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Abstract The goal of this paper is to characterize the
dynamic behavior of porous materials containing par-
allel cylindrical voids. Unlike static approaches, micro-
inertia effects are accounted for in the modeling which
infer a strong dependence of the dynamic response
upon void geometry. Since cylindrical voids are con-
sidered, the void radius and void length both play a cru-
cial role in the overall response of the porous material.
A theoretical approach is developed, founded on the
dynamic homogenization scheme proposed by Moli-
nari and Mercier (J Mech Phys Solids 49:1497–1516,
2001) for spherical voids embedded in a viscoplastic
matrix material. Considering a cylindrical unit cell,
a constitutive response of porous material containing
cylindrical void is developed for general homogeneous
boundary conditions. For illustrative purpose, the anal-
ysis focuses on axisymmetric loadings considering a
perfectly plastic matrix material. Micro-inertia effects
are exemplified considering various loading conditions
such as, among others, spherical loading and plane
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strain loading. In particular, the peculiar effect of the
length of the cylindrical void is revealed. Indeed, par-
ticular attention has been paid to the response of short
and elongated cylindrical voids. All predictions of the
present model are verified against numerical simu-
lations developed for various axisymmetric loading
paths. Our findings can be used in several applications
such as thick wall honeycomb structures or additively
manufactured materials submitted to dynamic loading.

Keywords Porous material · Cylindrical voids ·
Micro-inertia effects · Dynamic homogenization

Abbreviations

a0, a Initial and current void radii
b0, b Initial and current cell external radii
d, D Microscopic (local) andmacroscopic

strain rate tensors
f0, f Initial and current porosities
L Macroscopic velocity gradient tensor
l0, l Initial and current void half lengths
(O, e1, e2, e3) Cartesian coordinate system
t Time
v Velocity field
V, δV Volume and boundary of the RVE
x Position vector
x̃ Projection in the plane (e1, e2) of the

position vector x
γ Acceleration vector
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Ω Macroscopic spin tensor
ρ Matrix mass density
σ , Σ Microscopic (local) andmacroscopic

stress tensors
σ̃ , σ0 Effective stress and yield stress in the

matrix
Σ static, Σdyn Static and dynamic stress tensors
Φ Stress potential
ΦG Gurson yield function
d̄, γ̄ Strain rate and acceleration derived

from the trial velocity field v̄

1 Introduction

The scope of the present paper is to highlight the effects
of micro-inertia when porous materials containing par-
allel cylindrical voids are submitted to dynamic load-
ing. The void geometry may be representative of hon-
eycomb structures ormaterials containing drilled holes.
The development of additive manufacturing could also
help provide more dedicated and controlled pores dis-
tributions following, for instance, a specific geometry
such as a cylindrical shape. This study aims to bring
new insights in the response of such porous structures
under dynamic loading.

The response of porous materials has been largely
studied in the context of low strain rate loadings,
where inertia effects may be disregarded. The pioneer-
ing works of McClintock (1968) and Rice and Tracey
(1969), where the void was assumed embedded in an
infinite rigid plastic matrix, have revealed the expo-
nential influence of the stress triaxiality on the damage
growth. The strain rate sensitivity has also been intro-
duced in various approaches. For instance Budiansky
et al. (1982), have considered a power law constitu-
tive relationship for the matrix behavior, to identify
the complex influence of the stress triaxiality on the
porosity growth. Since micro-inertia effects were not
accounted for, these approaches may thus find some
limitations in cases of very high loading rates encoun-
tered in various applications (e.g. high speed forming
processes, ballistic impacts, design of shock wave mit-
igation devices, planetary science, . . .).

Under dynamic conditions, local acceleration fields
are developed in the vicinity of voids which will modu-
late the overall response. Glennie (1972) has extended
the variational approach of Rice and Tracey (1969) for
spherical voids and shown that micro-inertia effects

tend to delay the porosity growth. In fact, the inertial
contribution is found scaled by the square of the void
radius and the mass matrix density. Note that the iner-
tial term arising from this approach in solid mechanics
is similar to the one present in the equation of motion
of a cavitation bubble in fluid mechanics, see Rayleigh
(1917), Plesset (1949). At this stage, most of the works
dedicated to micro-inertia effects have been done con-
sidering a spherical shape for the voids.Within this con-
text, Klöcker (1991) has introduced the coupling of lin-
ear viscous rate dependencewithmicro-inertia to reveal
that neglecting micro-inertia would lead to an infinite
growth rate of void, confirming the stabilizing effect of
the dynamic contribution developed at the local scale.
Ortiz and Molinari (1992) have also considered a com-
bination of viscous andmicro-inertia effects, adding the
strain hardening contribution. The authors have charac-
terized the interplay between viscous and inertia effects
by means of a dimensionless parameter and at the same
time have given more insights into the role of each con-
tribution in the dynamic void growth process: the early
stage is governed by viscous effects,while the late stage
is dominated bymicro-inertia, see alsoWuet al. (2003).
In previous cited works, the void is assumed to be sur-
rounded by an infinite medium. The case of spherical
voids embedded in a finite matrix, as considered in var-
ious static and dynamic approaches, accounts for some
interactions between voids by introducing the effect
of the porosity on the overall response. Considering
the classical hollow sphere model as representative of
the porous medium, Carroll and Holt (1972) have pro-
posed an analytical void collapse law including micro-
inertia effects. The case of a pure hydrostatic loading
was considered and the external pressure was found to
be the sum of two contributions: a quasistatic part and
an inertia-dependent part still scaled by the square of
the void radius and themassmatrix density. Founded on
this approach, numerous authors have proposed some
adjustments and applied the modeling to study spall
fracture in ductile materials (see for instance Johnson
1981; Eftis and Nemes 1992).

Wang (1994, 1997) and Molinari and Mercier
(2001) have proposed a dynamic homogenization
approach based on the principle of virtual power and
have defined the macrostress as the sum of two terms:
static andmicro-inertia contributions.Nevertheless, the
definition proposed by Wang (1994, 1997) or Moli-
nari and Mercier (2001) are different. These authors
applied the dynamic homogenization to the case of
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porous materials containing spherical voids. From the
hollow sphere model and the trial velocity field of
Gurson (1977), Molinari and Mercier (2001) obtained
an explicit constitutive behavior accounting for micro-
inertia and viscoplasticity for general states of stress,
not only restricted to specific loading configurations
like pure hydrostatic path or shearing, as it was the case
in Wang (1994, 1997). The modeling of Molinari and
Mercier (2001) has been used in Czarnota et al. (2006,
2008); Jacques et al. (2010); Versino and Bronkhorst
(2018) to describe spall fracture in a high purity grade
tantalum, or in Czarnota et al. (2017) for shock wave
propagation in elastic viscoplastic porous materials.

Void shape may have an important influence on
the behavior of porous solids. Sartori et al. (2015)
accounted for void shape effects on the dynamic
response. In this last work, the representative vol-
ume element is spheroidal. The trial velocity field of
Gologanu et al. (1993) was used to derive the micro-
inertia contribution which appears to be scaled by the
massmatrix density and two internal length parameters
(semi-axis of the spheroidal void). Indeed, this type of
geometry is characterized by two length parameters (or
equivalently by the length of one of the semi-axes and
the void aspect ratio) whereas for spherical voids, the
geometry is solely defined by the radius. Cylindrical
voids are also defined by two length parameters, the
radius and the length of the void which are expected
to play a role in the dynamic response. This has been
revealed in the work of Molinari et al. (2015), focusing
on the coalescence stage in presence ofmicro-inertia. In
this study, the representative volume element consists
of a cylindrical unit cell embedding a cylindrical void at
its central part, representing the void ligament,with two
rigid domains placed above and below the void. The
kinematics considered in this study correspond to that
of uniaxial strain. The case of a porous material with
cylindrical void under dynamic loading has also been
considered by Leblond and Roy (2000). The authors
have proposed a model accounting for micro-inertia
and viscous rate dependence of the matrix material
(power law) considering spherical and cylindrical cav-
ities. For the latter cell geometry, the velocity field of
Gurson (1977)was used to derive the dynamic response
under generalized plain strain conditions. Upon inte-
gration of the radial equation of motion, the macro-
scopic stress components were shown to be the sum
of a static term and a dynamic one scaled by the mass
matrix density and the void radius. Most importantly,

the component of the acceleration field in the axial
direction was neglected, so that the axial stress remains
unaffected by the length of the cylinder. Therefore, the
modeling cannot restitute the influence of the second
internal length which is the void length.

The aim here is to consider a cylindrical shell, repre-
sentative of porous media like thick wall honeycombs,
submitted to dynamic loading and to reveal the main
influence of micro-inertia effects through the radius
and the length of the void. The theory is developed
for general homogeneous kinematic boundary condi-
tions, keeping, however, that the velocity field adopted
here supposes that the section of the void keeps a cir-
cular shape. Results shown in the paper are analyti-
cally derived by combining the dynamic homogeniza-
tion procedure ofMolinari andMercier (2001) with the
approximate velocity inherited fromGurson (1977) for
cylindrical shells.

