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Abstract This paper examines the micromechanical
damage behavior of carbon-epoxy composite using
representative volume elements (RVEs). An algorithm
is developed to generate random distributions of fibers
in the RVE, and it is possible to create a fiber distri-
bution with high fiber volume fractions. Fiber-matrix
debonding andmatrix crack are considered as the dom-
inant damage modes. The fiber material is consid-
ered linear elastic and Drucker–Prager’s plastic cri-
terion coupled with progressive damage behavior is
assumed for matrix material. Moreover, cohesive ele-
ments are considered to model fiber-matrix debonding.
The effects of different parameters such as fiber vol-
ume fraction, random fiber distribution, normal radii
distribution, various cohesive parameters, and mini-
mum fiber neighboring spacing on the overall damage
behavior of the RVE, mostly the regime beyond the
peak stress, are described in detail. It is concluded that
due to the high-stress concentration regions, smaller
elements are needed to analyze the high fiber vol-
ume fractions RVEs accurately. The peak stress and
the corresponding strain are insensitive to microstruc-
tural randomness. Furthermore, the RVEs’ final failure
strain is highly dependent on different fiber arrange-
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ments layouts. Since the RVEs are under transverse
strain, normal cohesive strength is the dominant cohe-
sive zone parameter that has a significant role in the
damage behavior of RVEs. It is shown that minimum
fiber neighboring spacing affects the strain in which
matrix crack initiates.

Keywords RVE · Fiber-matrix debonding · Matrix
crack · Damage mechanics · Composite material

1 Introduction

Fiber reinforced compositematerials have been applied
in a wide range of structural applications (Hollaway
2010), especially in the aerospace industry (Soutis
2005), as they have strong mechanical performance.
The mechanical response of composite materials may
be affected by several damagemechanisms inwhich the
fibermatrix debonding andmatrix cracks are of primary
damage modes. Although the initiation and propaga-
tion of these damage modes will not directly cause the
collapse of the structure, theywill instantly decrease the
strength of the damaged layer to a specific limit. Exper-
imental researches have confirmed that the primary
damage mechanism associated with transverse fiber
direction is debonding occurring at the fiber-matrix
interface (Gamstedt and Sjögren 1999; Thomas 2006).

Due to the damage behavior complexity, many
micromechanical investigations have concentrated on
transverse fracture behavior from the standpoint of
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damage initiation (Masaki 2009; Asp et al. 1996). Sev-
eral earlier studies have made the hypothesis of a peri-
odic fiber arrangement in the microstructure (Thomas
2006;Maligno 2008), which following various studies,
may not be representative of actual material behav-
ior (Masaki 2009; Trias 2006). However, numerous
advanced micromechanics damage models have been
developed, such as those by González and LLorca
(2007), Totry et al. (2008), which enable the prediction
of microscopic damage progression and the final fail-
ure of carbon fiber epoxy composites. These have been
accomplished through the use of cohesive zone models
at the fiber-matrix interfaces coupled with non-linear
constitutive material models to represent the behavior
of the constituent materials.

The fiber radius is considered as a significant param-
eter affecting the behavior of the RVE. Although many
previous investigations are based on the hypothesis
of the identical fiber radii (Asp et al. 1996; Maligno
2008; Trias 2006; González and LLorca 2007; Totry
et al. 2008), Vaughan and McCarthy (Vaughan and
McCarthy 2010) accentuated that the fibers radii are
not identical and have a normal distribution by exper-
imental imaging as shown in Fig. 1. Thus, the normal
distribution of radii should be taken into account in
the micromechanical analyses to obtain a more accu-
rate conclusion. In the following, Ismail et al. (2016)
examined the elastic behavior of composites with the
assumption of a normal distribution for the fiber radius
and studied the effective elastic properties and the range
of changes using RVEswith randomfiber distributions.

Although various types of research (Zhang et al.
2019; Baby 2015; Soni 2014) have been implemented,
the damage initiation and propagation mechanisms in
microscale are still not well understood. Although the
ultimate goal of the project is to derive a flow rule
for damage behavior of composite material for macro-
scale models, as Zhang et al. (2019), Baby (2015),
which helps us to calculate the damage parameters
without analyzing any micro-scale, in this paper, the
focus is only on the micromechanical damage behavior
of composite RVEs. Zhang et al. (2019), Baby (2015)
shown that it is essential to know when the damage
parameters begin to increase from zero (the climax
of the micro-scale response) and how they reach to
one during the loadings (the portion after the peak) to
identify damage flow rule constants. This proportion
(in which damage parameter shift from 0 to 1) is the
equivalent part of diagrams in which the matrix cracks

and fiber-matrix debonding has been created and prop-
agated. It is noteworthy that the micro-scale models
represent integration points in the macro-scale analy-
sis. So, the complete loss of strength in the micro-scale
brings about a local failure in the macro scale, not the
ultimate failure. For instance, it may represent a crack
initiation in that integration point.

