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Abstract A stress-state dependent cyclic cohesive
model, which accounts for accumulation of plastic-
ity, during both tensile as well as compressive defor-
mations, and incorporates accumulation of irreversible
damage due to macroscopic plasticity as well as
microstructural mechanisms, is formulated. The model
is implemented in mode-I plane strain fatigue crack
growth simulations. The model is validated by repro-
ducing the effect of retardation in crack growth rates
after different combinations of tensile and compres-
sive overloads. We show accurate description of the
elastic–plastic behaviour of the process zone is vital,
in particular for negative stress ratios subsequent to
a tensile over-load, as considerable plasticity occurs
in compression at the crack-tip, significantly reducing
retardation effects.

Keywords Cohesive zone model · Fatigue · Triaxial-
ity · Stress-state · Overload

1 Introduction

One of the major challenges in life assessment of struc-
tural systems is to incorporate the effects of random,
large fluctuations or overloads on their residual service
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life. In the growth of a fatigue crack subject to a loading
history with variable amplitudes due to load interaction
effects the damage induced by a single fatigue cycle
can be significantly different from that induced during
constant amplitude loading of the same maximum and
minimum stress intensity factor (Skorupa 1998)). For
optimum as well as safe use of critical structural com-
ponents, there is a vital need for development of predic-
tive models that are based on the mechanics of fatigue
damage growth under near-service conditions (Elber
1971;Newman1984;Voorwald et al. 1991;Beden et al.
2009; Sundar 2012).

Several approaches have been adopted to model
fatigue damage initiation and growth at different length
scales, starting from molecular dynamics simulations
based analysis of nano scale fatigue crack growth
as reviewed in (Horstemeyer et al. 2010) to damage
mechanics based simulations at macroscopic length
scales (Qian et al. 2000; Peerlings et al. 2000; Roe
and Siegmund 2003; Pandey et al. 2019). A widely
popular phenomenological approach in simulation of
fracture and failure processes in a wide range of mate-
rials, cohesive zone model (CZM), assumes the dam-
age processes to be localised within a thin layer and
the constitutive behaviour of this layer is approximated
with an assumed traction–separation law (TSL). As per
all different assumed forms of TSL in existing litera-
ture, traction increases monotonically with separation
till cohesive strength, (σmax ), is reached. Further sepa-
ration between the layer boundaries results in decrease
in traction until it vanishes and the boundaries become
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traction-free, implying formation of traction-free frac-
ture surfaces (Park and Paulino 2011). The area under
the TSL curve, cohesive energy (Γ0) and σmax are
considered to be the cohesive model parameters that
describe the fracture behaviour of the material system
completely. The applicability of CZMwas extended in
prediction of fatigue crackgrowth curves by accounting
for accumulation of irreversible micro-structural dam-
age due to cyclic loading (De-Andrés et al. 1999). By
formulating a cohesive law that exhibited unloading-
reloading hysteresis, it was possible to prevent shake-
down and spurious crack arrest in the simulation during
steady-state fatigue crack growth (Nguyen et al. 2001).
Further, by introducing an incremental fatigue damage
evolution law based on continuum damage mechanics
principles (Lemaitre 2012), Roe and Siegmund (2003)
developed a cohesive model for fatigue that has been
used extensively in prediction of fatigue crack growth
behaviour of interfaces like adhesive bonded joints, sol-
der joints, weld joints and materials like composites,
polymers and metal alloys etc.

Cyclic cohesive zone model has also been extended
to gain an insight into the frequency and time effects
by introducing additional incremental damage as a con-
sequence of creep within the cyclic damage parameter
(Bouvard et al. 2009). By implementing cyclic CZM in
extended finite element method (XFEM), it was shown
to be possible for a new crack surface to originate in
arbitrary locations and directions without remeshing
(Xu and Yuan 2009; Li and Yuan 2013). Extension of
cyclic cohesive modelling to 3D allowed simulation
of more details like the evolving shape of the crack
front (Liu et al. 2009; Yuan and Li 2018). However, in
their review of 3D cohesive modelling of fatigue crack
growth, Yuan and Li (2018) conclude that the influence
of the 3D crack configuration is not as strong in fatigue
as in monotonic ductile fracture.

Retardation in the rate of fatigue crack growth due
to tensile overloads, simulated using cyclic cohesive
zone models, was attributed to growth in the plastic
zone size near the crack tip (Nguyen et al. 2001; Ural
et al. 2009; Jiang et al. 2009; Li et al. 2017). As a
consequence, compressive residual stresses developed
during unloading resulted in slowdown in the subse-
quent crack growth. Li et al. (2017) were able to find
cohesive parameters which could validate the experi-
mental crack growth behavior for constant amplitude
loading and also for variable amplitude loading with
a single overload. However in these studies, the over-

load was tensile only, thus, compressive overloads and
sequential effect of tensile and compressive overload
were not considered.

The effect of the constraint of stress-state charac-
terised by T−stress, the non-singular term of the crack-
tip field, has been investigated experimentally on spec-
imens such as compact-tension (CT), corner notched
(CN), central cracked panel (MT) and cruciform spec-
imens of various metal alloys. While the crack growth
rates were found to be higher for high constraint con-
ditions in some studies (Tong 2002; Shlyannikov and
Zakharov 2014), Miarka et al. (2020) and Hutař et al.
(2006) report the rates to be lower. One of the limita-
tions of these studies was that the opening stress at the
crack tip and triaxiality were not controlled indepen-
dently and, thus, the effects reported are due to the cou-
pled action of opening stress as well as the constraint of
the stress-state at the crack tip.However, in all the inves-
tigations, the fatigue crack exhibited tunnelling effect
which is indicative of faster growth of fatigue damage
at the central plane where the constraint or triaxiality
of the stress-state is highest across the thickness of the
specimen.