The paper is organized as follows. The main steps
of the dynamic homogenization procedure for porous
viscoplastic materials are recalled in Sect. 2 where the
trial velocity for the adopted cylindrical unit cell is also
presented. The dynamic stress tensor, which includes
micro-inertia effects, is derived in Sect. 3 with detailed
calculations provided inAppendixA. InSect. 4, a series
of results obtained from the analytical modeling is pre-
sented, assuming that the matrix material is perfectly
plastic (no strain hardening and no rate dependence
of the matrix material) so that rate effects are only
inherited from micro-inertia. We restrict the attention
to axisymmetric loadings and present the results. The
micro-inertia effects are exemplified considering vari-
ous loading configurations. All results obtained in this
paper are verified against finite element calculations
and some validation cases are provided in Appendix B.

2 Modeling

2.1 Dynamic homogenization

The dynamic homogenization procedure proposed in
Molinari and Mercier (2001) for porous viscoplastic
materials is summarized in this section. A Representa-
tive Volume Element (RVE) of porous material is sub-
jected to high strain rate loading. Thematrixmaterial is
assumed incompressible and rigid-viscoplastic (elastic
deformation neglected). The viscoplastic response of
the matrix is defined from a stress potential:
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σ = ∂Φ(x,d)

∂d
(1)

where σ is the local Cauchy stress tensor, taken at a
material particle of the RVE, and x the position vector
expressed in a rectangular frame with origin at the cen-

ter of mass of the RVE. d = 1

2

(
grad v + tgrad v

)
is

the local strain rate tensor, with v the velocity vector of
a particle inside the RVE, grad and t(·) standing for the
gradient operator and the transpose of (·) respectively.

Homogeneous boundary conditions of the following
type are assumed:

v = D · x on ∂V , (2)

where “·” represents the simple contracted product and
∂V the boundary of the RVE. D is supposed to be uni-
form on ∂V and represents the macroscopic strain rate
tensor.

Let us denote Σ the macroscopic stress tensor pre-
vailing at the RVE scalewhen kinematic boundary con-
ditions (2) are applied. From the principle of virtual
work:

Σ : D = 〈σ : d〉 + 1

2

〈
ρ
d|v|2
dt

〉
, (3)

where “:” stands as the double contracted product.
Molinari and Mercier (2001) have shown that Σ andD
are work conjugated with the proposed definition:

D = 〈d〉, Σ = 〈σ 〉 + 〈ργ ⊗ x〉 (4)

where ρ is the mass matrix density (assumed incom-

pressible), γ = dv
dt

is the acceleration of a particle in

the RVE and⊗ stands for the tensor product. The sym-
bol 〈•〉 = 1

|V |
∫
V • dV represents volume averaging

over the RVE, |V | being the volume of the domain.
It should be noted that the local (microscopic) veloc-

ity field, at a position x inside the RVE, cannot be pre-
cisely known, except for some particular cases. As a
matter of fact, it is generally not possible to obtain,
for general loading conditions, the exact solution of
the local (microscopic) stress field σ , and consequently
the macrostress defined by Eq. (4) cannot be reached
exactly as well. An alternative was then proposed by
Molinari and Mercier (2001) to derive an approximate
solution from the use of a variational approach and by
considering isochoric virtual velocity fields of the fol-
lowing form:

v̄ = v̄(x,D) (5)

satisfying the boundary condition Eq. (2). By applying
the principle of virtual power to an increment δD of the
macroscopic strain rate, the following approximation
(v̄ is not the exact solution) is found by Molinari and
Mercier (2001):

Σ : δD�〈σ̄ : δd̄〉 + 〈ργ̄ · δv̄〉 (6)

where the acceleration field γ̄ , the plastic strain rate
tensor d̄, and the Cauchy stress tensor σ̄ are all associ-
ated with the virtual velocity field v̄ given by Eq. (5):

γ̄ = dv̄(x,D)

dt
,

d̄ = d̄(x,D), σ̄ (x,D)
Eq. (1)= ∂Φ(x, d̄(x,D))

∂d̄(x,D)
, (7)

From Eqs. (5, 7), one gets in addition:

δv̄ = ∂ v̄
∂D

: δD = K : δD,

〈σ̄ : δd̄〉 = ∂〈Φ̂(x,D)〉
∂D

: δD , (8)

whereK = ∂ v̄
∂D is a third order tensor and Φ̂(x,D) =

Φ(x, d̄(x,D)).After substitutionofEq. (8) intoEq. (6),
it follows that:

Σ : δD = ∂〈Φ̂〉
∂D

: δD + 〈ργ̄ · K〉 : δD (9)

where the dependencies of quantities with respect to
x and D have been omitted for ease of reading. This
last relationship is valid for any virtual increment δD
so that the symmetric part of the macroscopic stress,
in presence of micro-inertia, is found to be the sum of
two contributions:

Σ s = Σ static + (Σdyn)s (10)

where Σ static represents the micro-inertia independent
term given by:

Σ static = ∂〈Φ̂〉
∂D

(11)

and (Σdyn)s is the inertial dependent term, expressed
as:

(Σdyn)s = 〈ργ̄ · K〉s . (12)

(·)s represents the symmetric part of the second order
tensor (·). Note that at this stage, only the symmetric
part of Σdyn is obtained. By considering more general
kinematic boundary condition of the form v̄ = L · x on
∂V instead of Eq. (2), one can obtain the antisymmetric
part of Σdyn. This is addressed in Appendix A for the
case of cylindrical voids.
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e2 2l

b

O

e3

e1

a

Fig. 1 Schematic representation of the porous material. A cylin-
drical unit cell (length 2l, void radius a, external radius b) is taken
as the representative volume element. A cartesian coordinate sys-
tem is adopted for the derivation of the model with −l < x3 < l

Note also that Σ static represents the inertia inde-
pendent response and can be evaluated from any vis-
coplastic potential or flow surface developed for porous
material. It may thus include viscous rate dependency.
Finally, from Eq. (5), the trial velocity field used in the
dynamic problem is originated from the correspond-
ing static problem. From this comment, the velocity
field proposed by Gurson (1977) for hollow cylinders
is used in our approach to derive the static and dynamic
stresses.

2.2 Geometry of the RVE and formulation of the
velocity field

The representative volumeelement (RVE)of the porous
material corresponds to a hollow cylinder (circular
cross section) of current internal radius a, external
radius b, length 2l, see Fig. 1. The current porosity
is defined as:

f = a2

b2
. (13)

The matrix surrounding the cylindrical cavity is assu-
med incompressible and elasticity is neglected. The
evolution law for the porosity is classically given by:

ḟ = 3 (1 − f ) Dm (14)

where Dm = 1
3 tr(D) is the spherical part of the macro-

scopic strain rate tensor, tr(•) representing the trace of
the second order tensor •.

An approximate velocity, denoted by v (the upper
symbol “−” used in the previous section is intention-
ally omitted), is considered, satisfying the kinematic
condition (2) at the boundary ∂V of the RVE and the
incompressibility condition.

The cylinder is loaded under general strain rate con-
dition with D written in the orthonormal frame basis
(e1, e2, e3) as:

D =
⎡

⎢
⎣

D11 D12 D13

D12 D22 D23

D13 D23 D33

⎤

⎥
⎦ . (15)

Based on the analysis of Gurson (1977) and assum-
ing uniform shear components of the strain rate tensor
within the matrix material (see also Torki et al. 2015,
2017), the admissible velocity field of the following
form is adopted:

v =
(
Dd + Ds + Du

)
· x (16)

where Ds and Du are traceless tensors (inducing no
dilatation); Ds represents the change of shape of the
void (including evolution of the cross section) whereas
Du is describing the stretching or elongation of the void
preserving the shape of the cross section (assumed cir-
cular) at constant porosity. Both are uniform and only
depending on the macroscopic strain rate tensor com-
ponents:

Ds =
⎡

⎢
⎣

D11−D22
2 D12 D13

D12
D22−D11

2 D23

D13 D23 0

⎤

⎥
⎦ , (17)

and

Du =
⎡

⎢
⎣

−D33
2 0 0

0 −D33
2 0

0 0 D33

⎤

⎥
⎦ . (18)

The last contribution to the approximate velocity field
of Eq. (16) is expressed as:
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Dd =

⎡

⎢
⎢
⎣

tr(D)
2

( b
r

)2
0 0

0 tr(D)
2

( b
r

)2
0

0 0 0

⎤

⎥
⎥
⎦ (19)

and is inducing porosity evolution, see Eq. (14). Note
that the trial velocity field given by Eqs. (16–19) sup-
poses that the shape of voids remains cylindrical with a
circular cross section. Therefore, the tensor Ds, related
to the shape change, has to be overwhelmed by the
other contributions in our applications. Let us remark
that various trial velocity fields found in the literature
for the dynamic response of porousmaterials fallwithin
the formulation adopted here. For instance, the veloc-
ity field used in Leblond and Roy (2000) is retrieved
for Ds = 0. This is also the case for the velocity field
adopted in Molinari et al. (2015) for the description of
the coalescence stage.

