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Abstract The finite element method has been widely
used to solve different problems in the field of frac-
ture mechanics. In the last two decades, new meth-
ods have been developed to improve the accuracy of
the solution in 2D linear elastic fracture mechanics
problems, such as the extended finite element method
(XFEM) or the phantomnodemethod (PNM). The goal
of thiswork is to quantify the differences between some
numerical approaches: standard finite element method
(FEM), mechanical property degradation, interelemen-
tal crack method with multi-point constraints, XFEM
and PNM. We explain the different techniques anal-
ysed together with their advantages and disadvantages.
We compare these numerical techniques to model frac-
ture using problems of reference with known solutions,
evaluating their behaviour in terms of convergencewith
respect to the element size and accuracy of the stress
intensity factor (SIF), stresses ahead the crack tip and
crack propagation prediction. Some of the new tech-
niques have shown a better accuracy in SIF calculation
or stress fields ahead the crack tip and other lead to high
errors in local results estimations. However, all meth-
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ods reviewed here can predict crack propagation for
the problems of reference of this work, showing good
accuracy in crack orientation prediction.

Keywords Fracture mechanics · Numerical mod-
elling · Finite element modelling · XFEM · Phantom
node method

1 Introduction

From the 50s to the present day, the finite element
method (FEM) has been widely used to solve differ-
ent problems in engineering. As forefather of FEM,
works by Turner et al. (1956) and Argyris and Kelsey
(1954) must be mentioned. The name of finite element
method was coined by Clough in 1960 (Clough 1960)
and since then, a huge number of contributions have
been proposed, making the method accurate and effi-
cient.

The FEM has been also applied to the field of
computational fracture mechanics, solving different
crack geometries and boundary conditions. The results
obtained by FEM predict crack-tip stress and strain
fields, relevant fracture mechanics parameters such as
the stress intensity factors (SIFs) and the critical energy
release rate (G) and also crack propagation paths. This
is why it has been used in a large number of works
to assess the lifetime of a component which is cru-
cial in current damage tolerance design approaches.
On the other hand, it is well known that modelling
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the crack propagation process is a cumbersome task.
Cracks usually deviate as they grow, requiring themod-
ification of the mesh topology during its simulation in
FEM. To ease the process of crack growth modelling,
numerical techniques such as the extended finite ele-
ment method (XFEM) (Moës et al. 1999) or the phan-
tom node method (PNM) (Hansbo and Hansbo 2004)
have been developed during the last two decades. These
methods can model crack propagation without remesh-
ing, which is a remarkable advantage when using the
FE method.

The computation of characterizing LEFM parame-
ters, such as SIFs andG, has been thoroughly treated in
the literature. From the 70’s, there are numerous studies
dealing with the calculation of K and G using FEM.
The works of (Rice and Tracey 1973; Gallagher 1978;
Owen and Fawkes 1983), to name a few, provide a
thorough description of several extraction techniques.
Other works provide a comparison of different calcu-
lation methods of K and G regarding local and global
approaches (Banks-Sills and Sherman 1986; Banks-
Sills 1991; Banks-Sills and Sherman 1992). For exam-
ple, (Bittencourt et al. 1992) compares techniques to
calculate mixed-mode SIFs, such as the displacement
correlation method, the J -integral and the modified
crack-closure integral.

More recently, (Qian et al. 2016) analysed 2D and
3D models to calculate KI in compact tension spec-
imens, curved crack problems and a cracked reactor
pressure vessel using XFEM and FEM. They also used
different numerical field variable and energy release
methods to calculate SIFs, comparing their capabil-
ities (Qian et al. 2016). They claim that XFEM has
advantages when modelling multiple cracks but it
still presents some difficulties for 3D crack problems
regarding oscillations of the solution, so they recom-
mend its use when no other methods are feasible.
Thus, their best resultswith 3Dgeometries are obtained
by means of standard FEM with a refined mesh and
domain integrals.