The current work is an extension of the investiga-
tion by Ismail et al. (2016) on the mechanical behav-
ior of composite RVE subjected to transverse ten-
sion. The representative volume element consisting of
fiber, matrix, and the interface was established for the
simulation, considering random fiber distribution. The
two dominant damage mechanisms of fiberreinforced
composites, including both fiber-matrix debonding and
matrix cracking, were taken into account with the
normal radii distribution hypothesis for fibers. More-
over, periodic boundary conditions were applied to the
RVEs. The paper is organized into six sections. The sec-
ond section provides details on the generation of ran-
dom RVEs. The Finite element analysis features are
detailed in the third section. The material properties
are presented in the fourth section. The discussion of
results and conclusions are presented in the fifth and
sixth sections, respectively.

2 Generation of random RVEs

RVE with random fiber distribution can represent a
more realistic microstructure of fiber-reinforced com-
posites. Randomness can cause stress concentration
where the fibers are near each other and will radically
affect the plastic and damage behavior of the RVE. The
program code is developed in MATLAB software, and
then the files are used to generate RVE with random
fiber distribution in Abaqus.

Most of the time a square or rectangular RVE
has been used for investigating the micromechanical
behavior of composite materials.

Several researchers developed algorithms to gener-
ateRVEswith highfiber volume fractions (Melro 2011;
Romanov et al. 2013). Melro (2011) move the existing
fibers to the center of the RVE incrementally to provide
free space for subsequent fibers. Moreover, they inves-
tigated several geometrical statistical characterizations
such as Nearest neighbour distance, Nearest neighbour
orientation, Ripley’s K function, and Pair distribution
function (Melro 2011; Romanov et al. 2013). More-
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Fig. 1 Normal distribution of fiber radii introduced by Vaughan and McCarthy (2010)

over, it was concluded that in RVEs with random fiber
distribution, themaximumstrength is higher thanRVEs
with hexagonal and rectangular fiber arrangements, and
also, the damage initiation and final failure occur in
elder strains. So, the fracture energy of the RVE, which
can be derived from the area below the stress-strain
curve, increases.

Other researchers like Mishnaevsky and Gaoming
(2014) investigated the effect of microstructure of
hybrid carbon/glass fiber composites on their strength.
They also consider the effect of fiber clustering in the
damage behavior of the RVE. Like (Romanov et al.
2013), they consider Ripley’s K function, and Pair dis-
tribution function to testify the randomness of the fiber
distribution in the RVE. They conclude that the strain
of the RVE when it diminishes 50% of its strength is
decreased by increasing fiber volume fraction. As the
maximum stress level of the RVE is remainmostly con-
stant, so by increasing the fiber volume fraction, the
fracture energy of the RVE is reduced.

In the present work, for generating RVE with high
fiber volume fractions, thefibers are posedbesides each
other with the minimum fiber neighboring distance to
produce the desire fiber volume fraction, then fibers
randomly move incrementally in arbitrary directions
in the RVE to obtain random distributions.

3 Finite element analysis

Finite element (FE) analysis was implemented using
ABAQUS (Abaqus 2003). The two-dimensional 3-
node and 4-node bilinear plane strain elements (CPE3,
CPE4) were opted to mesh the fibers and the matrix.
Also, Python scripts have been written to generate and
scatter fibers in the FE models of the RVEs. Abaqus
implicit has been employed for the analyses and in
some cases viscosity parameter and the line search
algorithm has been enabled.

According to the investigations carried out by
Vaughan and McCarthy (2010), the fiber radius was
considered as a normal distribution with a mean value
of 6.6 µm and a standard deviation of 0.3106. A new
algorithm is taking into account the randomfiber distri-
butions. Moreover, the minimum neighboring distance
0.8 µm is considered to generate random fiber distri-
butions.

The significance of periodic boundary conditions in
the micromechanical analysis has been illustrated by
several authors (Xia et al. 2003; Nguyen 2012; Barbero
2013). The boundary conditions and the fiber distribu-
tions are both considered periodic in this research. In
other words, the layouts of the fibers are in a way that
the fibers on the opposite sides complement each other.
This is a prerequisite for performing periodic boundary
conditions. To this end, the displacement of the nodes
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in one edge is related to the displacement of the corre-
sponding nodes on the opposite edge.

Another significant parameter is the dimension of
the RVE. Daniel (2006) pointed out that the minimum
size of an RVE, which can represent the behavior of the
composite material with reasonable accuracy, is fifty
times more than fiber radii in RVE with 50% fiber vol-
ume fraction. The dimensions of the RVEs in this study
are modeled in the same way as the research (Yang
2013; Melro et al. 2008), which is fifty times the radius
of the fiber, a 165 × 165 µm square.