From Eqs. (16–19), the trial velocity can also be put
in the following condensed form:

v = D̂ · x + B x̃ (20)

where B = tr(D)
2

( b
r

)2 − D33
2 , D̂ is a strain rate tensor

expressed in the frame basis (e1, e2, e3) as:

D̂ =
⎡

⎢
⎣

D11−D22
2 D12 D13

D12
D22−D11

2 D23

D13 D23 D33

⎤

⎥
⎦ , (21)

and x̃ = x1e1 + x2e2 represents the projection in
the plane (e1, e2), along e3, of the position vector x.
Eq. (20) will be used to calculate the components of
the dynamic stress tensor Σdyn, see Appendix A for
more details.

3 Macroscopic governing equations in presence of
micro-inertia

3.1 Formulation of the micro-inertia dependent term
Σdyn

To evaluate Σdyn, we determine explicitly the inte-
gral term 1/|V | ∫V ργ · δv with use of the boundary
condition v = L · x (where L represents the macro-
scopic velocity gradient) instead of Eq. (2). Within this
context, the antisymmetric part of the dynamic stress
tensor is also defined. From expressions provided in
Appendix A, the stress tensor is obtained:

Σ = Σ static + Σdyn (22)

In the results section, we restrict our attention to bound-
ary condition Eq. (2). Therefore, the components of the
dynamic stress Σdyn are:

Σ
dyn
11 = ρa2

4

[ (
f −1 − f

) ( ˙̂D11 + Ĉ11 − D33 D̂11

)

−9

2

(
f −2 − f −1

)
Dm

2 + 3 f −1

ln

(
1

f

) (
Ḋm + 3Dm

2 − DmD33

)

+
(
f −1 − 1

) (
D33

2

2
− Ḋ33 + C11

+C22 + 6Dm D̂11

) ]
(23)

Σ
dyn
22 = ρa2

4

[ (
f −1 − f

) ( ˙̂D22 + Ĉ22 − D33 D̂22

)

−9

2

(
f −2 − f −1

)
Dm

2 + 3 f −1

ln

(
1

f

) (
Ḋm + 3Dm

2 − DmD33

)

+
(
f −1 − 1

) (
D33

2

2
− Ḋ33 + C11

+C22 + 6Dm D̂22

) ]
(24)

Σ
dyn
33 = ρa2

4

[ (
f −1 − f

)
(
Ḋ33

2
− D2

33

4
− C11 + C22

2

)

−9

2

(
f −2 − f −1

)
D2
m

+
(
f −1 − 1

)
(C11 + C22 + 3DmD33

+ D2
33

2
− 9D2

m − Ḋ33 − 3Ḋm

)

+3 f −1 ln

(
1

f

) (
Ḋm + 9

2
D2
m − DmD33

) ]

+ρl2

3
(1 − f )

(
Ḋ33 + C33

)
(25)

Σ
dyn
12 = Σ

dyn
21 = ρa2

4

[ (
f −1 − f

)
(Ḋ12 + C12 − D33D12)

+6
(
f −1 − 1

)
DmD12

]
(26)

Σ
dyn
13 = ρl2

3

[
(1 − f )

(
Ḋ13 + C13 − D33

2
D13

)

+3

2
ln

(
1

f

)
DmD13

]
(27)

Σ
dyn
23 = ρl2

3

[
(1 − f )

(
Ḋ23 + C23 − D33

2
D23

)

+3

2
ln

(
1

f

)
DmD23

]
(28)
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Σ
dyn
31 = ρa2

4

[ (
f −1 − f

)(
Ḋ13 + C13 − D33

2
D13

)

+3
(
f −1 − 1

)
DmD13

]
(29)

Σ
dyn
32 = ρa2

4

[ (
f −1 − f

)(
Ḋ23 + C23 − D33

2
D23

)

+3
(
f −1 − 1

)
DmD23

]
(30)

whereC = D̂ · D̂ and Ĉ is defined as in Eq. (21) replac-
ing D with C.

The dynamic stress tensor reveals particular aspects
that are further commented upon. The influence of
quadratic and time derivative terms involving strain rate
tensor components are revealed here for the RVE con-
sisting of a hollow cylinder. This illustrates the spe-
cific rate dependencies brought by the micro-inertia
to the overall response of porous materials. This has
already been observed for spherical voids (Molinari
and Mercier 2001) and spheroidal voids (Sartori et al.
2015).

As revealed for other geometries, the dynamic
response is closely related to the cell size. Here, for
cylindrical voids, it appears from Eqs. (23–30) that the
dynamic stress tensor is scaled, by themassmatrix den-
sity ρ and by the square of two characteristic lengths of
the unit cell: the void radius a and half the void length l.

The macroscopic stress tensor Σ is the sum of the
static and the dynamic contributions, see Eq. (22),
with Σ static being a symmetric tensor describing the
static response of the porous material. As a conse-
quence, from Eqs. (27–30), the macroscopic stress ten-
sor Σ is shown to be nonsymmetric. This is similar to
the results obtained by Molinari and Mercier (2001)
for porous materials containing spherical voids, where
the loss of symmetry was only due to spin effects.
Here, however, even when spin effects vanish (i.e.
Ω = 0 is imposed), owing to the anisotropy of the cell
geometry, the macroscopic stress tensor may remain
non symmetric.

3.2 Quasistatic stress tensor Σ static

The quasistatic stress depicts the response of porous
materials under static loading, when micro-inertia
effects are neglected. The quasistatic stress tensor
Σ static is derived here from the yield function proposed
by Gurson (1977) expressed for cylindrical voids as:

ΦG(Σ static, σ̃ , f ) = Ceqv

(
Σ static

eq

σ̃

)2

+ 2 f cosh

(√
3

2

Σ static
γ γ

σ̃

)

− (1 + f 2) = 0

(31)

whereCeqv is a functionof f whose expressiondepends
on the loading state and boundary conditions, see Gur-
son (1977) for details. Σ static

γ γ is the macroscopic trans-
verse stress defined by:

Σ static
γ γ = Σ static

11 + Σ static
22 (32)

and Σ static
eq is the macroscopic equivalent stress expre-

ssed as:

Σ static
eq =

√
3

2
Σ static′ : Σ static′ , (33)

(•)′ being the deviatoric part of the second order tensor
(•).

In Eq. (31), σ̃ is a measure of the effective stress in
the matrix. The quasistatic stressΣ static and the macro-
scopic plastic strain rate D are related by the flow law:

D = κ̇
∂Φ(Σ static, σ̃ , f )

∂Σ static , (34)

where κ̇ is the plastic multiplier subjected to the Kuhn-
Tucker complementary conditions: Φ ≤ 0, κ̇ ≥ 0,
Φκ̇ = 0 (Simo and Hughes 1998) and is obtained from
the equivalence between the plastic work rate of the
porous medium and the matrix dissipation rate.

4 Results—axisymmetric loading

In this section, we restrict our attention to axisymmet-
ric loading conditions that have been selected to reveal
important effects brought by the micro-inertia contri-
bution. As a consequence, Ceqv = 1 in Eq. (31), as
reported inGurson (1977). In addition, thematrixmate-
rial is assumed rigid and perfectly plastic: σ̃ = σ0 with
σ0 denoting the matrix yield stress. Within this con-
text, the static stress is related to the strain rate tensor
by explicit relationships, Gurson (1977); Leblond et al.
(1994); Sartori et al. (2019).

All the analytical results shown and discussed in this
paper have been verified against finite element calcu-
lations conducted with Abaqus/Explicit. Appendix B
provides details on the various numericalmodels devel-
oped for the comparative study accompanied by some
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validation cases. One should note that the finite element
results will not be specifically mentioned in the main
text, since analytical and numerical results were shown
to be coinciding.

The analytical modeling proposed in this paper was
developed for general loading conditions. However,
keep in mind that the velocity field used to derive the
dynamic and static stresses assume that the cross sec-
tion of voids remain circular, so that the contribution
Ds has to be of negligible magnitude, see Eqs. (16–19).

For application purposes, we restrict the attention
to axisymmetric loading paths without shear contribu-
tions. ThusDs vanishes. Consequently, D22 = D11 and
the macroscopic stress tensor Σ satisfies Σ22 = Σ11,
Σi j = 0 for all i 
= j . The same applies for the static
and dynamic contributions, Σ static and Σdyn respec-
tively.

The dynamic stress tensor for axisymmetric loading
still reveals the influence of both a2 and l2. Its explicit
form, given in Eqs. (23–25) or in Appendix A, can be
written in the following condensed way:

Σ
dyn
11 = Σ

dyn
22 = ρa2F,

Σ
dyn
33 = ρa2G + ρl2

3
(1 − f )

(
Ḋ33 + D2

33

)
(35)

where functions F and G, see Eqs. (64–65), depend on
the porosity f , quadratic terms in D11 and D33, and
linear terms in time derivatives Ḋ11 and Ḋ33.