There are many other recent works regarding the
analysis of crack initiation and propagation on frac-
ture dynamics. For example, (Song et al. 2008), stud-
ied the performance of XFEM, element deletion and
interelemental crackmethod for dynamic fracture prop-
agation. Agwai et al. (2010) compared XFEM, cohe-
sive zonemodels (CZM) and the peridynamic theory to
predict dynamic fracture against experimental observa-
tions. An excellent review of finite element techniques

for crack analysis in LEFM can be found in the book
by Kuna (2013). Other recent approaches have led to
the phase-field method (Francfort and Marigo 1998;
Bourdin et al. 2000), alleviating some problems related
to complex crack topologies that are found in XFEM
and, at the same time, predicting crack initiation. The
formulation of the phase-field method introduces a
smooth transition between the damaged and undam-
aged domains and involves a diffuse crack description
using a phase indicator. These strategies will not be
considered in this work. A comparison of phase-field
and fracture mechanics stress fields can be found in
(Staroselsky et al. 2019).

All the methods used in computational fracture
mechanics have their own advantages and disadvan-
tages. After a conscientious search in the literature, we
only found one work explicitly dealing with a compar-
ison of different computational approaches to model
fracture (Ingraffea 2004). Ingraffea (2004) makes a
thorough review and classification of computational
fracture mechanics approaches for representation of
cracking processes, depending on how the crack is
introduced within the numerical approach. It consists
on a conceptual explanation of each method, together
with a literature review about early usages of each
computational fracture mechanics method. Although
it clearly highlights conceptual pros and cons of each
procedure, there is a lack of a quantitative comparison
of the performance of each method, which we intend
to address in the present work. In particular, we focus
on crack tip stress field reproduction and SIF estima-
tion when using finite elements, under the assump-
tion of linear elastic fracturemechanics (LEFM). Other
enhancements, such as the use of quarter-point isopara-
metric singular elements or the use of hybrid ele-
ments, are not considered in this work. A review on
the performance of singular FE elements can be found
in (Banks-Sills 1991). In addition, crack propagation
models need to consider complex scenarios such as
crack branching and coalescence. Intricate crack pat-
terns can be found in brittle fracture of rocks or prob-
lems under highly non-proportional fatigue loading
(Qian andWang 1996; Bobet and Einstein 1998). Some
of the crack propagation techniques (e.g. smeared crack
approaches or phase-field models) exhibit advantages
in the implementation, although other methods such as
X-FEM require a more in-depth formulation modifica-
tion. However, we consider these scenarios out of the
scope of this study.

123



A comparison between some fracture modelling approaches in 2D LEFM 153

Table 1 Numerical techniques to model fracture analysed in this work and their main features

Numerical technique Explicit/implicit crack
representation

Main advantages Main disadvantages

STD-FEM Explicit Simplicity when the crack path is
known ‘a priori’

Crack on element faces, mesh
dependency

Need for mesh modification when
crack propagation is modelled

MPD Implicit Simplicity when crack propagation
process is modelled (no need for
remeshing)

Mesh dependency

Artificial softening may cause
negative eigenvalues

Stress locking

Change of the initial problem
properties

ICM-MPC Explicit Simplicity when the crack path is
known ‘a priori’

Need of MPC equations in crack
tips and nodes around

Need of mesh modification when
crack propagation process is
modelled

XFEM Explicit No need of remeshing Need of additional DOFs

Crack tip functions Need of enriched elements and
problems with transition
elements

PNM Explicit No need of remeshing
No need of additional DOFs

No crack tip functions
(non-asymptotic stress field in
crack tip)

In this work, different fracture mechanic problems
are compared through numerical models in which the
material decohesion and loss of stiffness resulting from
fracture process are modelled. As mentioned above,
a crack can be simulated through explicit approaches
(either with cracks along element faces, extended finite
element method or phantom node method) or smeared
approaches (modelling the discontinuity by means of
a mechanical property degradation). These numeri-
cal techniques and their abbreviations used henceforth
are: standard FEM (STD-FEM), mechanical property
degradation (MPD), interelemental crack method with
multi-point constraints (ICM-MPC), extended finite
element method (XFEM) and phantom node method
(PNM). Therefore, one of the goals of this work
is to quantify the differences between the classical
approaches (STD-FEM, MPD and ICM-MPC) and the
more recent ones (XFEM and PNM). To achieve this
objective, 2D problems with known analytical solution
are analysed in this work to validate and compare the

numerical methods. The problems are the infinite array
of collinear cracks [(see e.g. (Kanninen and Popelar
1985)] and the Westergaard’s crack problem [(see e.g.
(Gdoutos 1993)]. Furthermore, an experimental frac-
ture test reported in the literature will be numerically
assessed in order to compare the predicted crack paths
calculated by the approaches reviewed in thisworkwith
the experimental crack path.