There are several theories presented to calculate
the efficacious material properties, such as Mean-field
approaches and numerical homogenization. Mean-
Field Approaches and similar techniques (Clyne and
Hull 2019; Böhm 2020) Profoundly idealized micro-
scale models are used (like considering a unit cell with
fiber in the center), and the microscale models within
each constituent are approximated by their phasemeans
〈ε〉(p) and 〈σ 〉(p), i.e., an identical stress and strain dis-
tributions are applied.Thephase characteristics employ
these models via statistical descriptors, such as fiber
volume fractions, microscale symmetry models, fiber
aspect ratios, etc. In Mean-Field Approaches the local-
ization relationships practice the form

〈ε〉(p) = Ā(p)〈ε〉
〈σ 〉(p) = B̄(p)〈σ 〉 (1)

where (p) stands for the matrix or inclusion phase of
the material. It is noteworthy that the phase concentra-
tion tensors Ā and B̄ used in Mean-Field Approaches
are not functions of the spatial coordinates. Mean-field
approaches attempt to be expressed (and implement
approximations for efficacious material properties) in
terms of the phase concentration tensors, and they have
been profoundly robust in explaining the thermoelastic
response of inhomogeneousmaterials with low compu-
tational costs. Their most significant aspects are effica-
cious field and medium estimates. It is a remarkable
note that the analytical equations never can consider
all micromechanical characteristics like fiber arrange-
ments, fiber shapes, minimum fiber neighbouring dis-
tance or fiber radii etc. so definitely micromechanical
analyses are needed to achieve a reliable characteristic
for composite materials.

However, in this study, the numerical homogeniza-
tion relationships for the stress and strain tensors are
derived by Eq. 2, known as the average strain and aver-

age stress formulas

〈ε〉 = 1

As

∫
Vs

ε (x) d A

〈σ 〉 = 1

As

∫
Vs

σ (x) d A (2)

where the As is the surface of the domain “s”.
For results validation, the readers are referred to

our previous study (Palizvan et al. 2020) where the
modeling technique and the analyses performed by
the authors have been validated by presented results
of Yang (2012) about fiber-matrix interface debonding
and matrix cracking in an RVE.

4 Material behavior

As fiber fracture is unlikely to occur under transverse
loadings (Yang 2012), the carbon fibers are assumed to
be linear elastic and no damage model has been imple-
mented for the fibers.The mechanical properties used
in the analysis for AS4 carbon fiber with 3501-6 epoxy
matrix were taken from Melro (2011) and are given in
Table 1.

Several experimental studies have confirmed that
fiber-matrix debonding and matrix cracks are the two
dominant damage modes in micromechanical RVEs in
composite materials under transverse loadings (Soden
et al. 1998; Vaughan and McCarthy 2011). Conse-
quently, the damage behavior of the epoxy and the
interface are considered, which is illustrated in detail in
the following. As epoxy is sensitive to the hydrostatic
stress (Asp et al. 1996, 1995), the matrix is assumed
to behave as an isotropic, elastic–plastic solid with the
Drucker-Prager yield criterion. It is observed that the
behavior of epoxy is sensitive to the hydrostatic stress
which implies that materials become stronger with
increasing pressure; their compressive yield stresses
are higher than tensile yield stresses (Guild 2004).

Table 1 Transverse mechanical properties of the carbon and
epoxy resin (Melro 2011)

Carbon fiber Epoxy resin

Young’s modulus (GPa) 13 3.35

Poisson ratio 0.2 .35

Tensile strength (MPa) – 80

Compressive strength (MPa) – 12
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Drucker–Prager model allows epoxy to harden isotrop-
ically and is able to simulate inelastic dilation and vol-
ume changewith inelastic behaviour andflow rule. Sev-
eral authors used Drucker–Prager or Mohr–Coulomb
criteria to capture this phenomenon (Yang 2015, 2016;
Han 2015). Therefore, without considering these cri-
teria, the RVEs’ responses would lead to unreliable
results especially in RVEs under component loadings.
Moreover, using the elastic-perfectly plastic model
results that nonlinear behavior occurs at a higher strain
and will predict a lower overall strength for the RVE.

The Drucker–Prager yield criterion is expressed by
the following equation

F = t − p tan β − d = 0,

t = 1

2
q

[
1 + 1

k
−

(
1 − 1

k

) (
r

q

)3
]

(3)

where p, q, r, β, d, and k are the equivalent pressure
stress, the Mises equivalent stress, the third invariant
of deviatoric stress, the slope of the linear yield surface
in the p–t stress plane (the friction angle of the mate-
rial), and the cohesion of the material, and the ratio of
the yield stress in triaxial tension to the yield stress in
triaxial compression, respectively.

The parameters required for the Abaqus modeling,
β and k can be defined by the ensuing equations

tan β = 6 sin ϕ

3− sin ϕ
(4)

k = 3− sin ϕ

3+ sin ϕ
(5)

where ϕ can be obtained as

sin ϕ = σmc−σmt

σmc+σmt
(6)

The matrix elastic constants are listed in Table 1 and
the parameters of Drucker–Prager yield criterion are
ϕ = 11.5o, β = 23.2o and k = 0.875 (Yang 2015),
which makes the maximum tensile and compression
strength have the values of σmt = 80 and σmc = 120
MPa, respectively.