Of particular interest is that it appears from Eq. (35)
that the influence of l vanishes when one of the follow-
ing two conditions is fulfilled:

l = 0 (36)

or

Ḋ33 + D2
33 = 0 (37)

which, upon time integration, leads to:

D33 = D0
33

1 + D0
33t

(38)

with D0
33 = D33(t = 0). Note that since v3 = D33x3

(see Eqs. 20–21), Eq. (37) also corresponds to a nil
acceleration in the longitudinal direction, γ3(x3, t) =
0. It is therefore interesting to notice that prescribing
a constant axial velocity v03 at x3 = l (a similar con-
dition but of opposite sign is found for the bottom of
the cylinder) imposes the fact that Eq. (37) is satisfied
and the length of the cylinder is no longer present in

Eq. (35). Note that the particular case when D33 = 0
fulfills the condition also.

In the following the RVE is initially at rest and
axisymmetric loading is prescribed by imposing in the
plane, the conditions:

Σ22 = Σ11 = ṗt ,

ṗ = constant ≥ 0 (positive in tension) (39)

where ṗ denotes the stress rate. Various types of con-
ditions (in stress or in velocity) imposed in the axial
direction (x3 = ±l) will also be considered. To fix
ideas, we will consider the dynamic void expansion
for stress rates up to 250MPa/ns and/or imposed strain
rates up to 106 s−1. These high levels of strain and stress
rates typically fall within ranges of values encountered
in plate impact experiments, spall fracture (e.g. Roy
2003) and dynamic crack propagation (e.g. Freund and
Hutchinson 1986).

4.1 Plane strain (parametric study)

We first focus on the dynamic expansion of porous
materials under plane strain configuration with Σ11 =
Σ22 = ṗt . In addition we set: D33 = 0 so the length of
the cylinder is fixed. Under axisymmetric plane strain
loading conditions, as mentioned by Gurson (1977),
the static stress is spherical with the mean static stress
under void expansion (i.e. when Dm > 0) expressed
as:

Σm = Σ static
m = σ0√

3
ln

(
1

f

)
(40)

As a consequence, when micro-inertia is neglected,
plane strain with axisymmetric loading condition is
akin to the hydrostatic loading path. This situation is
no more valid when micro-inertia effects are included
since Σ

dyn
33 is different from Σ

dyn
22 = Σ

dyn
11 , see

Eqs. (64–65). Consequently, the macroscopic stress
tensor is no more spherical Σ33 
= Σ11.

A reference porous material is defined where the
flow stress of the matrix material is σ0 =100MPa
and the matrix mass density is representative of alu-
minum material, ρ =2700kg/m3. For the reference
material, the initial void radius is a0 =50µm, the exter-
nal radius is b0 =1500µm, the initial porosity being
f0 = a20/b

2
0 =0.0011, see Table 1. Recall that under

plane strain configuration, the length of the cylinder
does not play a role so that no specific value of l0 is
needed in this section to define the material.
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Table 1 Reference material parameters, representative for
porous aluminum

ρ (kg/m3) a0 (µm) b0 (µm) f0 = a20/b
2
0 σ0 (MPa)

2700 50 1500 0.0011 100

(a)

(b)

Fig. 2 Evolution of the porosity f versus a time and b macro-
scopic stress Σ11 = Σ22 = ṗt under plane strain loading.
A comparison between dynamic (micro-inertia dependent) and
static (micro-inertia independent) analyses is carried out for two
stress rates: ṗ=10MPa/ns and ṗ=250MPa/ns. Material param-
eters are provided in Table 1. For D33 =0, results are independent
from the void length

Figure 2a (resp. Fig. 2b) represents the evolution of
the porosity f versus time (resp. macroscopic stress
Σ11 = ṗ t) for two values of the loading rate ṗ=10
and 250MPa/ns. The porosity is limited to values
below 0.3 because it is assumed that fracture occurs
by direct impingement when the porosity f reaches
this value. The results of the dynamic analysis (micro-
inertia included) and the quasistatic approach (micro-
inertia disregarded) are provided in Fig. 2. The sta-
bilizing effect of micro-inertia is clearly highlighted,

Fig. 3 Time evolution of the macroscopic stress Σ33 under
plane strain loading. The macroscopic stress Σ11 = Σ22 = ṗt
is imposed with ṗ=10 MPa/ns. Material parameters are listed
in Table 1. The time to fracture (i.e. when f =0.3 is reached)
is strongly influenced by micro-inertia effects (around 1020 ns
in the micro-inertia dependent calculation). Under quasistatic
approach (micro-inertia being neglected), the porous material
sustains very limited stress up to fracture which occurs at a time
around 39 ns

the dynamic void evolution being significantly delayed.
This trend is well known from the literature for porous
materials with spherical voids, (e.g. Glennie 1972;
Ortiz andMolinari 1992; Tong andRavichandran 1995;
Molinari and Mercier 2001; Wu et al. 2003; Czarnota
et al. 2006). Note that the static analysis, for perfectly
plastic matrix material, predicts an instantaneous void
expansion once the yield limit is reached. Remember-
ing that the plane strain and hydrostatic configurations
coincide for the static approach, the stress at yield from

Eq. (40) is: Σ11 = σ0√
3
ln

(
1
f0

)
. With the set of param-

eters of Table 1, one obtains 0.39 GPa leading to a
time around 39 ns (resp. 1.57 ns) when ṗ=10 MPa/ns
(resp. ṗ= 250 MPa/ns). Note that even if the void evo-
lution is triggered earlier when ṗ is larger, the micro-
inertia effects are stronger. Indeed, Fig. 2b shows that
the porous material sustains a much larger stress when
ṗ=250 MPa/ns. This is attributed to the sole effect
of micro-inertia, since the matrix response is perfectly
plastic (no viscosity).

Figure 3 shows the time evolution of the macro-
scopic stress components Σ11 = Σ22 = ṗt (pre-
scribed) and Σ33 calculated from the theory Eq. (67)
when plane strain case is adopted. From Fig. 3, it
appears that the stress amplitude needed tomaintain the
cylinder at a constant length 2l0 happens to decrease at

123



206 M. Subramani et al.

Fig. 4 Effects of the mass density, of the initial radius, of the
initial porosity and of the flow stress level, on the porosity evolu-
tion for dynamic extension under plane strain configuration. The
parameters of the reference material are listed in Table 1. The
stress rate is ṗ= 10 MPa/ns

large deformation stages even when the lateral stress
is still increasing. This finding, which could not have
been adequately anticipated without the proposed ana-
lytical approach, clearly highlights the peculiar role of
micro-inertia in the dynamic response of porous mate-
rials containing cylindrical voids. Note that the work
of Leblond and Roy (2000), developed for cylindrical
voids under dynamic loading, also includes the micro-
inertia effects in the overall response. However, with
their approach, the authors state that the total stress
tensor (sum of static and dynamic parts) is spherical
under plane strain loading. Consequently, the decrease
of axial stress with time, revealed by our modeling and
confirmed by finite element calculations (see Fig. 16 of
AppendixB), could not be replicatedwith themodeling
of Leblond and Roy (2000).

A parametric study is now conducted under plane
strain configuration in order to figure out the effects
of micro-inertia and of material properties on the time
evolution of porosity. Fig. 4 portrays the influence of
variousmaterial parameters on the dynamic void evolu-
tion. Results are obtained by varying the mass density,
the flow stress level, the initial void radius and the ini-
tial porosity. Recall that the micro-inertia effects are
scaled partially by the mass matrix density. As a con-
sequence, when ρ is reduced, the stabilizing effect of
micro-inertia is less pronounced and the rate of poros-
ity is increased. The case with ρ =0.27kg/m3 is hardly
distinguishable from the static analysis conducted on
the reference material. An increase of the flow stress

delays the void expansion. This is due to the higher
static stress carrying capacity of the porous material
(see Eq. 40), and is not entirely attributed to micro-
inertia effects. When the initial porosity is increased
(from f0 =0.0011 to 0.01) or the initial cavity radius
is reduced (from a0 =50 to 20µm), the void expansion
is accelerated. The first configuration reflects a porous
material containing more voids of initial size a0. In that
case, the static stress is lower and the micro-inertia is
reduced, because the void is surrounded by less matrix.
The second case is representative of a porous material
containing smaller voids for which the micro-inertia
effects are also reduced. The results provided in Fig. 4
again confirm previous trends found in the literature for
spherical (Wu et al. 2003) and spheroidal voids (Sartori
et al. 2015).

4.2 Hydrostatic loading

We now consider hydrostatic loading with:

Σ11 = Σ22 = Σ33 = Σm = ṗ t, ṗ > 0 (41)

where ṗ coincides here with the mean stress rate Σm.
Note that sinceΣ

dyn
33 
= Σ

dyn
11 , seeEq. (35), the dynamic

stress tensor is not spherical, and consequently the same
applies for the static stress tensor. By contrast with the
plane strain configuration, the length now plays a role
in the overall response. Its influence will be explored
first, then specific attention will be directed to the case
of short cylinders where l0 → 0.

