On the other hand, in the latter, the strain
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at complete damage is rate dependent, such that
the post peak slope is rate independent. Both the
DDM and RSM approaches predict crack veloc-
ities well. But the DDM approach underpredicts
microbranching and overpredicts macrobranching.
On the other hand, the RSM approach overpredicts
microbranching and underpredicts macrobranch-
ing. However, the RSM approach does a better job
of capturing the dependence of energy dissipation
on crack velocity. Also it is applicable to all strain
rate values, unlike the DDM. This gives the RSM
approach an appreciable edge over the DDM.

5. The models capture the linear dependence of the
relative fracture surface area on crack velocity.

6. The predicted macrocrack branching is found to
occur in agreement with the Yoffe instability cri-
terion. This suggests that the branching instability
can be captured by CDM based approaches with
smeared crack representations

7. A random bias free mesh is seen to work best to
predict dynamic crack branching angles and overall
fracture patterns

8. Viscoelasticity of the bulk PMMA was found to
play a negligible role in the predictions and can be
ignored

It is emphasized that the results are only valid if the
mesh size is kept constant within the model. This is
because the damage pattern can transition from local-
ized todiffusedduringdynamic fracture. So, if themesh
size is changed within the model, objectivity would
be lost even if the postpeak slope is adjusted as per
the crack band approach, as recently explained in Gor-
gogianni et al. (2020). These issues can be addressed
by using a transitional localization parameter or by
adapting a nonlocal model. Further, for heterogeneous
materials such as concrete, it was shown that mate-
rial comminution effects should be considered to cor-
rectly capture the energy dissipation at ultra high strain
rates (104 to 106/s) (Luo et al. 2019; Bažant and Caner
2014; Kirane et al. 2015). However, given the overall
agreement with experimental data, it was not deemed
necessary here. Including these effects might become
necessary at higher strain rates, and should be investi-
gated.
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