Apart from the plastic criterion for the matrix, a cri-
terion to predict the initiation and propagation of dam-
age is also required. In this study, due to the investi-
gation by Yang (2016), the equivalent plastic strains
at damage initiation for uniaxial tension and compres-
sion are assumed as 0.025 and 0.25, respectively. After
the initiation of matrix failure, the damage growth is
introduced by a progressive failure procedure, based on

Fig. 2 The damage behavior of Epoxy

energy criterion, with the fracture energy of the matrix
defined as Gm = 0.005N/mm (Yang 2016), as shown
in Fig. 2.

The dashed curve in Fig. 2 is the stress-strain
response in the absence of damage, while the solid
curve expresses the damaged response. The damage
exhibits itself in both softening of the yield stress and
degradation of the elasticity, which are related to the
damage variable D, which increases with an increase
in loading.

The cohesive zone modeling (CZM) is the most
common approach for fiber-matrix damage problems.
Generally, crack or damage initiates when the displace-
ment or force reaches interfacial strength. Then the
critical fracture energy controls the displacement for
forming the complete crack.

Unlike the cohesive strength and fracture energy, the
specific shape chosen for the cohesive model does not
have much effect on the results. Most damage mod-
els, such as Camanho et al. (2003), Turon (2006), and
Dávila et al. (2009) express linear softening models
that are described by maximum traction and a crit-
ical energy release rate. Also, the bilinear traction-
displacement curve (Reedy et al. 1997) has the benefit
of simplicity for FEM implementations via an “inter-
face element” or “interface contact” for both crack ini-
tiation and growth.

Swaminathan et al. (2006) have explained bilin-
ear traction-displacement relations in both normal and
tangential directions for micromechanical composites
with fiber-matrix debonding. This model has been in
acceptable agreement with experiments for composites
illustrated in Li and Ghosh (2004) and Chandra (2002).
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The traction (T)—separation (δ) relation in the bilin-
ear model is defined as

t =

⎧⎪⎨
⎪⎩

t0

δ0
δ i f δ � δ0

t0

δ0−δ f

(
δ−δ f

)
i f δ0 < δ � δ f

0 i f δ > δ f

(7)

where t0 and δ0 are the maximum cohesive strength
and the corresponding strain, δ f is the maximum strain
before the final fracture, see Fig. 3.

Moreover,Mixed-modedamage criteriawere imple-
mented in the investigations where the damage behav-
ior depends on both Mode I and Mode II damage
as shown in Fig. 3. Benzeggagh–Kenane (BK) frac-
ture criterion (Benzeggagh and Kenane 1996) was
employed to define mixed-mode damage for microme-
chanical RVE, and is given by:

Gc = GIC + (GI IC − GIC )

(
GI I

GT

)η

(8)

where GT = GI +GI I and the exponent η is the B–K
power law parameter.

Fiber-matrix debonding is included in the simulation
by the cohesive zone model in terms of a mix-mode bi-
linear traction–separation law. In this paper, the elas-
tic stiffness is selected as Knn = Kss = 108 N

mm3

(Melro 2013; Canal 2012) and interface damage initi-
ates at t0n = 50MPa , t0s = 75MPa (Dávila et al. 2009;
Reedy et al. 1997). The fracture energy G for normal
and shear traction–separation curves are considered as
GIC = 0.002 N

mm ,GI IC = 0.006 N
mm (Melro 2013).

Also, the B–K power law parameter is assumed as
η = 1.45 (Arteiro 2015). Also, the viscosity param-
eter is assumed to be 0.0005.

5 Results

In this section, the damage behavior of RVEswith 20%,
40%, and 60% fiber volume fractions have been inves-
tigated. Also, the effects of parameters such as mesh
size, minimum fiber spacing and different parameters
of the cohesive zone are discussed.

5.1 Mesh size effect

In general, choosing the correct size of elements is a
challenging step that affects the results in finite ele-
ment analyses. The mesh size should be refined until

the results approach to the certain amounts.Meanwhile,
minimizing the size of elements may lead to computa-
tional costs or even the divergence of the solution.

Figure 4 shows the stress-strain diagrams for RVEs
with 20% and 40% fiber volume fractions consisting of
different mesh sizes. Several analyses with mesh sizes
were performed with both square and triangular ele-
ments. It should be noted that the smaller mesh size is
required for the RVEs with higher fiber volume frac-
tion, based on the fact that the fibers are closer to each
other inRVEswith higher fiber volume fractions,which
results in the regions with higher stress concentration.
In all analyses, there is a high correlation between the
results obtained from triangular and square elements.
Meanwhile, models with triangular elements exhibit
better convergence in the damage portion and analyses
continue to a higher strain.