Figure 5 illustrates the porosity evolution for the ref-
erence material with parameters listed in Table 1 con-
sidering various values of the initial length l0 ranging
from 1 to 20,000µm, initial f0, ρa20 and stress rate ṗ
being fixed. It is shown that an increase in initial length
l0 leads to the delay of the void evolution. This illus-
trates the stabilizing effect of micro-inertia modulated
this time by the additional influence of the length of
the cylindrical void. From Fig. 5, it is seen that the
porosity evolves between two asymptotic responses.
The first one is obtained when the initial length adopts
a large value l0 =20,000µm and depicts the response
of elongated cylinders. Within that configuration it is
observed that the porosity evolution under spherical
loading (Σ11 = Σ22 = Σ33 = ṗt) coincides with the
results of Fig. 2a obtained under plane strain condition
(Σ11 = Σ22 = ṗt and D33 =0). However, it has been
shown in Fig. 3 that, due to micro-inertia effects, the
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Fig. 5 Effect of the initial length on the time evolution of the
porosity under hydrostatic loading. The material parameters are
listed in Table 1 except for l0 which is varying in the range
[1:20,000]µm. The stress rate is ṗ=10MPa/ns. The case where
l0 → ∞ (resp. l0 →0) depicts the response of long (resp. short)
cylinders under dynamic loading

Fig. 6 Time evolution, under spherical loading, of the exter-
nal and internal radii for l0 →0, l0 =810 and 1000µm. Other
material parameters, displayed in Table 1, and the stress rate,
ṗ=10MPa/ns, are those of Fig. 5

axial stress Σ33 resulting from plane strain loading is
different from ṗt .

The second asymptotic response, revealed with
l0 =1µm, describes the response of short cylinders
(l0 → 0) under dynamic loading. This situation can
be retrieved from Eq. (36) which also implies that the
dynamic stress expressed by Eq. (35) is not depend-
ing on l0. This case of short cylinders under dynamic
loading is investigated now more deeply.

From Fig. 5, we isolate the cases l0 →0 and
l0 =1000µm which are obtained for material param-
eters listed in Table 1 and ṗ=10MPa/ns. Fig. 6 dis-

(a)

(b)

Fig. 7 a, b Time evolution, under spherical loading, of D11
for l0 →0, l0 =810 and 1000µm. Other material parameters,
displayed in Table 1, and the stress rate, ṗ=10MPa/ns, are those
of Fig. 6. A magnified scale, where the y-axis is reduced, is
proposed in b

plays the time evolution of the external and internal
radii for l0 → 0 and l0 =1000µm. For further insight,
the case where l0 =810µm is also presented. When
the initial length is large enough, e.g. l0 =1000µm, the
porosity growth is characterized by the increase of the
external and internal void radii. This result is classi-
cally expected under quasistatic conditions. Interest-
ingly,when l0 →0, the evolution of damage is resulting
from the reduction of the external radius b, while the
internal radius a is still increasing. As a consequence,
D11 = ḃ/b is negative (after some time) when l0 →0
and positive when l0 is large, as reflected by Fig. 7 pro-
viding the evolution of D11 with time. This observation
in configuration evolution, revealed for short cylinders,
is counterintuitive and brings new insights in the behav-
ior of porous materials under dynamic loading. This
effect is due to micro-inertia and cannot be observed
under quasistatic conditions. For intermediate values,
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it is expected that the strain rate oscillates due to the
change of sign of Ḋ11. This is confirmed in Fig. 7b
for l0 =810µm. For this case, D11 is shown to first
increase, then decrease, adopting negative values, and
finally increase up to the final stage of the growth pro-
cess.Note, fromFig. 6, that the late stage of the porosity
growth for l0 =810µmis quite similar to the casewhere
l0 =1000µm.

In an attempt to identify by analyticalmeans the crit-
ical length, denoted by lcr, approx.0 , at which the porosity
evolution switches from one mechanism (increase of
the external radius) to another (decrease of the external
radius), an approximate analysis is proposed. Regard-
ing the large stress amplitude developed during the
process, we first assume that the static stress compo-
nents are negligible when compared to the dynamic
ones. Under spherical loading, this implies thatΣdyn

33 =
Σ

dyn
11 = ṗt . For the approximate analysis, we also

assume that the quadratic terms in D11 and D33 are
negligible and that only linear terms in Ḋ11 and Ḋ33

are held in Eqs. (64–65) of AppendixA. These assump-
tions lead to the following relationships:

ṗt = Σ
dyn
11 = Σ

dyn
22 = ρa2

4

{
2 f −1 ln

(
1

f

)
Ḋ11

+
[
1 − f −1 + f −1 ln

(
1

f

)]
Ḋ33

}
(42)

ṗt = Σ
dyn
33 = ρa2

4

{
2

[
1 + f −1 ln

(
1

f

)
− f −1

]
Ḋ11

+
[
f −1 ln

(
1

f

)
− 1

2

(
f −1−1

)
(3− f )

]
Ḋ33

}

+ρl2

3
(1 − f ) Ḋ33 (43)

which give after some manipulation:
(
2l2

3b2
− 1 − f

4

)
Ḋ33 = Ḋ11 (44)

where relationship b = f −1/2a has been used. One can
substitute Ḋ11 expressed by Eq. (44) into Eq. (42) to
get:

Ḋ33 = 4 ṗt

ρb2

[(
l2

3b2
+ 1 + f

2

)
ln

(
1

f

)
+ f − 1

]−1

(45)

It can be seen that Ḋ33 is strictly positive (i.e. D33 > 0)
when ṗ >0. Therefore Eq. (44) reveals that Ḋ11 < 0
when l → 0. The critical length lcr, approx.0 is evaluated

from Eq. (44) with the condition Ḋ11 =0. Assuming
in addition that the porosity and length have slightly
evolved, one obtains:

lcr, approx.0 =
√
3 (1 − f0)

8
b0 (46)

Using this last equationwith f0 =0.0011, b0 =1500µm
gives lcr, approx.0 =916µm which compares well with
810µm shown in Fig. 7.

Eq. (46) indicates that the critical length solely
involves b0 and f0, while being independent from the
stress rate ṗ and other material parameters. Various
configurations have been considered serving at test-
ing the validity of the analytical approximation. From
Table 2, compiling all tested cases, one notes that
the critical length lcr, approx.0 obtained from the analyt-
ical approximation (46), predicts, relatively well, the
value lcr0 obtained from the complete theory. The ana-
lytical approximation supposes that the micro-inertia
effects are strong enough so that the static stress can
be neglected. As a matter of fact, when ṗ is increased,
the micro-inertia effects are enhanced and the value of
lcr, approx.0 becomes closer to the actual value lcr0 . By con-
trast, when σ0 is increased, one notices from Table 2
that the gap between lcr0 and lcr, approx.0 is getting larger.
When b0 is half the reference value, lcr0 obtained from
the complete theory is reduced by a factor of two, thus
validating the mathematical dependence on b0 in the
analytical approximation. Finally, lcr0 is also shown to
be a little sensitive to a variation in f0, as predicted by
the analytical approximation (46).

4.3 Additional loading cases

In this section we complement the analysis by first con-
sidering the following boundary conditions: (i) homo-
geneous stress different from hydrostatic loading and
(ii) imposed axial strain rate and homogeneous pres-
sure on the lateral surface.

Stress boundary conditions of two different types
are first explored, see Table 3. Case 1 corresponds to
Σ11 = Σ22 = 0 and Σ33 = ṗt . Case 2 is obtained
for Σ11 = Σ22 = ṗt , Σ33 = 0. The stress triaxiality,
defined by χ = Σm

Σeq
, is equal to 1/3 and 2/3 for Case 1

and Case 2, respectively. In Case 1, which corresponds
to uniaxial stress loading, the void axis is aligned with
the loadingdirection and D33 is naturally positive under
remote extension. For Case 2, the cylinder is stretched

123



Dynamic response of ductile materials containing 209

Table 2 Various configurations used to compute the critical length below which Ḋ11 < 0

ṗ ρ a0 b0 f0 = a20/b
2
0 σ0 lcr0 lcr, approx.0

(MPa/ns) (kg/m3) (µm) (µm) / (MPa) (µm) (µm)

Ref 10 2700 50 1500 0.0011 100 810 916

#1 100 2700 50 1500 0.0011 100 880 916

#2 10 2700 50 1500 0.0011 200 760 916

#3 10 2700 150 1500 0.01 100 800 914

#4 10 2700 25 750 0.0011 100 390 457

#5 10 2700 50 750 0.0044 100 390 458

The critical value lcr0 , obtained from the complete modeling, compares well to the analytical approximation lcr, approx.0 given by Eq. (46)

Table 3 Loading configurations and corresponding triaxialities

χ = Σm
Σeq

Σ11 = Σ22 Σ33

Spherical loading ∞ ṗ t ṗ t

Case 1 1/3 0 ṗ t

Case 2 2/3 ṗ t 0

in the radial direction (D33 < 0). The two cases serve
to complement the spherical loading addressed previ-
ously. Note that within the adopted study, the macro-
scopic equivalent stress is ṗt for bothχ = 1/3 (Case 1)
and 2/3 (Case 2), while vanishing under spherical load-
ing. A fixed value of the stress rate, ṗ=10MPa/ns, is
adopted in this section. The reference material param-
eters listed in Table 1 are first considered.