To incorporate the effect of stress-state on fatigue
damage nucleation and growth, a triaxiality depen-
dent cohesive law was utilised in combination with an
irreversible damage parameter to account for fatigue
damage accumulation (Jha and Banerjee 2012). In the
implementation of the model as interface elements, tri-
axiality parameter of the neighbouring continuum ele-
ments (Banerjee and Manivasagam 2009; Siegmund
and Brocks 1999; Anvari et al. 2006) as well as shape
parameters were utilised (Roth and Kuna 2017). In tri-
axiality dependent cohesive laws, traction was taken to
be not only a function of separation but also a function
of the triaxiality parameter such that the conventional
cohesive parameters (σmax , Γ0) were not constants but
depend on the stress-state (Banerjee and Manivasagam
2009; Siegmund and Brocks 1999; Anvari et al. 2006).
Combining the stress-state dependent cohesive model
with an irreversible damage parameter in the formula-
tion, amodel for fatiguewas developed (Jha andBaner-
jee 2012). Crack growth curves, based on FEM imple-
mentation, for a combination of fatigue damage model
parameters, were validated with experimental data of
an Aluminium alloy. It was shown that cohesive laws
that do not account for effects of stress-state were inad-
equate as they could either predict the initiation lifewell
or the rate of propagation (Nijin et al. 2019). Further
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examining the mechanistic aspects of crack initiation,
a meso-scopic length scale was identified that corre-
sponded with the sub-surface location of initiation in
the simulations and the location of highest roughness
from the notch root in the fracture surface profile data
Nijin and Banerjee (2020). Since these investigations
were based on positive load ratios, there was limited
plasticity experienced during the compressive part of
the cycle. Thus, even though the model did not account
for plasticity in compression, the results were reliable.
If applied in case of overloads, however, where sig-
nificant plasticity in compression is inevitable, such a
model would be inadequate.

Can a cohesive model be formulated that incor-
porates accumulation of plasticity during compres-
sive deformations as well in its traction–separation
behaviour and thereby closely reproduce the elastic–
plastic response of the process zone? In modelling the
trends of fatigue crack growth after different combi-
nations of tensile and compressive overloads, does the
plasticity in compression have a strong influence? In the
present study a triaxiality dependent cyclic cohesive
zone model, incorporating the hardening behaviour
under both tensile as well as compressive loads, is for-
mulated in an incremental form. The deterioration of
the cohesive properties is taken to be based on a damage
evolution law accounting for bothmacroscopic damage
growth as well as microscopic damage growth over a
large number of cycles of subcritical loads. Plane strain
finite element simulations of sequential effect of tensile
and compressive overloads are performed using cohe-
sive interface element based on elastic-plastic cyclic
cohesive zone model (EL-PL CCZM). A discussion is
developed on the need of a more accurate description
of the elastic–plastic response of the process zone in
prediction of overload effects, particularly in case of
negative stress ratios.

2 Elastic–plastic Cyclic Cohesive Zone Model
(EL-PL CCZM)

In the present work, to be able to simulate the effect of
an overload on the growth of a fatigue crack in a duc-
tile solid, we introduce the constitutive framework for
an elastic–plastic triaxiality dependent cyclic cohesive
zone model which aims to:

– Reproduce elasticity, strain hardening behaviour of
the process zone in tension as well as compression

by using the Hookean linear elasticity and Mises
plasticity constitutive relations in the incremental
form

– Account for damage growth due to macroscopic
plastic strains as well as accumulation of micro-
structural damage in absence of macroscopic plas-
ticity as in case of high cycle fatigue

– Account for coupling of damage and elasto-plastic
behaviour based on the concept of effective stress
and implement it using return map algorithm

2.1 Elastic–plastic behaviour of the cohesive zone

Consider a unit cell of the process zone subject to a
stress-state such that principal directions are along the
process zone length (x1), normal to cohesive surfaces
(x2) and in the out of plane thickness direction (x3)
as shown in Fig. 1. As per the present model, open-
ing cohesive traction is taken to depend on the normal
separation, the stress-state as described by stress-ratio
parameters, α = σ11

σ22
, β = σ33

σ22
, α̂ = σ̇11

σ̇22
, β̂ = σ̇33

σ̇22
,

as well as the current state of damage. The softening
behaviour of the traction–separation law and the degra-
dation of the elastic stiffness are accounted by a dam-
age parameter, D. Total damage has contributions from
both, macroscopic damage, Dm , due to ductile fracture
mechanisms as well as microscopic fatigue damage,
D f , that results in overall deterioration of the process
zone response. With in the process zone, the elastic
modulus, E , and the initial yield limit in uniaxial ten-
sion, σy0, are taken to degrade with the damage param-
eter to become the effective elastic modulus, E(1−D)

, and effective initial yield limit, σy0(1− D), as per the
effective stress concept of continuum damage mechan-
ics (Lemaitre 2012). The normal separation (δn) of
the traction–separation behaviour contains an elastic
recoverable separation (δen) and a plastic irrecoverable
part (δ pn ). The cohesive TSL for the process zone is for-
mulated on the basis of the constitutive relation in the
opening direction given by:

(ε22 − ε
p
22)E(1 − D) = σ22 − ν(σ11 + σ33) (1)

The incremental form of Eq. 1 takes the form:

(ε̇22 − ε̇
p
22)E(1 − D) − Ḋ(ε22 − ε

p
22)E = ˙σ22

− ν( ˙σ11 + ˙σ33)