2 Methods

2.1 Numerical modelling techniques under study

The different techniques under study are summarized in
Table 1, together with their main features, advantages
and disadvantages. Figure 1 shows a sketch visualiz-
ing the essential features of these methods that will be
explained in the following sections.
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Fig. 1 Schemes of the different numerical modelling techniques
analysed in fracture problems. a Standard FEM (STD-FEM).
b Mechanical property degradation of the elements (MPD); c

Interelemental crackmethodwithMPC (ICM-MPC).dExtended
finite element method (XFEM). e Phantom node method (PNM)

2.1.1 Standard FEM (STD-FEM)

In this method, cracks are geometrically modelled as
topological discontinuities, i.e. cracks are introduced
explicitly during the discretization of the domain,
matching the faces of the elements with the crack faces.
If the crack path is known ‘a priori’, a fatigue or quasi-
static crack propagation can be modelled by the sep-
aration of the element faces as the crack grows. This
separation is modelled through the deactivation of the
connectivity at these nodes, as shown in the scheme of
Fig. 1a.

This technique was the first used in fracture mod-
elling by Clough (1962), investigating the effects on
the stresses in a concrete dam due to an internal verti-
cal crack. When the crack path is unknown ‘a priori’,
remeshing techniques are necessary to model the crack
propagation. Saouma and Ingraffea (1981) proposed
an automatic remeshing technique coupled with this
method.

Under the assumption of small scale yielding (SSY),
the stresses can be considered proportional to the
inverse square root of the distance to the crack tip.
The singular behaviour at the crack tip can be repro-
duced in STD-FEM through the use of quarter point
elements (QPE). TheQPEwere introduced byHenshell
and Shaw in 1975 (Henshell and Shaw 1975). They are
quadratic elements in which the midside node is relo-
cated to the L/4-position measured from the crack tip,
being L the element side. It is well known that intro-
ducing QPEs around the crack tip node improves the
accuracy of the FE approximation.

2.1.2 Mechanical property degradation (MPD)

In this method, the crack discontinuity is represented
in a diffuse, smeared way (i.e. implicitly) in contrast to
methodswhere crack face location is explicitly defined.
The stresses are almost zero in all the elements inter-
sected by the crack by means of the degradation of the
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mechanical properties,which is similar to element dele-
tion (the scheme of the technique is shown in Fig. 1b).
The method simulates the progressive loss of stiffness
due to the propagation and coalescence ofmicrocracks,
microvoids, and similar defects, see e.g. (Jirásek 2011).
This technique was apparently first used by (Rashid
1968) to represent a crack in reinforced concrete. In
our work, the smeared crack approach has been imple-
mented by reducing the Young’s modulus of the ele-
ments to 0.1% of the initial value. Thus, in this work
the region of the elements has not been removed, such
as in other works (Song et al. 2008). The principal
disadvantage of the method is that the smeared crack
approach affects to the whole damaged element, thus
the crack is not explicitly defined and the method is
mesh-dependent. It becomes necessary to define such
a refined mesh that allows the proper representation of
the crack. In addition, this implies that the precision of
the crack tip in a 2D problem depends on the element
size used in the model.

Beyond these cons, the simple implementation of
this approachmakes it suitable to be applied to geomet-
rically complicated problems in 3D with a high num-
ber of DOF, where the accuracy of the local results is
not so relevant and a fast solution is required, see e.g.
the application to the fracture simulation of a human
femoral neck (Marco et al. 2018b).

In our work we intend to reproduce fracture con-
ditions, which is equivalent to a total loss of stiffness
through crack faces. Therefore, an abrupt reduction of
stiffness approximately reproduces this condition. The
authors have performed an analysis on a pure mode I
problem, comparing the strain field for the component
in the direction normal to the crack plane ε22. The solu-
tions are compared for an explicit representation of a
crack (STD-FEM technique) and the MPD technique
with elements of reduced stiffness. Figure 2 shows that
the strain field distribution is, in general, very similar
for both techniques, even for a not very refined mesh.