Figure 8 shows the time evolution of the porosity
for Case 1 and Case 2 when l0 =2000µm (Fig. 8a)
and l0 =10µm (Fig. 8b). The response under spherical
loading is also reported for comparison purpose. The
initial porosity is f0 = 0.001 in all calculations. Since a
static analysis provides a time to fracture for the porous
material of around 10ns for both Case 1 and Case 2,
Fig. 8 clearly illustrates that micro-inertia effects are
important whatever the stress triaxiality. Note the sta-
bilizing effect of the length of the cylinder during uni-
axial loading (Case 1), due to an enhancement of global
inertia for the large value l0 =2000µm, see Fig. 8a. It is
seen by comparing Figs 8a, b, that the response under
spherical loading is slightly sensitive to a reduction in
l0, see also Fig. 5. By contrast, for the two other cases,
the porosity evolution is strongly depending on l0.

Of particular situation, Fig. 8a and b show that the
void may collapse under loading Case 2 (χ = 2/3). To

(a)

(b)

Fig. 8 Time evolution of the porosity for spherical loading and
for Case 1 and Case 2 under dynamic condition, see Table 3. The
stress amplitude is ṗt with ṗ=10MPa/ns. The initial length is a
l0 =2000µm, b l0 =10µm. Other material parameters are listed
in Table 1

have a better explanation of the situation, Fig. 9a pro-
vides the time evolution of a and b and Fig. 9b shows
the time evolution of D11 and D33. In fact, when the
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(a)

(b)

Fig. 9 Time evolution of a the void radius a and external cylin-
drical radius b and b the macroscopic strain rate components
D11 and D33, for Case 2: Σ11 = Σ22 = ṗt with ṗ=10MPa/ns,
Σ33 = 0.The initial length is l0 =2000µm,othermaterial param-
eters being listed in Table 1

top and bottom surfaces of the cylinder are traction-free
with ṗ >0 imposed in the radial direction, the length
of the cylinder is naturally reduced (i.e. D33 < 0). At
the same time, the external radius is always increased
whereas the internal void radius is first increased before
void collapse occurs at the final stage. This peculiar
behavior results only from the micro-inertia effects.
Indeed, in a quasistatic analysis, it can be easily shown
from the Gurson model, that when Σγγ = Σ11 + Σ22

is positive, then Dm > 0. So the porosity is increasing
and no void collapse can occur within a micro-inertia
independent approach. In addition, in the quasistatic
approach l is decreasing while a and b are both increas-
ing.

Case 2 is investigatedmore deeply by varying ρ (l0 =
2000µm being fixed, Fig. 10a) and l0 (ρ =2700kg/m3

being fixed, Fig. 10b). When ρ is reduced (smaller
effects of micro-inertia), the porosity growth is trig-

(a)

(b)

Fig. 10 Influence of a the mass matrix density when
l0 =2000µm and b the initial void length when ρ =2700kg/m3

for Case 2: Σ11 = Σ22 = ṗt with ṗ=10MPa/ns, Σ33 = 0. The
other material parameters are displayed in Table 1. The response
with l0 =10,000µm provides the plane strain case of Fig. 2

gered for earlier time and develops faster. Note that
micro-inertia effects are always included in the com-
plete theory and that void collapse occurs even for low
values of ρ. The static response would be obtainedwith
a very low value of ρ for which, as previously stated,
one would observe an instantaneous growth without
collapse (at t �10ns).

The effect of l0 portrayed in Fig. 10b confirms the
important role of the axial length of the cylinder on the
dynamic response. As l0 is reduced, the collapse pro-
cess is triggered earlier. Remind that the micro-inertia
stress is the sum of two terms, the first being scaled
by ρa2, the second by ρl2. Thus, when l0 → 0 micro-
inertia is solely dependent upon the void radius. Finally,
one notes from Fig. 10b that the response obtained with
a large value of l0, e.g. l0 =10,000µm, coincides with
the plane strain case of Fig. 2, in terms of porosity evo-
lution.
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(a)

(b)

Fig. 11 Influence of a the mass matrix density when
l0 =2000µm and b the initial void length when ρ =2700kg/m3

on the dynamic damage evolution for loading Case 1 (uniaxial
stress). The other material parameters are displayed in Table 1.
The evolution of the axial stress is given by Σ33 = ṗt with
ṗ=10MPa/ns

The uniaxial stress loading (Case 1) is next explored
by varying the mass matrix density (with fixed l0 =
2000µm in Fig. 11a) and the initial length of the cylin-
der (ρ =2700kg/m3 being fixed in Fig.11b). Again,
when l0 is fixed and ρ is reduced, the micro-inertia
effects are lowered down, and the porosity growth
occurs earlier. But, most interestingly, when ρ is lower
than 270kg/m3, the critical porosity fc =0.3 (for which
fracture is assumed to occur) is not reached during the
dynamic process. Instead of continuously increasing
up to the ultimate fracture at f = fc, the porosity is
reduced and tends to a stabilized value. This plateau is
characterized by the collective decrease of a and b, f
being constant. Fig. 12a illustrates the evolution of the
internal and external cell radii while Fig. 12b presents
the time evolution of D11 and D33. Note from the last
figure, that since ḟ � 0 at late stage of the process,
D11 is close to −D33/2.

(a)

(b)

Fig. 12 Time evolution of a the void radius a and external
cylindrical radius b and b the macroscopic strain rate compo-
nents D11 and D33 for loading Case 1 (uniaxial stress with
Σ33 = ṗt , ṗ=10MPa/ns). The initial length is l0 =2000µm,
the mass matrix density is ρ =270kg/m3, other material param-
eters being listed in Table 1

Increasing l0 with fixed ρ also favors the occur-
rence of a plateau. Indeed, from Fig. 11b obtained with
ρ =2700kg/m3, it appears that when l0 =5000µm, the
porosity is frozen after some time (t > 8000ns) while
the cell internal and external radii are still decreasing.
When l0 is reduced, the porosity growth is faster and
the critical porosity is reached prior to any decrease in
f . Note that a plateau could have been observed by
adopting a larger critical porosity fc for lower values
of l0.

The length of the cylinder plays an important role in
the dynamic response of cylindrical voids. In the last
two examples, the dynamic behavior may be charac-
terized by a saturation in the damage evolution or a
collapse process. These effects are solely due to micro-
inertia.
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(a)

(b)

Fig. 13 Time evolution, under imposed constant strain rate D33
and prescribed Σ11 = Σ22 = ṗt with a ṗ=10MPa/ns, b
ṗ=100MPa/ns. The initial length is l0 =100µm, other material
parameters being listed in Table 1

We now consider the loading path where homo-
geneous pressure is prescribed on the lateral surface,
Σ11 = Σ22 = ṗt , while a constant strain rate D33

is imposed in the longitudinal direction. In that case
the current position of the top surface is given by
l = l0 exp(D33t). Fig. 13 shows the evolution of
the porosity for various values of D33 up to 106s−1

with ṗ=10MPa/ns (Fig. 13a) and ṗ=100MPa/ns
(Fig. 13b). The reference material of Table 1 is adopted
with l0 =100µm. As expected, when the strain rate
D33 increases, the porosity growth is accelerated. Most
interestingly,when comparingFig. 13a and b, one notes
that when D33 =106 s−1 the evolution of the porosity
is almost identical for the two applied pressures con-
sidered. In such situation (i.e. under intense imposed
constant strain rate), the void evolution appears to be
exclusively governed by D33 irrespective of the value
of ṗ. Naturally, when D33 =0, the growth process is

Fig. 14 Time evolution of the porosity under imposed in-plane
stress Σ11 = Σ22 = ṗt and constant velocity v03 . Calcula-
tions are performed for D0

33 =10
5 s−1 and 106 s−1 considering

l0 =1000 and 2000µm which infers various applied constant
velocities. Other material parameters are given in Table 1

solely driven by the stress rate ṗ. For intermediate val-
ues, the evolution of the porosity results from both the
influences of ṗ and D33. One has to mention also that
if the stress rate ṗ is further increased, it is expected
that for the effect of the lateral stress ( ṗt) to be neg-
ligible, larger values of the strain rate D33 have to be
considered.