= ˙σ22

(
1 − ν

(
α̂ + β̂

)) (2)
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Fig. 1 Schematic
representation of the a
stress-state b process zone,
where, solid line
corresponds to the initial
configuration and dashed
line corresponds to the
deformed configuration
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For the process zone, the opening stress, σ22, and
the associated direct strain, ε22, are the same as the
cohesive traction, Tn , and the normalized separation,
δ̂n = δn/d, normalized with void spacing thickness, d,
as shown in Fig. 1b, respectively. The incremental form
of traction–separation law, thus, can be expressed as:

Ṫn = (1 − D)Ē(
˙̂
δn − ˙̂

δ
p
n ) − Ḋ Ē(δ̂n − δ̂

p
n ), (3)

where for simplification Ē = E
1−ν(α̂+β̂)

. Physically, Ē

is the effective modulus of resistance to normal separa-
tion of the process zone under general state of stress, for
uniaxial stress-state Ē simplifies to be the same as E . It
is to be noted that in Eq. 3 the traction is expressed as a
function of normalised separation, denoted by δ̂, which
is dimensionless and Ē , thus, has the same dimensions
as modulus E . δ̂

p
n is the inelastic normal separation

normalised with void spacing thickness.

2.2 Yield locus and flow rule

To describe the hardening behaviour of the process
zone, the yield surface of the ductile solid is assumed
to be power-law hardening such that the yield stress,

σy = σy0

(
1 + λE

σy0

)n
. Here, σy0 is the initial yield

limit, λ = ∫
λ̇dt = ∫ √

2
3 ε̇

p
i j ε̇

p
i j dt , is the equivalent

plastic strain, λ̇ is the plastic multiplier and n is the
strain hardening exponent. Yielding of the material is
based on the Von Mises criteria, in which material
yields when σmises > σy . For stress-state described
in Fig. 1a, σmises is a scalar computed from the Cauchy

stress tensor as
√

(σ11−σ22)2+(σ33−σ22)2+(σ11−σ33)2

2 . The

damage coupled yield criteria within the process zone
is therefore:

|σ22|
√

(α − 1)2 + (β − 1)2 + (α − β)2

2
> (1 − D)σy (4)

Rearranging,

|σ22| > (1 − D)σ̄y, (5)

where, σ̄y = σ̄y0

(
1 + λE

σy0

)n
, with σ̄y0 =

√
2σy0√

(α−1)2+(β−1)2+(α−β)2
. Physically, σ̄y0 represents yie-

ld limit for σ22, for a general state of stress. The accu-
mulation of plastic strain for the ductile solid is evalu-
ated as per the Levy- Mises flow rule where, the plastic
flow in the opening direction is,

ε̇
p
22 = 3

2
λ̇

σ22 − σmean

σmises

= 3

2
λ̇

(2 − α − β)

3
√

(α−1)2+(β−1)2+(α−β)2

2

sign(σ22),
(6)

where, σmean = σkk
3 . The yield condition of the

traction–separation law is taken to be based on Eq. 5
up to an equivalent plastic strain limit, λs , such that the
damage coupled yield function is expressed as:

Φ : = |Tn| − (1 − D)σ̄y λ < λs

= |Tn| − (1 − D)σ̄max
y λ ≥ λs

(7)

where, σ̄max
y is the maximum traction value of the

cohesive law, it corresponds to the value of σ̄y when
λ reaches the limit, λs . Being the critical plastic strain
limit on hardening response of the TSL, λs also, there-
fore, marks the onset of the softening behaviour. It
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is to be noted that λs is also triaxiality dependent as
expressed later in Eq.10. Further, based on Eq. 6, the
flow of inelastic separation in the triaxiality dependent
cohesive law can be expressed as:

˙̂
δ
p
n = 3

2
λ̇

(2 − α − β)

3
√

(α−1)2+(β−1)2+(α−β)2

2

sign(Tn). (8)

Dependence of λs on stress-state is established here
using the equivalent plastic strain failure locus for
ductile failure. The locus of equivalent plastic strain
of failure, ε̄

pl
f , is known to exponentially decrease

with increase in triaxiality parameter (Hancock and
Mackenzie 1976; Hancock and Brown 1983), H =
σmean
σmises

= (1+α+β)

3
√

(α−1)2+(β−1)2+(α−β)2
2

, as

ε̄
pl
f = Ce−1.5H , (9)

where C is a non-dimensional material parameter that
is to be determined from ductile failure experiments
(Hancock and Mackenzie 1976). In the triaxiality
dependent cohesive model the limit, λs , is taken to the
same as ε̄

pl
f , such that

λs = Ce−1.5H . (10)

This description of onset of softening behaviour in a tri-
axiality dependent cohesive model has been shown to
well reproduce experimental data on both plane strain
notched bars as well as fracture test specimens (Rashid
and Banerjee 2013, 2017). The critical plastic strain
is calibrated in a previous study on monotonic ductile
fracture using the ductile fracture experimental data of
notched bars and compact tension specimens (Rashid
and Banerjee 2017). For the current study we use the
same calibrated critical plastic strain as well as elastic–
plastic behaviour for the representative ductile mate-
rial.

It has been shown that for an equivalent plastic strain
failure locus to be applicable for a wider range of triax-
iality parameter, it must also include the effect of Lode
parameter (Bao and Wierzbicki 2014; Barsoum and
Faleskog 2007). A more recent micro-structural anal-
ysis of porous elasto-plastic materials using second-
ordered homogenization model shows a significant
effect of Lode parameter on critical equivalent plastic
strain for failure only at lower triaxality at higher triaxi-
ality the effect is marginal (Danas and Ponte Castañeda
2012). In the present study, since the crack growth sim-
ulations were performed for a thick CT specimen, the
stress-state was expected to have high triaxiality across

most of the thickness, and the effect of Lode parameter
was, therefore, ignored.