2.1.3 Interelemental crack method with MPC
(ICM-MPC)

In this technique the crack is modelled by the separa-
tion of the elements that contain the crack, by means of
subdividing the elements intersected by the crack and
releasing the connectivity of the elements on both sides
of the fracture. The scheme of the technique is shown
in Fig. 1c, where the connectivity of blue nodes has

been unlinked to simulate the crack opening. A mas-
ter node (red node in Fig. 1c) is necessary to enforce
a crack tip location. Multipoint constraints (MPC) are
defined to interpolate the displacements of the crack
tip node between the displacements of the adjacent
nodes (green nodes in Fig. 1c). One of the disadvan-
tages of this technique is that the crack tip is always
at an element side, unless the crack tip element is sub-
divided into triangular elements. Here, the approach
proposed by Xu and Needleman (1994) is considered,
so that all elements are separated from the beginning
of the simulation. This technique reproduces a realis-
tic discontinuity and an explicit representation of the
crack.

The analysis of the same problem in pure mode I
is shown in Fig. 3, comparing the strain component
normal to the crack plane obtained through standard FE
(STD-FEM) and the ICM-MPC technique, yielding a
similar strain field distribution.

2.1.4 Extended finite element method (XFEM)

TheXFEMmethod (Moës et al. 1999) enables the intro-
duction of crack surfaces that are independent of the
mesh geometry (they do not need to conform to element
sides). Therefore, the mesh topology and the connec-
tivity can be maintained throughout the crack prop-
agation process without remeshing. Although XFEM
is nowadays available in some commercial FE soft-
ware, such as Abaqus/Standard (Hibbitt et al. 2004),
in this work the implementation developed by Giner
et al. (2009) will be used. A user element with mul-
tiple DOF per node is programmed in Abaqus using
a user element subroutine (UEL) to enable the incor-
poration of extended finite elements capabilities. The
method implies DOF enrichment of the nodes belong-
ing to the elements intersected by the crack. Figure 1d
shows a scheme of the method, where different kind
of enrichments are described, depending on the rela-
tive position of the crack nodes. Elements intersected
by the crack are modified by a Heaviside enrichment
that introduces the discontinuity across the crack faces
(H(x) = ±1). In addition, crack tip nodes have
a special enrichment that reproduces the asymptotic
behaviour of LEFM. In this work, a topological enrich-
ment has been used for crack tip enrichment (Giner
et al. 2009), i.e. only a single layer of nodes surrounding
the crack tip are enriched. Nodes with eight additional
DOFs are enriched in the two Cartesian directions with
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Fig. 2 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STAFEM technique)
and a reduced stiffness approach (MPD method) for the elements intersected by the crack

Fig. 3 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STAFEM technique)
and the ICM-MPC method

four crack-tip functions Fα(x) (Belytschko and Black
1999):

[Fα (r, θ), α = 1 − 4]
=

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(1)

where r, θ are local polar co-ordinates defined at the
crack tip. The displacement approximation for crack
modelling in the extended finite element method takes
the form (Moës et al. 1999)

uxfem (x) =
∑
i∈g

Ni (x)ui

+
∑
i∈h

Ni (x) [H (x) − H (xi )]ai

+
∑
i∈k

[
Ni (x)

4∑
α=1

[Fα (x) − Fα (xi )]biα
]

(2)

where Ni (x) is the nodal shape function and ui is the
standard DOF of node i (ui represents the physical
nodal displacement for non-enriched nodes only). g is
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Fig. 4 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STAFEM technique)
and a XFEM model

the set of all nodes in the model, h is the set of nodes of
elements intersected by the crack (except the crack tip
element) and k contains the nodes enriched with crack-
tip functions Fα (x). The extra DOFs introduced in the
approximation are ai and biα .

The intersected elements have discontinuous dis-
placement fields and therefore, these elements must
be subdivided into subdomains in order to carry out
the numerical integration in the area of the element.
The element is subdivided into two quadrilateral sub-
domains when it is intersected by the crack at opposite
faces, or subdivided into triangular subdomains when
contiguous faces are intersected. This subdomain divi-
sion is detailed in Moës et al. (1999).

The analysis of the same problem is shown in Fig. 4,
comparing the strain component normal to the crack
plane obtained through an explicit crack representa-
tion (STD-FEM technique) and the XFEM technique,
obtaining a similar strain field distribution.