In RVEs with 20% fiber volume fraction, the results
of the 1 µm element have a significant error both in the
elastic region and in the damage portion, see Fig. 4a.
Where the modulus of elasticity derived 6.903 GPa
and the maximum strength of the RVE was 67.75 MPa
for both triangular and square elements. However, the
results converged with the smaller element sizes and in
themesh sizes 0.7, 0.5 and 0.4µm, themodulus of elas-
ticity derived 7.960, 7.955 and 7.955GPa, respectively,
and the maximum strength of 62.74, 63.06, and 63.23
MPa with an error less than 0.01 percent for the elas-
tic modulus and 0.2 percent for the maximum strength
value. Therefore, in all the modeling of this paper for
RVEs with 20% fiber volume fraction, the mesh size is
restricted to .7 µm, for accuracy and optimum solving
time.

Also, the results for theRVEswith 40%fiber volume
fraction are shown in Fig. 4b. The elasticity modulus
for the mesh size of 0.8, 0.4 and 0.2 µm are derived as
8.103, 9.963, and 9.957 GPa, respectively. According
to the results obtained in Fig. 4b, the mesh size of 0.4
µm was selected for analyses of RVEs with 40% fiber
volume fraction.

5.2 Damage behavior of RVEs with different fiber
volume fractions

The damage behavior of the RVEs with 20% fiber vol-
ume fraction has been investigated, from elastic defor-
mation to their final fracture. As shown in Fig. 5, in low
tensile strains ε < 0.01, the stresses are in an elastic
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Fig. 3 Bilinear traction-separation laws employed in cohesive element models and mix mode damage evaluation (Zhang 2015)
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Fig. 4 The effect of mesh size on results for RVEs a 20%, b 40% fiber volume fraction (the mesh type and its size in µm presented in
the legend)

range, so the deformation of the components will be
elastic (Fig. 5a). This elastic behavior continues to the
climax, σxx = 62.46 MPa, in which the force required
to separate the fibers from the matrix is sufficient for a
cluster of fibers (Fig. 5b). It should be noted that before
this stage, due to stress concentration created by ran-

dom fiber arrangement, one or several fibers may expe-
rience fiber-matrix debonding, but due to a large num-
ber of fibers in the RVE (160 fibers), it does not have
an impact on the overall stress-strain curve. In RVEs
with 20% fiber volume fraction, the stress field com-
prises low-stress concentration, so damage domains are
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sparse and separated fromeach other. Thus, the primary
damage mode is fibermatrix debonding in these RVEs
(Fig. 5b) and in the following matrix cracks spring up
by increasing the strain.

Fiber-matrix debonding is initiated in εxx = 0.01
and after a drop due to fiber-matrix damage mode
the stress-strain diagram will remain almost constant
to εxx = 0.018. In this interval, the cracks opening
between the fibers and matrix and the plastic strain
in the matrix increase and approach the strain of the
crack initiation (point C). In the subsequent step,matrix
damage occurs by increasing the strain. These dam-
age modes will develop, and when damage parame-
ters arrive at a value of 1, matrix cracks will emerge
(Fig. 5d).At this moment, due to the initiation and
growth of matrix cracks, a very small strain change
in the RVEs will lead to a significant reduction in their
strength.

According to the fiber’s arrangement in the RVEs,
matrix cracks may be created in several regions simul-
taneously and expand together. Finally, matrix cracks
lead to a dominant crack that crosses the entire RVE
dimension (Fig. 5e). as shown in Fig. 5, the final frac-
ture of the RVE occurs at the strain 0.33 (point E).

The behavior of an RVE with 60% fiber volume
fraction is investigated in Fig. 6. A greater number of
fibers are needed for this fiber volume fraction (478
fiber), so the fibers are expected to pose much closer to
each other, which would require a smaller mesh size.
As a result, in this section, the computational cost is
much higher than the previous analysis. Stress-strain
diagram and stress contours for different strain por-
tions are shown in Fig. 6. As shown in Fig. 6a, the
stress-strain diagram in this section is different from the
behavior of RVEs with 20% fiber volume fraction. In
this case, two damagemodes of fiber-matrix debonding
and matrix cracks will occur simultaneously, indicat-
ing the existence of a high-stress concentration in the
RVE.

When the RVE with 60% fiber volume fraction is
subjected to horizontal strain, in the lower strain (less
than 0.007), the elastic behavior for RVE is expected
(Fig. 6a)with about 30% reduction in elastic rangewith
respect to RVEs with 20% fiber volume fraction. The
elastic region becomes smaller by increasing the fiber
volume fraction and the damage modes initiation will
occur in smaller strain. The elastic behavior will con-
tinue to the strength climax, which is approximately
66 MPa (Fig. 6b). By increasing fiber volume fraction,

the maximum strength does not change markedly com-
pare to the 20% fiber volume fraction (about 3 MPa).
This is due to the fact that instead of fiber volume
fraction, the maximum strength of the RVE is highly
dependent on the properties of the cohesive zone. It
is noted that the aim of increasing the fiber volume
fraction is mostly about stiffness growth, although the
maximumstrength is increased slightly.Assuming con-
stant cohesive zone model properties, the RVEs with
higher fiber volume fraction approach to this climax in
a lower strain due to the higher stiffness. On the other
hand, RVEs with higher fiber volume fraction experi-
ence fields with higher stress concentrations due to the
closer fibers’ positions. This may results matrix crack
initiation and final failure in a lower strain.