2.3 Total damage evolution in the process zone

In the early stages of fatigue life of a component sub-
ject to sub-critical cyclic loads, damage growth is slow
and largely at the microscopic scale. However, at later
stages, close to final failure, damage growth involves
significant plastic deformation and associated failure
mechanisms and finally the local separation occurs
when damage reaches a limit at which local instability
occurs in the surface leading to sudden local separation.
In the present work, we account for both types of dam-
age growth by taking the total damage, D, to consti-
tute of macroscopic damage (Dm) resulting from duc-
tile fracture mechanisms as well as microscopic fatigue
damage (D f ) due to sub-critical cyclic loads in absence
of any macroscopic plasticity, such that an increment
in the damage parameter is Ḋ = Ḋm + Ḋ f .

The cohesive element is considered to be completely
separated, when, the total damage accumulated reaches
a critical damage limit, Dc, which is taken to be 0.25
for the present study, following the estimates for alu-
minium alloys (Lemaitre 2012). Critical damage limit
represents the value of damage atwhich local instability
occurs in the solid leading to sudden local separation.

2.3.1 Damage resulting from macroscopic plasticity
(Dm)

Softening behaviour of the process zone is a manifesta-
tion of initiation and growth of damage. In the present
study, rate of growth of damage in the process zone due
to macroscopic plasticity (Dm) is taken to be propor-
tional to the accumulated plastic strain rate beyond the
threshold parameter λs that is dependent on the stress-
state, and up to the critical limit on total damage, Dc

(Lemaitre 2012). In the model, monotonic damage is
assumed to accumulate only for positive increments
of opening separation. However, the equivalent plastic
strain accumulates in both tension as well as compres-
sion of the process zone. Hence the compression of the
process zone can have a significant effect on the onset
of the softening behavior for significant plasticity in
compression, such as during overloads, as softening
starts when λ = λs . The overall form of damage evo-
lution is based on the exponential softening behaviour
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of the cohesive law formulated for ductile fracture by
Banerjee and Manivasagam (2009):

Ḋm = 0.02 λ̇

εy0 + λs

(
λ − λs

εy0 + λs

)3

e
−0.005

(
λ−λs

εy0+λs

)4

H(λ − λs) δ̇n > 0

= 0 δ̇n ≤ 0,

(11)

where εy0 = σy0
E , is the strain limit for linear elastic

behaviour. As λ̇ is always ≥ 0, the irreversibility of
damage parameter is ensured. The effect of damage
on the traction–separation behaviour is implemented
in Eqs. 3 and 7 which ensure that damage degrades the
stress-state dependent properties (Ē , σ̄y and σ̄max

y ) of
the TSL.

As λs decays exponentially with triaxiality parame-
ter, at higher triaxiality, Dm initiates at a comparatively
lower equivalent plastic strain and also accumulates at
a faster rate as per Eqs. 9 and 11 . Representation of
the softening behaviour as a component of total dam-
age allows explicit coupling between damage due to
multiple failure mechanisms.

The final stages of fatigue crack growth have sig-
nificant plastic deformation and damage growth ahead
of crack tip is due to mechanisms similar to mono-
tonic fracture such as void growth and coalescence.
To illustrate the manner of accumulation of damage
(Dm) due to macroscopic plasticity (λ) and its effect
on the traction–separation behaviour of a typical cohe-
sive element ahead of crack tip, fracture simulation
under monotonic mode-I load was performed using
the same model parameters as used in the remain-
ing study. As seen in Fig. 2, the traction separation
law follows elastic behaviour with stress-state depen-
dent stiffness Ē/d, till the stress-state dependent yield
limit, σ̄y0. Subsequent separation causes the equivalent
plastic strain (λ) to accumulate resulting in hardening
behaviour, where traction follows non-linear harden-
ing response as per σ̄y . The change of slope in the
traction–separation curve, observed during hardening
is due to onset of plasticity induced in the neighbouring
continuum elements. Similar change in slope has been
observed in earlier studies using stress-state dependent
cohesive models (Siegmund and Brocks 2000). The
onset of damage accumulation starts when the accu-
mulated equivalent plastic strain reaches the critical
limit, λs . When accumulated plastic strain reaches λs ,
the traction reaches its maximum limit σ̄max

y . Subse-
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Fig. 2 Variations in traction, λ and Dm with separation at crack
tip for monotonic fracture simulations using model parameters
used in the present study that reproduces monotonic fracture data
in (Rashid and Banerjee 2017)

quent separation results in the accumulation of damage
thereby degrading the traction bearing capacity of the
cohesive elements as (1 − D)σ̄max

y , as shown in the
Fig. 2.

2.3.2 Microscopic fatigue Damage (D f )

Accumulation of microscopic damage due to cyclic
deformations occurs even in absence of macroscopic
plasticity as in case of high cycle fatigue. Here the
growth of microscopic fatigue damage is based on
the damage law, with stress-state dependent cohesive
parameters, formulated and implemented in earlier
studies (Nijin et al. 2019; Nijin and Banerjee 2020).
Incremental damage is taken to be related to the incre-
mental total separation (δ̇n) normalised with a fatigue
cohesive length model parameter, δΣ , as

Ḋ f = 〈δ̇n〉
δΣ

H (δacc − Δ0) Tn ≥ σ f

= 0 Tn < σ f

(12)

Only positive incremental separation above the
fatigue cohesive model parameter referred as the cohe-
sive fatigue endurance limit, σ f , is considered to con-
tribute in the accumulation of damage and the condition
is implemented using Macaulay brackets (〈 〉). Also,
fatigue damage is assumed to accumulate only when
the accumulated separation, δacc =

∫ 〈δ̇n〉 H (Tn) dt ,
reaches a fatigue threshold parameter Δo and the con-
dition is achieved using the Heaviside function, H(x).