2.1.5 Phantom node method (PNM)

The PNM was firstly proposed by Hansbo (Hansbo
and Hansbo 2004) and it is based on nodes duplica-
tion (named phantom nodes) overlapping real nodes
in the numerical model. Thus, the enrichment of the
FE model with additional DOF as in XFEM is not
necessary. The PNM treats discontinuities explicitly,
similarly to XFEM, with straight internal crack seg-
ments. When a crack propagates through an element,

this element is subdivided into subdomains in order to
perform the numerical integration, which can be the
same as used in the XFEM. A scheme of several ele-
ments intersected by a crack with the PNM topology is
shown in Fig. 1e.

In Fig. 1e, the original nodes are represented by cir-
cular markers and the phantom nodes by square mark-
ers. By using phantom nodes on real nodes, elements
can be separated, simulating crack opening, although
only one of the subdomains of each of the duplicated
elements is integrated and taken into account in the
model. At the crack tip element, only connectivity of
the nodes of the side that contains the crack tip keeps
active (nodes 3 and 4 in Fig. 1e). Therefore, the nodes
of the crack tip element are only partially duplicated,
and the crack tip will always be at the element side that
connects the two non-duplicated nodes (these nodes are
not phantom nodes).

The implementation of the PNM has been carried
out through a user element (UEL) subroutine in the
finite element commercial codeAbaqus/Standard. This
methodwas validated and explained in detail in (Marco
et al. 2018a).

The analysis of the same reference problem is shown
in Fig. 5, where the strain component normal to the
crack plane is represented, comparing a standard FE
solution and the PNM technique, leading to similar
strain distributions.
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Fig. 5 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STAFEM technique)
and a PNM model

2.1.6 Relative errors respect to the analytical solution
in mode I problem

In this sectionwe show the contour errormaps of equiv-
alent strains for each technique for a mode I problem.
The equivalent strain and the relative error are com-
puted as follows:

εeq = 2

3

√
3(ε2xx + ε2yy)

2
+ 3(γ 2

xy)

4
(3.1)

where:

εxx = 2

3
εxx − 1

3
εyy (3.2)

εyy = −1

3
εxx + 2

3
εyy (3.3)

γxy = 2εxy (3.4)

relative error = |εexact − εnumerical |
|εexact | · 100% (4)

Figure 6 shows the relative error (Eq. 4) between
analytical results and each numerical technique. As

shown in Figs. 2, 3, 4 and 5, the strain field far and ahead
the crack tip is similar for each technique, showing a
typical strain field in fracture problems under mode I
conditions.

Figure 6 shows how XFEM technique is the most
accurate solution to this example problem due to the
incorporation of crack enrichment functions. In addi-
tion, the standard solution STD-FEM and the PNM
show a very similar error distribution, since their for-
mulation is essentially equivalent, as the PNM sim-
ply includes the crack discontinuity with no crack
tip enrichment, as explained above. Finally, the MPD
presents large errors near the crack faces due to the
abrupt discretization of the crack in this zone.

2.2 Application to reference problems with known
solution

Two different analytical problems with known analyt-
ical solution from LEFM have been used to compare
the capabilities of each numericalmodelling technique.
The SIFs and the stresses ahead the crack tip will be
compared with the analytical solution. The SIFs are
calculated through the J -integral (in pure mode I) or
through the interaction integral (in plane mixed mode
behaviour). A sketch of the problems and their respec-
tive numerical models is shown in Fig. 7. In this figure,
the shaded area represents the domain of the numeri-
cal model. Firstly, an infinite array of collinear cracks
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Fig. 6 Comparison between FE models and analytical solutions for a mode I problem. Relative error in equivalent strain

under tension in pure mode I is modelled. In addition,
a finite element mesh sensitivity analysis has been car-
ried out to analyse the influence of the element size
around the crack tip on the solution. Secondly, theWest-
ergaard’s crack problem under mixed mode loading is
assessed.

2.2.1 Infinite array of collinear cracks in tension

The exact value of KI for this problem is given by the
expression (Kanninen and Popelar 1985):

KI =
√

2b

πa
tan

(πa

2b

)
σ
√

πa (5)

where the different variables are defined in the sketch of
Fig. 7a. In this problemwe consider a = 1 and b = 2a,
therefore, the model dimensions are 12a in y-axis and
2a in x-axis. σ value is defined as σ = 1/2 (units of
pressure), in order to yield KI = 1. The Young’s mod-
ulus is E = 104 (units of pressure) and the Poisson’s
ratio is ν = 0.33. Plane stress conditions are consid-
ered, using quadrilateral finite elements with full inte-
gration (code CPS4 in Abaqus). Boundary conditions

simulate the periodic symmetry problem so that lateral
nodes are constrained in the X -direction, being thus
able to model an infinite array with a finite domain.
The SIF is calculated using the J -integral, applied to a
domain surrounding the crack tip.