Fiber-matrix debonding andmatrix crackswill occur
in RVE by increasing the strain (Fig. 6c). These dam-
ages will gradually expand in the RVE and approach
each other. The damage growth pattern is highly depen-
dent on the fiber arrangement layouts. In some layouts,
a dominant crack is created and developed through the
entire RVE dimension and results in final RVE failure.
In others, failures occur in different regions and may
eventually interconnect or remain apart.

Figure 6d shows that two matrix cracks are formed
at the top and bottom of the RVE and expanded toward
each another. While in a region close to each other,
the presence of a rich fiber region will slow down the
growth of the cracks and lead to the failure in a higher
strain. Finally, Fig. 6e shows the ultimate fracture of
the RVE.

5.3 Random fiber arrangement effects

The fibers arrangement layout has a great effect on the
damage behavior of the RVE. For a better understand-
ing of the effect of the randomness of fiber positions
on the damage behavior of the RVEs, compression has
been done for RVE with random fiber distribution with
a non-random composite with constant fiber diameter
(equal to the mean of the distribution), and interfiber
spacing (also the mean value) for RVE with 40% fiber
volume fraction (Fig 7).

Figure 7 demonstrates the effect of fiber random-
ness on the fracture behavior of RVE. Although in
the elastic portion of the loading, the responses of two
RVEs are in a reasonable agreement, the damagemodes
(fiber-matrix debonding and matrix cracks) initiate and
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Fig. 6 Stress-strain diagram for an RVE with 60% fiber volume fraction and different Von-Mises contour thorough final fracture (stress
×106 MPa)

propagate in smaller strains for RVE with regular fiber
arrangement. In RVE with regular fiber arrangement,
the fibers posed beside each other in an orderly pattern,
so the areas with high-stress concentration also arrange
vertically in the proximity of each other in horizontal
transverse tension loading.

Moreover, after the fiber-matrix debonding devel-
oped enough to create matrix cracks, small cracks have
been initiated for a column of fibers in the same posi-
tion. As these positions are posed in a vertical position
in this sort of loading, the RVE final fracture occurs a
single main vertical matrix crack which has been cre-
ated by reaching those small cracks to each other. The
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Fig. 7 Stress-strain diagrams for an RVEs with regular (grey
graph) and random (black graph) fiber distribution with 40%
fiber volume fraction

existence of this main vertical crack in the RVE is the
best evidence to demonstrate why the overall stiffness
of RVE diminishes a sharper rate, and the final fracture
happens in a smaller strain.

As a rule of thumb, RVEs with regular fiber volume
fractions experience a lower maximum overall strength
and ultimate fracture strain rather than RVEs with ran-
dom fiber distributions.

Regarding the fact that the random layout of the
fibers is generated in the RVEs with reasonable large
dimensions (50 times the radius of the fiber), it is noted
that the damage behavior of theRVEvaries for different
fibers configuration layouts (Fig. 8).

To evaluate all the graphs of Fig. 8, it is concluded
that the behavior of RVEs defer in different random
fiber arrangement schemes and fiber volume fractions.
This is due to the fiber spacing and the stress concen-
tration between them. The higher stress concentration
leads to a lower fracture strain for the RVE. According
to the diagrams presented in Fig. 8 for 20%, 40%, and
60% fiber volume fractions, the convergence of results
is very high up to strains of 0.012, 0.01 and 0.009,
respectively.

The elastic behavior can be achieved by such an
RVE with a dimension that is only several times the
fiber radius with acceptable accuracy. Whereas, if the
behavior of the matrix is considered to be elastoplastic,
this size should increase. In general, the more com-
plex the behavior of the material is, the larger size

of the RVE is needed. However, it seems that even
by RVEs with great dimensions, the damage portion
of the stress-strain graph still exhibit variation due to
the different random fiber distributions. That’s because
even by using large dimension RVEs, the matrix crack
and debondings damage are scattered in different con-
figurations and results various responds. Apparently,
boundary conditions are also very effective in achiev-
ing accurate results with smaller RVEs. In this study,
the periodic boundary conditions have been used for
better convergence.

In Fig. 8a, RVEs with 20 fiber volume fractions, it
is perceived that the results are highly converged up
to the end of the strength loss due to the separation of
fibers from the matrix in RVEs with 20% fiber volume
fraction and different fiber layouts. However, as the
matrix cracks initiate, the results are coming apart from
each other but they still follow a unique trend.