The form of Eq. 12 has similarities to (Roe and Sieg-
mund 2003; Siegmund 2004; Li et al. 2017; Jiang et al.
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2009; Xu and Yuan 2009; Li and Yuan 2013), however,
the fatigue cohesivemodel parameters here, δΣ ,Δ0 and
σ f , are notmaterial constants as they depend on λs , and
thus, are stress-state dependent. In the present study,
the fatigue cohesive model parameters were chosen to
be, δΣ = 750 (εy0 + λs)d, Δ0 = 500 (εy0 + λs)d and
σ f = 0.35 σ̄max

y , such that initiation life, propagation
life and crack growth rates correspond to experimental
data for constant amplitudeHCF in anAluminiumalloy
(Nijin et al. 2019). It is to be noted that as the fatigue
cohesive length parameter δΣ is orders of magnitude
higher than the monotonic separation at λs , accumula-
tion of microscopic damage due to subcritical load is
very slow and occurs over a large number of cycles.
It also implies that large separation induced in a few
cycles with macroscopic plasticity while contributes in
evolution of macroscopic damage, it can not signifi-
cantly contribute to the incrementation in microscopic
damage.

2.4 Return mapping algorithm for implementation of
coupled damage and elasto-plastic behaviour

The aim of the constitutive integration scheme was to
solve for the opening traction (Tn) and the internal vari-
ables such as equivalent plastic strain (λ) and dam-
age (D) at time t + Δt , given the variables at time,
t, for an opening separation increment of δ̇n . A fully
implicit backward Euler scheme was used to integrate
the constitutive equations as the approach is known to
be numerically stable even for large increments for a
non-linear constitutive relation.

An elastic trial state was assumed, where the incre-
ment was taken to be purely elastic and the evolution
of the internal variables in the trial state was assumed
to be absent. The trial state of the traction increment
and the yield function (Φ) take the form:

Ṫ trial
n = (1 − D(t)) Ē ˙̂

δn

Φ tr ial := Tn(t) + Ṫ trial
n

− (1 − D(t)) σ̄y(λ(t)) λ < λs

:= Tn(t) + Ṫ trial
n − (1 − D(t)) σ̄max

y (λs) λ ≥ λs .

(13)

The next step of the algorithm was to compare the trial
state yield functionwith the yield condition. IfΦ tr ial ≤
0, then the traction of the cohesive element was within
the yield locus and hence the traction and the internal
variables were the same as of the trial state. However,

ifΦ tr ial > 0, then traction of the cohesive element was
outside the yield locus and return mapping algorithm
was used to find the internal variables and incremental
traction to bring back the traction to the yield locus. For
the plastic multiplier, λ̇ which was required to bring
back the traction to the yield locus, the state of traction
and internal variables at time, t + Δt were taken to be

Tn(t + Δt) = T trial
n (t+Δt)−(1−D(t+Δt)) Ē ˙̂

δ
p
n

− Ḋm Ē (δ̂n(t + Δt) − δ̂
p
n (t + Δt))

D(t + Δt) = D(t) + Ḋm

δ̂
p
n (t + Δt) = δ̂

p
n (t) + ˙̂

δ
p
n

σ̄y(t + Δt) = σ̄y0

(
1 + (λ(t) + λ̇)E

σy0

)n

(14)

where ˙̂
δ
p
n and Ḋm are functions of λ̇ as expressed ear-

lier in Eqs. 8 and 11. As evolution of D f is slow, the
effect of Ḋ f in the incremental solution of the trac-
tion and internal variables at time, t + Δt was ignored
within a cycle. The incremental fatigue damage, Ḋ f ,
was accumulated over a cycle and the fatigue dam-
age after a complete cycle was updated to be Dcycle

f =
Dcycle

f + Ḋ f . To reduce the computational effort Dcycle
f

was scaled for a chosen scaling interval ΔN with the
assumption that Dcycle

f was not significantly different
for the subsequent cycles in the scaling interval, ΔN .
Ignoring the higher order terms in Taylor series expan-
sion, the total damage after N + ΔN was, therefore,
updated as: DN+ΔN

f = DN
f + Dcycle

f ΔN .
The internal variables and traction at the end of time,

t+Δt , were found by solving for λ̇ iteratively from the
non-linear equation of damage coupled yield condition,

Φ(t + Δt) := |Tn(t + Δt)| − (1 − D(t + Δt))

σ̄y(t + Δt) = 0 λ < λs

:= |Tn(t + Δt)| − (1 − D(t + Δt))

σ̄max
y (λs) = 0 λ ≥ λs,

(15)

using Newton-Raphsonmethod. In the implementation
of the incremental cohesive law proposed in the present
work as interface elements, a complete summary of the
traction–separation behaviour is presented as shown in
Table. 1 in Appendix A and based on Eqs. 3, 8, 11, 15,
the details of the formulation of the consistent tangent
operator is presented in Appendix B.
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Fig. 3 FEM model of CTS
specimen