In the last example, the in-plane macroscopic stress
tensor components are still Σ11 = Σ22 = ṗt while a
constant velocity v3 = ±v03 is prescribed at x3 = ±l.
The corresponding nominal strain rate is D0

33 = v03/ l0
and the current position of the top surface is l =
l0(1 + D0

33t). It was demonstrated from the analysis
of Eqs. (35) and (38) conducted at the beginning of
Sect. 4, that the term related to l2 in Σ

dyn
33 vanishes.

This is exemplified in Fig. 14 for the reference material
(parameters given in Table 1) considering two lengths
l0 =1000, 2000µm and D0

33 =10
5 s−1, 106 s−1. Note

that, as for the configuration of an imposed constant
strain rate addressed previously, the growth process
is less dependent on ṗ and is largely influenced by
the imposed axial strain rate when D0

33 is large, e.g.
D0
33 =10

6 s−1 in Fig. 14.

5 Conclusion

The main goal of the present work was to explore
the dynamic response of porous materials contain-
ing parallel cylindrical voids. An analytical model-
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ing was proposed, that takes into account micro-inertia
effects which are absent from conventional quasistatic
approaches. In this work, the dynamic homogenization
scheme formerly developed by Molinari and Mercier
(2001) for spherical voids was adapted to the cylin-
drical cell geometry (RVE). The macroscopic stress
was found to be the sum of a quasistatic part and a
micro-inertia dependent contribution. The quasistatic
part was evaluated from the Gurson yield function
Gurson (1977) while the dynamic part was calculated
by adopting the admissible velocity field of Gurson
(1977). It was of interest to highlight the respective
influences of the two geometrical characteristics of the
cylindrical voids (i.e. length and radius) on damage
evolution. It is worth noting that the effects of void
length and radius can be separated. Indeed, the macro-
scopic dynamic stress appears as the summation of two
terms: the first (resp. second) term is scaled by the
matrix mass density and the square of the void radius
(resp. void length).

Predictions of the present model have been verified
against numerical simulations for various axisymmet-
ric loading paths. A parametric study has been con-
ducted under plane strain configuration, confirming the
refraining effect of micro-inertia when modulated by
the mass matrix density and the initial void size. In
addition, under plane strain, the axial stress compo-
nent is found to decrease with time at large deforma-
tion. This reflects that the stress needed to constrain
the length of the cylinder is reduced because of micro-
inertia. Since the longitudinal stress cannot be obtained
when the axial acceleration of the material particles is
neglected, this trend could not be restituted from a 2D
analysis.

The influence of the length of the cylindrical void has
been revealed. In particular, for spherical stress load-
ing, it has been shown that micro-inertia effects are
more important for longer voids. At the same time, it
was shown that two asymptotic responses in the time
evolution of the porosity are emerging from the spheri-
cal loading path: the plane strain case is retrieved when
l0 → ∞ and the case of short cylinders is obtained
from l0 → 0.

The case of short cylinders reveals a peculiar damage
evolution. In fact, the porosity is found to increase due
to a reduction of the external radius and an increase of
the void radius. This situation is solely due to micro-
inertia effects.

The modeling has been applied to stress states with
various triaxialities. Under radial expansion with trac-
tion free top and bottom surfaces, the void was found
to collapse, at least for the reference set of material
parameters. Under uniaxial stress loading, after an ini-
tial void growth, the porosity may decrease and reach a
plateau. Under such case, the late stage of the deforma-
tion process is characterized by a continuous decrease
of the internal and external radii.

Our findings can be used in several applications such
as thick wall honeycomb structures or additively man-
ufactured materials submitted to dynamic loading.
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Appendix

A Formulation of the macroscopic dynamic stress
tensor

A.1 General formulation

The macroscopic dynamic stress tensor Σdyn is evalu-
ated in this section with use of the following kinematic
boundary condition:

v = L · x on ∂V , (47)

with x = x1e1 + x2e2 + x3e3 being the position vector.
L is themacroscopic velocity gradient tensor, related

to the macroscopic strain rate D and spin tensor Ω by
the following relationships:

D = L + tL
2

, Ω = L − tL
2

. (48)

With the boundary condition (47), Eqs. (3) and (9)
become:

Σ : tL = 〈σ : d〉 + 1
2

〈
ρ
d|v|2
dt

〉
, (49)

Σ : tδL = ∂〈Φ̂〉
∂D

: δD + Σdyn : tδL , (50)

with

Σdyn : tδL = 〈ργ · δv〉 = 1

|V |
∫

V

ργ δvdV . (51)

More information can be found inMolinari andMercier
(2001).
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The dynamic stress tensor Σdyn is evaluated con-
sidering that the porous material is represented by the
hollow cylinder and that the approximate velocity field
is of the form:

v = L̂ · x + B x̃ (52)

where B = tr(D)
2

( b
r

)2 − D33
2 and L̂ is defined as in

Eq. (21) replacing D by L. The adopted velocity field
satisfies the kinematic condition (47) together with the
matrix incompressibility condition. From Eq. (52), the
variation of the velocity δv due to the change δL of L
at the boundary and the acceleration are:

δv = δL̂ · x + δB x̃ , (53)

γ = ˙̂L · x + L̂ · v + Ḃ x̃ + Bṽ , (54)

where ṽ = v1e1 + v2e2. Combining Eqs. (52–54), the
integral term I = 1

|V |
∫
V ργ δv of Eq. (51) can be writ-

ten as:

I = 1

|V |
∫

V

ργ δvdV = 1

|V |
∫

V

ρ(x · t ˙̂L · δL̂ · x

+ v · t L̂ · δL̂ · x
+ ḂδB x̃ · x̃
+ BδBṽ · x̃ + Ḃ x̃ · δL̂ · x + Bṽ · δL̂ · x
+ δB x̃ · ˙̂L · x + δB x̃ · L̂ · v)dV (55)

The volume |V | of the RVE is 2lπb2. Note that par-
ticles are present only for a ≤ r ≤ b. After some
calculations leading to an explicit relation for I =
1

|V |
∫
V ργ δvdV , the use of Eq. (51) provides the com-

ponents of the dynamic stress tensor. Σdyn
11 , Σdyn

22 and

Σ
dyn
33 are given by Eqs. (23–25) while the other com-

ponents are expressed as:

Σ
dyn
12 = ρa2

4

[(
f −1 − f

)
(L̇12 + C12 − D33L12)

+ 6
(
f −1 − 1

)
DmL12

]
(56)

Σ
dyn
21 = ρa2

4

[(
f −1 − f

)
(L̇21 + C21 − D33L21)

+ 6
(
f −1 − 1

)
DmL21

]
(57)

Σ
dyn
13 = ρl2

3

[
(1 − f )

(
L̇13 + C13 − D33

2
L13

)

+ 3

2
ln

(
1

f

)
DmL13

]
(58)

Σ
dyn
23 = ρl2

3

[
(1 − f )

(
L̇23 + C23 − D33

2
L23

)

+ 3

2
ln

(
1

f

)
DmL23

]
(59)

Σ
dyn
31 = ρa2

4

[(
f −1 − f

)
(L̇31 + C31 − D33

2
L31)

+ 3
(
f −1 − 1

)
DmL31

]
(60)

Σ
dyn
32 = ρa2

4

[(
f −1 − f

)
(L̇32 + C32 − D33

2
L32)

+ 3
(
f −1 − 1

)
DmL32

]
(61)

whereC = D̂ · D̂ and Ĉ is defined as in Eq. (21) replac-
ing D by C.

The dynamic stress tensor reveals particular aspects
that are commented in the main text, see Sect. 3.1.

A.2 Case where Ω = 0

The case where L is symmetric corresponds to the
velocity field (20) of Sect. 2.2. The dynamic stress
tensor components Σ

dyn
11 , Σ

dyn
22 and Σ

dyn
33 are still

given by Eqs. (23), (24) and (25) respectively. Since
C = D̂ · D̂ in this case is symmetric, the other com-
ponents are obtained directly from Eqs. (56–61), lead-
ing to Eqs. (26–30). As also stated in Sect. 2.1, the
dynamic stress tensor is not symmetric even when spin
effects are disregarded. For spherical voids, without
spin contribution the dynamic stress tensor is symmet-
ric, Molinari and Mercier (2001). The results are due
to the geometrical configuration of the RVE which is
not isotropic.