The behavior of the RVEs with 40% fiber volume
fraction follows a different manner (Fig. 8b).

The integrity of results similar to RVEs with 20%
fiber volume fraction is fully attained until the end of
the separation of the fibers from thematrix, while in the
matrix cracking strain portion, the results are clearly
various.

In RVEs with 60% fiber volume fraction, the results
variation becomes notable in strain range greater than
εxx = 0.009, Fig. 8c. In these RVEs, as well as the
RVEs with 40% fiber volume fraction, due to the ran-
dom fiber arrangements, the matrix cracks scheme is
a significant factor, which affects the variation of the
overall behavior of RVEs. The point that should be con-
sidered about the RVEs with 60% volume fraction is
that the fibers are very closely aligned, which result
in high-stress concentration. This high-stress concen-
tration will result in the final fracture of the RVE in a
lower strain. Therefore, the difference in the diagrams
in these RVEs, just like the RVEs with 40% fiber vol-
ume fraction, is related to the arrangement layouts of
different fibers.

The variation in the stress-strain diagrams after the
fiber-matrix debonding portion is due to the crack’s
propagation styles. Regarding the different random
fiber distributions, the stress contours are disparate for
each RVEs. The variation of stress contours results in
many matrix crack initiation and propagation schemes,
Fig. 9. In some RVEs, a dominant matrix crack was
created and crossed the entire length of the RVE, indi-
cating that the strength is lost quickly. While in others,
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Fig. 8 The effect of different random fiber distribution on damage behavior of the RVEs with a 20%, b 40%, and c 60% fiber volume
fractions

several matrix cracks developed and propagated con-
currently without reaching to each other, so its strength
decreases at a gradual rate. The effect of random fiber
distribution on the crack scheme is demonstrated in
Fig. 9 for RVEs with 20%, 40%, and 60% fiber volume
fractions.

It is observed that even by using large RVEs (the
dimension of the RVEs are 50 times of fiber radius),
the fiber positions affect both the damage parameter
growth during the matrix crack propagation, and the
final fracture strain of the RVEs.

5.4 Cohesive zone parameters effects

In this section, the various parameters that affect the
behavior of the cohesive zone which forms the separa-
tion of the fibers-matrix interface are studied. For two
fiber volume fractions, 20% and 40%, the variation of
all parameters has been investigated (Fig. 10). For this
purpose, two RVEs with 20% and 40% fiber volume
fractions are chosen, and for each analysis, only one
(the selected) parameter has changed with respect to
the original model.

The twenty percent variation of different parame-
ters which is introduced in the cohesive zone such as
the final shear strength t0s , the failure energy in the nor-
mal and shear direction (GIC ,GI IC ), and the B-K rule

parameter η do not have a considerable change in the
damage behavior of the RVEs for both 20% and 40%
fiber volume fractions (Fig. 10a). In Fig. 10a, the black
graphs represent the initial state with no change.

Since the RVEs are under horizontal strain, normal
strength

(
t0n

)
is the dominant cohesive zone parameter

that has a significant role in the damage behavior of
RVEs. The damage behavior of RVEs affecting twenty
percent change in the normal strength

(
t0n

)
of the cohe-

sive zone is presented in Fig. 10b, c. The noteworthy
point is that changing the normal strength parameter(
t0n

)
has a strong effect only in a particular range of

strain, the part related to the interface deboning, and
the other portions of the graph almost remain constant.

Themaximumcohesive strength in the normal direc-
tion

(
t0n

)
determines the total strength of theRVE. Since

the fibermatrix debonding is the first damagemode that
occurs in the RVE by increasing the strain and this sep-
aration in the fiber matrix interface depends only on the
ultimate cohesive strength in the normal direction

(
t0n

)
,

the increase of
(
t0n

)
leads to a linear increase of total

strength of the RVE on the range of the tested strengths
(Fig. 10b, c). The maximum strength of the RVEs with
20%fiber volume fraction for the normal strength of the
cohesive element 40, 45, 50, 55, and 60MPa are 56.57,
60.23, 63.23, 66.63, and 69.79 MPa, respectively (Fig.
10b). The greater the maximum strength of the RVE,
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Fig. 9 The effect random fiber distribution on the matrix crack initiation and propagation scheme in RVEs with a 20%, b 40%, and c
60% fiber volume fractions
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the total loss of strength would also be higher after
fiber-matrix debonding, consequently, all the RVEs at
the matrix cracks initiation point would be at about the
same level of strength.

The variation of the maximum strength of the RVEs
with 40% fiber volume fraction is similar to that of
20%, so that for the maximum strength of the cohe-
sive element 40, 45, 50, 55, and 60MPa, the maximum
strength of the RVE is 55.76, 59.74, 63.42, 66.78, and
69.82 MPa (Fig. 10c). In this collection, the results are
closely related to each other after the total strength loss
of RVE, which experience the fiber-matrix separation.
This is due to the fact that fiber-matrix debonding are
completely formed and the effect of the different cohe-
sive parameters in the modeling has been eliminated.