3 Finite element model

For simulations, a geometry of CTS specimen with V
-notch of width = 1 mm, tip radius = 0.3 mm and spec-
imen width, W = 44 mm was modelled in finite ele-
ment using commercially available software Abaqus
6.11-1 as shown in Fig. 3. Finite element mesh with
9721 quadrilateral plane strain elements was gener-
ated in which near the expected crack growth path, the
mesh was uniformly refined. Zero thickness cohesive
elements of cohesive length 0.03 mm were inserted
along the expected crack growth for a mode-I fatigue
loading. Elastic–plasticmaterial behaviour (E = 70,000
MPa, σy = 281 MPa, ν = 0.33, n = 0.164) for the anal-
ysis was taken to be that of a representative aluminium
alloy (AA 2219- T87) (Rashid and Banerjee 2017).
In the present work isotropic hardening was assumed,
however, for more realistic representation of the pro-
cess zone behaviour the effect of kinematic harden-
ing needs to be incorporated and the related material
constants need to be determined from cyclic plastic-
ity data. Quarter pins modelled as rigid surfaces were

used to connect the loading point and a fixed point
to the specimen geometry using multipoint constraint
(MPC) where the quarter pins were also tied to the
specimen surface in contact with the pins. The degrada-
tion of material properties was accounted in cohesive
elements as per EL-PL CCZM with cohesive model
parameter, C=0.432 (Rashid and Banerjee 2017) and
fatigue damage model parameters (σ f = 0.35σ̄max

y ,
δΣ = 750(εy0 + λs)d and Δo = 500(εy0 + λs)d) con-
sistent with (Nijin et al. 2019). The traction–separation
of the EL-PL CCZM was incorporated into Abaqus
v 6.11-1 using a user element subroutine (UEL) and
the contributions of the cohesive elements in global
force vector and global stiffnessmatrix were accounted
for in the statement of equilibrium as per virtual work
(Needleman 1992). Stress-state of a cohesive element
was evaluated from the neighbouring continuum ele-
ment using another subroutine (UVARM) as imple-
mented earlier in stress-state dependent cohesive mod-
els (Nijin et al. 2019; Siegmund and Brocks 1999;
Anvari et al. 2006; Rashid and Banerjee 2017, 2013).
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Fig. 4 Evolution of traction and normal strain at the notch tip for load ratios a R = −0.5, b R =0 and c R = 0.5

4 Results and discussion

4.1 Elastic–plastic behaviour of the process zone

To demonstrate the effectiveness of the proposed cohe-
sive model for fatigue in prediction of the elastic–
plastic behaviour of the process zone, plane strain sim-
ulations were performed for a CTS specimen subject
to cyclic loading having load ratios R = -0.5, 0 and
0.5, with the maximum load at 16 kN. The resulting
traction-normalised separation response of the model
for 2 representative cycles is shown at the notch tip in
Fig. 4. The response is also comparedwith that obtained
using TCCZM as in Nijin et al. (2019) as well as with
the elastic–plastic analysis without damage modelling.

For the load ratios R= -0.5, 0 the continuum element
exhibits plasticity in both tension as well as compres-
sion as evident Fig.4a, b. For the same load ratios, the
proposed implementation is able to capture both the
plasticity in compression. The previous implementa-
tion of triaxiality dependent cohesive model for fatigue
by Nijin et al. (2019) while is adequate in reproducing
the characteristic features for R=0.5, in which the ele-
ment at the notch tip remains largely in tension and
a very small portion of the load cycle develops com-
pressive traction that crosses the plastic limit as shown
in Fig. 4c, it is unable to account for the hysteresis
loop and the changes in its shape with continued cyclic
loading in Fig. 4a, b. The main reasons behind model
by Nijin et al. (2019) behaving significantly different
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Fig. 5 Loading sequence of
R = −1 with a no-overload,
b tensile overload, c
compressive overload, d
tension–compression
overload and e
compression–tension
overload

(a) (b) (c)

(d) (e)

from the continuum behaviour at lower load ratios, R
= −0.5 and 0, is because it uses only the biaxiality
ratio α(= σ11

σ22
) to account for the stress-state depen-

dency of the cohesive elements and traction–separation
law. Also, the formulation used the approximation of
ν = 0.5, to express explicit relation between traction
and total separation. Similar approximations were also
used in triaxiality dependent cohesive zonemodels ear-
lier (Siegmund and Brocks 1999; Anvari et al. 2006).
The model developed in the present study utilises the
stress-state from the nearby continuum elements by
using variables α = σ11

σ22
, β = σ33

σ22
, α̂ = σ̇11

σ̇22
, β̂ = σ̇33

σ̇22
and is, thus, able to closely reproduce the elastic–
plastic behaviour of the nearby continuum element as
shown in the Fig. 4. Capability to account for harden-
ing behaviour during compression also, in the proposed
traction–separation law, is a significant improvement
in cohesive zone modelling as it enables the model to
capture the residual stress effects more accurately.

4.2 Effects of combinations of tensile and
compressive overloads on crack growth curves

The model is next used to simulate the well known
effects of an overload on the crack growth curves. The
CTS specimen was first subjected to 93,000 cycles of
sinusoidal load with Pmax =5 kN and R=0 such that a
fatigue crackof length,Δa =1.2mmwas formed.Apart
from the no-overload case shown in Fig. 5 (a), four dif-
ferent types of single overloads were simulated: tensile
overload, compressive overload, tensile-compressive
overload and compressive-tensile overload with over-
load ratio (OLR) 2 and −2 as shown in Fig. 5b–e.
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Fig. 6 Simulated crack growth behaviour of precracked speci-
men of initial crack length 1.2 mm subjected to load sequence
with different types of overloads

The simulated crack growth curve predictions are
present in Fig. 6. It is evident that, compressive over
load does not result in any retardation in the crack
growth rate. The tensile overload, in contrast, results
in the most pronounced retardation. Retardation in
growth rate when a compressive overload follows the
tensile overload is higher than when the sequence
is compression followed by tension overload. These
trends observed in the crack growth simulations using
the elastic–plastic triaxiality dependent cyclic cohe-
sive zone model qualitatively agree well with those
observed in experimental crack growth data obtained
from load interaction effects reported for 2024-T3 and
7075-T6 Aluminium alloys (Stephens et al. 1976).
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Fig. 7 Variation in a the traction, b the triaxiality and c fatigue cohesive model parameter, σ f , with the distance from the crack tip for
different applied overload combinations