A.2.1 Axisymmetric case

For an axisymmetric configuration without shear con-
tributions, the velocity field used by Tracey (1971) is
of the form of Eq. (20) with D expressed as:

D =
⎡

⎢
⎣

D11 0 0

0 D11 0

0 0 D33

⎤

⎥
⎦ , (62)

From Eqs. (23–30), the only non zero components of
Σdyn are:

Σ
dyn
11 = Σ

dyn
22 = ρa2F,

Σ
dyn
33 = ρa2G + ρl2

3
(1 − f )

(
Ḋ33 + D2

33

)
(63)

with

F = 1

4

{
2 f −1 ln

(
1

f

)
Ḋ11

+
[
1 − f −1 + f −1 ln

(
1

f

)]
Ḋ33
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− 2

[
f −2 − f −1 − 2 f −1 ln

(
1

f

)]
D2
11

− 1

2
(1 − f )2 f −2D2

33

− 2

[
f −2 − f −1 − f −1 ln

(
1

f

)]
D11D33

}

(64)

G = 1

4

{
2

[
1 + f −1 ln

(
1

f

)
− f −1

]
Ḋ11

+
[
f −1 ln

(
1

f

)
− 1

2

(
f −1 − 1

)
(3 − f )

]
Ḋ33

− 2
[
(1 + f ) f −2 − 3 f −1

ln

(
1

f

)
− 2

]
D2
11

− 1

4

[
f −2 (1 − f )3 + f −2 − 1 − 2 f −1

ln

(
1

f

)]
D2
33

− 2

[
f −2 − 1 − 2 f −1 ln

(
1

f

)]
D11D33

}
(65)

Note that the case of uniaxial extension considered in
Molinari et al. (2015) for the dynamic coalescence of
cylindrical unit cell is retrieved from Eqs. (63–65) by
setting D11 = Ḋ11 = 0.

In addition to the previous axisymmetric configura-
tion, under plane strain conditions, D33 = 0, the fol-
lowing relationships are obtained:

Σ
dyn
11 = Σ

dyn
22 = ρa2

2

{
f −1 ln

(
1

f

)
Ḋ11

− f −1
[
f −1 − 2 ln

(
1

f

)
− 1

]
D2
11

}
(66)

Σ
dyn
33 = ρa2

2

{ [
f −1 ln

(
1

f

)
− f −1 + 1

]
Ḋ11

−
[
(1 + f ) f −2 − 3 f −1 ln

(
1

f

)
− 2

]

D2
11

}
(67)

Note that when D33 = 0 (i.e. the length of the cylin-
der remains constant, l = l0), the porosity evolution
is solely governed by D11 through ḟ = 2(1 − f )D11.
Using in addition Eq. (66) and ȧ/a = D11/ f (matrix
incompressibility), since the static stress is expressed
in terms of D11 and f , it appears that under imposed
in plane stress (i.e. Σ11 is known), the radial strain rate

component D11 can be obtained. As a consequence,
when D33 = 0, one can determine the porosity evolu-
tion from the stress components in the (e1, e2) plane.
But, interestingly, inertia effects related to radial expan-
sion are transferred also toΣ

dyn
33 . This implies that lim-

iting the analysis to the 2D plane configuration may
leave aside substantial information on the role played
by micro-inertia. As a matter of fact, the axial stress
needed to constrain the length of the cylinder in a
dynamic problem cannot be captured by such 2D in
plane approach.

B Finite element modeling

To validate the proposed constitutive model, dynamic
micromechanical computations have been carried out
with the finite element code ABAQUS/Explicit. Var-
ious axisymmetric models have been developed to
depict the dynamic response under (i) plane strain con-
dition (ii) hydrostatic loading conditions and (iii) other
loading cases considered in the paper. Since the matrix
material is taken as rigid (elastically undeformable), a
large value of the Young’s modulus has been adopted
(6000GPa) in all finite element calculations. In addi-
tion, to approach the incompressibility condition for
the matrix, a value of 0.499 for the Poisson’s ratio has
been used.

Recall that for all configurations addressed in the
paper, the proposed analytical approach has been accu-
rately compared to results obtained from numerical
simulations. Here, only some examples have been
selected to bring the comparison.

B.1 Plane strain configuration

For this case, the unit cell, illustrated on Fig. 15,
is meshed with 4 nodes axisymmetric elements with
reduced integration (CAX4R). The initial element size
is about 20µm ×40µm.Since the unit cell is expanded
in the radial direction, elements are initially elongated
in the axial direction, so as to prevent the element aspect
ratio from excessive values during the deformation pro-
cess. Kinematic conditions of the following form are
considered:

v3(x, t) = 0 on ∂B0, v3(x, t) = 0 on ∂Bl (68)
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Fig. 15 Finite element cylindrical unit cell of length l, inner
radius a and external radius b used for various loading cases.
The mesh is made with 4 node axisymmetric elements (CAX4R)
of element size of 20µm×40µm

which account for the condition of symmetry at ∂B0

and ensure the plane strain condition at ∂Bl . In addi-
tion, the following stress boundary conditions prevail
(expressed in the cylindrical coordinate system):

Σr3(x, t) = Σθ3(x, t) = 0 on ∂Bl (69)

and

Σrr (x, t) = ṗt, Σθr (x, t) = Σ3r (x, t) = 0 on ∂Bb

(70)

An example has been selected to illustrate the agree-
ment between the analytical modeling and the numeri-
cal simulations. The case corresponds to the configura-
tion of Sect. 4.1, Fig. 2a, with ṗ= 10MPa/ns. For the
reference material of Table 1, Fig. 16 shows that ana-
lytical results (solid line) coincide with Finite Element
simulations (dots). In particular, the reduction of the
axial stress Σ33 occurring at large deformation while
the lateral stress is still increasing, is reproduced by
both approaches, as observed in Fig. 16b. Note that
Σ33 is evaluated from the ratio of the axial force on
∂Bl divided by the current area πb2.

(a)

(b)

Fig. 16 FEM calculations and analytical result comparison for
plane strain loading. Time evolution of a the porosity and b
the axial stress. The stress rate is ṗ=10MPa/ns. The reference
material with parameters listed in Table 1 is considered

B.2 Hydrostatic loading

There is no difficulty to prescribe Σ11 = Σ22 at the
external boundary of the unit cell (r = b). Imposing
Σ33 on the top surface (0 ≤ r ≤ b) where a void is
present for 0 ≤ r ≤ a is not straightforward. To over-
come this difficulty, two strategies have been developed
aiming at defining a model able to verify the proposed
approach in case of hydrostatic loading. Theygive iden-
tical results and for completeness purpose, both will be
presented in this appendix.

B.2.1 Boundary conditions inherited from the
analytical model

The first approach relies on a two-step formalism. The
solution of the considered configuration (prescribed
hydrostatic loading condition) is searched by using the

123



Dynamic response of ductile materials containing 217

Fig. 17 Closed cylindrical unit cell of length l, inner radius a
and external radius b having a thin plate of thickness tp on the top.
CAX4R elements with initial size of 20µm×40µm are used

analytical approach presented in this paper. The result-
ing velocity field in the axial direction, denoted by vth.3 ,
is collected and used as a boundary condition in the
finite element model of Fig. 15. Including the condition
of symmetry, the set of kinematic boundary conditions
is expressed as:

v3(x, t) = 0 on ∂B0, v3(x, t) = vth.3 on ∂Bl (71)

complemented with the stress boundary conditions
expressed by Eqs. (69–70).

It has been shown that under intense imposed veloc-
ity vth.3 , the shape of the unit cell can strongly deviate
from its cylindrical shape. As a consequence, a supple-
mentary constraint turned out to be necessary to prevent
the unit cell from unexpected shape change. Specifi-
cally, the nodes located at the inner and outer vertical
boundaries of the cylindrical void (∂Ba and ∂Bb in
Fig. 15) are linked through a set of linear multi-point
constraints so that, at each time of the deformation pro-
cess, these surfaces remain vertical.

B.2.2 Closed unit-cell

The second approach consists of adopting a closed unit
cell composed of a thin layer added at the top of the

Fig. 18 Time evolution of the porosity for a porousmediumwith
cylindrical void under the stress rate ṗ=10MPa/ns and consid-
ering the reference material with l0 =2000µm and other parame-
ters listed in Table 1. Comparison between analytical results and
FEM calculations for spherical loading. The approach using the
analytically inherited velocity field and the closed unit cell give
comparable results

cylindrical void, see Fig. 17. If the top layer thick-
ness, denoted by tp in Fig. 17, is sufficiently small,
and the additional domain is of negligible mass, it
should not affect the overall response of the unit cell
under dynamic loading. Thus, imposing the macro-
scopic stress tensor component at the top layer is imme-
diate. This strategy however requires additional kine-
matic constraints in order to prevent the unit cell from
excessive and unexpected distortion. Specifically, the
inner surfaces identified by ∂Ba and ∂Btp on Fig. 17 as
well as the outer surfaces ∂Bl and ∂Bb remain planar.
In addition, the condition of symmetry (70) still pre-
vails. The lateral stress ṗt is prescribed according to
Eq. (70), and the axial stress Σ33 = ṗt is imposed at
the top surface.

B.2.3 Validation on the reference case

The two strategies are compared against analyti-
cal results of Fig. 5 obtained for ṗ=10MPa/ns,
l0 =2000µm and other material parameters listed in
Table 1. In our calculation, the thickness of the top layer
was 10µmand it was confirmed that a lower value does
not affect the response of the unit cell. Fig. 18 shows the
evolution of the porosity versus time and serves at ver-
ifying the analytical approach. Fig. 18 also illustrates
the equivalence between the two finite element models
of Sects. B.2.1 and B.2.2.
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