5.5 Minimum fiber neighboring distance effects

Several parameters influence the behavior of RVEs,
such as the minimum neighboring distance between
the fibers. This parameter is considered as input data in
the code written to generate random fiber distributions.
If a larger parameter is chosen, the distribution of the
fiber inside RVE would be more uniform, which will
result in more uniform stress distribution.

However, the assumed percentage of the fiber vol-
ume fraction and the radius of the fiber are two con-
straints for the range of this distance. Thus, it may
impossible to achieve the desired fiber volume fraction
by increasing this distance exceedingly. Obviously, the
larger the fiber volume fraction is, the smaller the dis-
tance that should be considered. On the other hand, the
selection of a larger fiber radius can lead to a larger
range for determining this distance.

In order to investigate the effect of minimum fiber
spacing, ten RVEs with 20% fiber volume fraction are
generated with material and geometric properties like
the previous sections. The various fiber arrangements in
RVEs are assumed random. The first five RVEs, shown
in red color in Fig. 11, have a minimum fiber spacing
of 3.5 µm which is the largest value that can leads to
an RVE with 20% fiber volume fraction. In this series
of RVEs, fibers are distributed almost uniform within
the matrix. In Fig. 11b, an example of these RVEs is
presented with a clear uniform distribution. The second
five RVEs are created with the same specifications, but
with a minimum fiber spacing of 1 µm. As shown in
Fig. 11c, the minimum fiber spacing causes a higher

fiber density in some areas than the other part of the
RVE so the uniformity of distribution is eliminated.
For example, in circle A shown in Fig. 11c, there are
no fibers, while in circle Bwith the same size, the accu-
mulation of seven fibers is placed.

Since the dimensions of RVEs are considered much
greater than fiber radius (fifty times), various fiber dis-
tributions, as well as minimum fiber spacing do not
affect the behavior of the RVEs in the elastic range,
and the results of the RVEs are in high convergence. It
should be noted that these parameters completely affect
the elastic behavior of the RVEs when the dimensions
of the RVE aren’t taken adequate large.

In Fig. 11a, the behavior of the RVEs under hor-
izontal strain is introduced. As illustrated previously,
RVEs with greater minimum fiber spacing (RVEs of 1
to 5) havemore uniform stress fields, and consequently,
the matrix cracks appear in a larger strain. In contrast,
RVEs with a smaller minimum fiber spacing (RVEs of
6 to 10) experience a matrix crack and final rupture
in a smaller strain due to greater stress concentration.
In RVEs with a minimum fiber spacing of 1 µm (blue
diagrams), matrix cracking occurred exactly after the
drop in overall strength due to fiber separation from
the matrix at .02 strain. While in RVEs with a mini-
mum fiber spacing of 3.5 µm (red diagrams), matrix
cracks occur in the strain of 0.03 with a tolerance of
0.01 strain.

There is not any notable change in the overall
strength of the ten RVEs. In other words, as seen in
Fig. 11a, the variation of the minimum fiber spac-
ing does not have any significant effect on the overall
strength of the RVEs. However, the average of over-
all strength in the RVEs with a smaller minimum fiber
spacing is about 1% less than the other RVEs, which is
negligible.

6 Conclusion

Anewmethod for the automatic generation of unidirec-
tional long fiber reinforced composite RVEs with high
fiber volume fraction and random fiber distribution is
presented in this paper. The method gives the user a
relatively high-level of control through several input
variables it requires such as fiber volume fraction, fiber
and RVE sizes, normal distribution for the fiber’s radii,
and minimum fiber neighboring spacing. This scheme
is suitable for displacement-controlled finite element
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analyses; thus, it can be incorporated with commercial
finite element codes for composite materials analyses.

The damage behavior of RVEs with various fiber
volume fractions has been discussed. As the regions
with high-stress concentrations are created in RVEs
with higher fiber volume fraction, smaller elements are
needed to analyze accurately. It is shown that trian-
gle elements are more appropriate and have a higher
convergence. The simulation results indicate that the
damage behavior under transverse tension is initiated
by fiber-matrix debonding and then followed bymatrix
damage. However, in RVEs with high fiber volume
fraction, the two damage modes initiate and propagate
simultaneously. It is shown that the randomness posi-
tion of the fibers does not affect the maximum strength
of the RVE and the corresponding strain. Furthermore,
the way matrix cracks propagate in the matrix con-
trols the final RVE’s fracture strain. Moreover, in trans-
verse tensile loading, the maximum normal strength is
the dominant cohesive parameter for the fiber-matrix
debonding. Minimum fiber neighboring distance is
another parameter that affects the matrix crack initi-
ation strain. In other words, the minimum fiber neigh-
boring distance is directly related to the strain of matrix
crack initiating in the RVE.
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