The differences in the retardation rates observed in
the simulations are better understood by examining the
variation in the opening traction and triaxiality param-
eter of the stress-state ahead of the crack tip at Pmax

in the cycle subsequent to the different overload cases
shown in Fig. 7a, b. Redistribution of traction and tri-
axiality is observed after the overloads due to the effect
of plasticity ahead of the crack. After the tensile over-
load, the traction of cohesive elements near to the crack
tip is significantly reduced while the triaxiality of the
cohesive elements at the crack tip is high, ahead of the
crack tip. There is, thus, a coupled effect of lower trac-

tion as well as higher triaxiality ahead of crack tip for
a tensile overload. The specific effect of triaxiality on
the overall crack growth curves has been computation-
ally shown in a previous paper (Nijin et al. 2019). This
difference results in slower accumulation of micro-
scopic fatigue damage, after a tensile-overload when
compared to constant amplitude loading as damage
evolves, as described in Eq. 12, only when the current
traction level is greater than the fatigue limit parame-
ter. Whereas after a compressive-overload, there is no
noticeable change in neither the variation in the open-
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Fig. 8 Traction–separation behaviour of cohesive element ahead of notch tip subjected to load sequence with a tensile overload, b
compressive overload, c tension–compression overload and d compression–tension overload compared to no-overload condition

ing traction nor the triaxiality ahead of the crack tip
when compared with the no overload case.

The significant role of triaxiality has been brought
out by including the data for region ahead of notch tip
also as a reference in Fig. 7. In Fig. 7b, it is evident that
the triaxiality ahead of notch tip, prior to fatigue crack
initiation, is significantly lower than for that ahead of
crack tip for all the overload cases. The cohesive fatigue
endurance limit parameter (see Sect. 2.3.2), σ f , ahead
of crack tip for all overload cases as well as ahead of
notch tip prior to initiation of fatigue crack is shown in
Fig. 7c. Since the parameter is stress-state dependent

and is lower for region ahead of notch tip when com-
pared to ahead of a crack tip for all overload cases, the
accumulation of fatigue damage is possible in spite of
lower traction ahead of the notch tip.

The traction–separation behaviour of the cohesive
element at the crack tip, in the cycle prior to overload
(blue coloured curve), during overload (solid red curve)
and post overload (dashed red curve), is presented in
Fig. 8. In Fig. 8a, compared to the no-overload, the
tensile overload has significant non-linear separation
up to the peak load of the cycle, subsequent unload-
ing results in development of compressive stresses due
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(a)

(b) (c)
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Fig. 9 Spread of opening plastic strain ε
p
22 for conditions of a no-overload, b tensile overload, c compressive overload, d tension–

compression overload and e compression–tension overload when propagating crack reaches 1.8 mm

to residual plastic deformation. The change of slope
in the traction–separation curve, observed during ten-
sile overload is due to onset of plasticity induced in
the neighbouring continuum elements. Similar change
in slope has been observed in earlier studies using
stress-state dependent cohesive models (Siegmund and
Brocks 2000). Post-overload, the resumption of reg-
ular loading cycles induces a traction cycle that has
significantly lower mean traction compared to no-
overload case. The shift in the mean traction is lesser
for compressive-tensile overload (Fig. 8d), followed by
tensile-compression cycle (Fig. 8c) and the least effect
on the traction–separation response ahead of crack tip,
as reported in Fig. 8b, is due to the compressive over-

loadwhich correspondswith no-retardation in the crack
growth rates described earlier.

The corresponding equivalent plastic strain contours
are presented in Fig. 9. For a precrack, ao, in absence of
any overload, the plastic wake has a uniform band-like
appearance on either side of the crack path as seen in
Fig. 9a. On account of tensile overload, extensive plas-
tic deformation occurs at a = ao, however in contrast,
for compressive overload the plasticity occurs only near
the notch root and there is no evidence of overload
effect on the crack tip plasticity. During compression,
the presence of geometric singularity due to the pre-
crack is not felt as the crack flanks come in contact and
the contacting surface are able to transmit negative nor-
mal traction due to compression. Tension–compression
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Fig. 10 a Simulated crack growth curves of precracked specimen of initial crack length 1.2 mm subjected to load sequence with
overload ratio 1.75, 2, 2.2 b variation of traction with the distance from the crack tip for same cyclic loading conditions

and compression–tension overloads differ marginally
with notch-root plasticity being higher in the latter case
as seen in Fig. 9d, e.

4.3 Effects of increasing overload ratio on crack
growth curves

Further, the proposed model is applied in prediction
of effects of increasing overload ratio by simulating
crack growth for overload ratios 1.75, 2, 2.2 with sub-
sequent loading cycles at R = −1. The obtained crack
growth curves are presented in Fig. 10a. The retarda-
tion in the rate of crack growth is more pronounced for
higherOLRwhich is consistentwith the trends reported
in experimental literature (Stephens et al. 1976). For
each case, post-overload the stresses redistribute dif-
ferently ahead of crack-tip as shown in Fig. 10b. The
opening traction near the crack-tip, at maximum of
the load cycle after the overload cycle, decreases with
the increase in the overload ratio which results in the
increased retardation effect after the tensile overload.
The differences in the traction ahead of the crack tip
are highest a little ahead of the crack tip.

4.4 Effects of negative load ratio on crack growth
curves

Experimentally obtained crack growth data is also
known to show diminished retardation effects if after

the tensile overload the subsequent cycling has a neg-
ative load ratio (Stephens et al. 1976). Simulations
for a single tensile overload of OLR = 2.2 followed
by different negative load ratios: R = −2, −1, 0 well
reproduce the reported reduction in retardation effect
as shown in Fig. 11a. By examining the traction–
separation response during a cycle prior to overload, the
overload and a cycle post-overload as shown in Fig. 11b
for each case of subsequent load ratios, the reduction in
the retardation effect appears to be primarily due to the
plasticity induced at the crack tip in the compression
cycle after tensile load. Higher the negative stress-ratio,
higher is the plastic separation induced. As a result, in
the subsequent cycling in which the behaviour is linear
elastic, for R=−2 the cycle has the highest peak tensile
stress even though themaximum applied remote load is
the same in each case. For R=0, the crack arrests as the
cycles subsequent to tensile overload do not develop
enough traction for continued damage growth.

5 Concluding remarks

In the present work, we formulate and implement a
stress-state dependent cohesive model for fatigue that
accounts for plasticity of the process zone in a repre-
sentative ductile solid under both tension as well as
compression. In the model, the constitutive behaviour
of the cohesive zone is based on incremental plasticity
relations coupled with an evolving irreversible damage
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Fig. 11 a Simulation crack growth behaviour of precracked
specimen of initial crack length 1.2 mm subjected to load
sequence with overload ratio 2.2 and subsequent cycles at R =

−2, −1, 0 with same maximum load bVariation of traction with
the separation at the crack tip for same cyclic loading conditions

parameter due to ductile fracture mechanisms as well
as micro-structural fatigue damage.

The model implemented as interface elements is
shown to represent the elastic–plastic behaviour of
the process zone accurately under both tension and
compression. Further, in the fatigue crack growth
simulations in plane strain simulations of a notched
CTS specimen, the difference between the retardation
effects due to compressive overload and a tensile over-
load, as reported in literature, was well reproduced by
the model. We show that accurate description of the
elastic–plastic behaviour of the process zone is vital in
prediction of retardation effects, in particular for the
cases with negative stress ratios subsequent to a tensile
over-load, as considerable plastic deformation occurs
in compression resulting in significantly reduced retar-
dation effects.

The effectiveness of the model in prediction of
sequential effects under variable amplitude loading
quantitatively in metal alloys is part of an ongoing
study and is outside the scope of present work. Even
though the implementation presented here uses plane
strain idealisation which is computationally cost effec-
tive in reproducing effects of overload of different
compression–tension combinations on crack growth
curves, the formulation of the model is general and
can be implemented for simulation of 3D effects such
as evolution of crack front etc.

A Summary of the traction–separation behaviour.

Table 1 Summary of traction–separation law

(i) Elastic traction–separation relationship

Ṫn = (1 − D)Ē(
˙̂
δn − ˙̂

δ
p
n ) − Ḋ Ē(δ̂n − δ̂

p
n )

(ii) Flow of inelastic separation
˙̂
δ
p
n = 3

2 λ̇
(2−α−β)

3
√

(α−1)2+(β−1)2+(α−β)2
2

sign(Tn)

(iii) Isotropic hardening law

λ̇ = |ε̇ p|
σ̄y = σ̄y0

(
1 + λE

σy0

)n

(iv) Damage evolution law of the process zone

Ḋ = Ḋm + Ḋ f

Ḋm = 0.02 λ̇
εy0+λs

(
λ−λs

εy0+λs

)3
e
−0.005

(
λ−λs

εy0+λs

)4
H(λ − λs)

Ḋ f = 〈δ̇n 〉
δΣ

H (δacc − Δ0) Tn ≥ σ f

Ḋ f = 0 Tn < σ f

(v) Yield condition for the traction–separation law

Φ := |Tn | − (1 − D)σ̄y λ < λs

= |Tn | − (1 − D)σ̄max
y λ ≥ λs

(vi) Kuhn-Tucker complementary conditions

Φλ̇ = 0
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B Consistent tangent operator

The incremental formof the stress-state dependent trac-
tion separation behaviour for the cohesive elements is
shown in Eq. 3. The associated tangent modulus, K, is
then defined as

K = ∂Tn

∂δ̂n
(16)

∂Tn

∂δ̂n
= (1 − D)Ē

(
1 − ∂δ̂

p
n

∂δ̂n

)
− ∂D

∂δ̂n
Ē

(
δ̂n − δ̂

p
n

)
(17)

and is implemented into FEM as per (Segurado and

LLorca 2004). From Eqs. 8 and 11, ∂δ̂
p
n

∂δ̂n
and ∂D

∂δ̂n
are

determined to be of the form

∂δ̂
p
n

∂δ̂n
= ∂δ̂

p
n

∂λ

∂λ

∂δ̂n

= 3

2

(2 − α − β)

3
√

(α−1)2+(β−1)2+(α−β)2

2

sign(Tn)
∂λ

∂δ̂n

∂D

∂δ̂n
= ∂D

∂λ

∂λ

∂δ̂n
= 0.02

εy0 + λs
(

λ − λs

εy0 + λs

)3
e
−0.005

(
λ−λs

εy0+λs

)4
H(λ − λs)

∂λ

∂δ̂n
.

(18)

where ∂λ

∂δ̂n
is found by enforcing consistency condition

to the triaxiality dependent one dimensional yield sur-
face formulated, earlier in Eq. 15, so that during yield-
ing traction remains on the yield surface. From consis-
tency condition of the damage coupled yield surface,
Φ̇ = 0, ∂λ

∂δ̂n
is found and takes the form

∂λ

∂δ̂n
=

(1 − D)Ē sign(Tn)

(1 − D)
(
Ē ∂δ̂

p
n

∂λ
sign(Tn) + ∂Nσy

∂λ

)
+ ∂D

∂λ

(
Ē (δ̂n − δ̂

p
n ) sign(Tn) −Nσy

)
(19)
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