A sensitivity analysis has been carried out in order
to study the convergence of the results as we refine
the mesh and to stablish a proper mesh size to compare
the different techniques tomodel fracture. Four meshes
have been used for each technique, with element sizes
equal to: a/2, a/4, a/8 and a/16. We define the proper
element size as the one that leads to a variation of less
than 2% on the relative error in KI calculation when
successive meshes are analysed. In this problem, this
condition is reached for an element size equal to a/8.
The final mesh used in this problem is shown in Fig. 7b.

2.2.2 Westergaard’s crack problem

Westergaards’s crack problem has been used to com-
pare the accuracy of the different methods under mixed
mode loading. The analysed problem is an infinite plate
with a crack of finite length. This problem has also
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Fig. 7 Problems analysed
in this work. a Infinite array
of collinear cracks in
tension; b σ22 contour plot
for an infinite array of
collinear cracks with
ICM-MPC method; c
Westergaard’s crack
problem; d von Mises
contour plot in
Westergaard’s crack
problem with ICM-MPC
method
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been used to validate different numerical approaches,
such as XFEM (Giner et al. 2009) or PNM (Marco
et al. 2018a). The crack length is 2a, and the domain is
biaxially loaded with remote uniform tractions. Anti-
symmetry conditions are applied along y-axis. Exact
solutions for the SIFs in this problem are:

KI,ex = σ
√

πa (6)

and

KII,ex = τ
√

πa (7)

Non-uniform tractions must be applied to the finite
boundaries of the numerical model in order to repro-
duce the behaviour of an infinite plate with remote uni-
form tractions. To do so,we use the explicit expressions
for the stress field in terms of spatial coordinates analyt-
ically derived in (Giner et al. 2005). Then, it is possible
to compute equivalent nodal forces for the finite portion
of the domain. For biaxial loading with remote uniform
traction σ , the stress field at a point (xy) associated with

mode I loading is:

σ I
xx = σ√|t |

[(
x cos

Φ

2
− y sin

Φ

2

)

+ y
a2

|t |2
(
m sin

Φ

2
− n cos

Φ

2

)]
(8a)

σ I
yy = σ√|t |

[(
x cos

Φ

2
− y sin

Φ

2

)

− y
a2

|t |2
(
m sin

Φ

2
− n cos

Φ

2

)]
(8b)

σ I
xy = y

a2σ

|t |2√|t |
(
m cos

Φ

2
+ n sin

Φ

2

)
(8c)

For remote uniform traction τ (mode II), the stress
field at points (x ,y) belonging to the half plane x ≥ 0
are given by:

σ II
xx = τ√|t |

[
2

(
y cos

Φ

2
+ x sin

Φ

2

)

− y
a2

|t |2
(
m cos

Φ

2
+ n sin

Φ

2

)]
(9a)
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σ II
yy = y

a2τ

|t |2√|t |
(
m cos

Φ

2
+ n sin

Φ

2

)
(9b)

σ II
xy = τ√|t |

[(
x cos

Φ

2
− y sin

Φ

2

)

+ y
a2

|t |2
(
m sin

Φ

2
− n cos

Φ

2

)]
(9c)

where m, n, |t | and Φ are real-valued functions of x
and y coordinates, defined as

m = Ret = x2 − y2 − a2 (10)

n = Imt = 2xy (11)

|t | = |m + in| =
√
m2 + n2 (12)

Φ = argt̄ = arg(m − in) with Φ ∈ [−π,π] (13)

In this problem, crack length is a =1 and the finite
domain dimensions are b = 2a, c = a. Nodal equiv-
alent forces applied to the model are those that yield
KI,ex = KII,ex = 1, so that σ = τ = 1/

√
πa . The

Young’s modulus is E = 104 (units of pressure), the
Poisson’s ratio is ν = 0.33 and plane stress conditions
are assumed.

The expressions above let us to calculate the exact
value of the stress components ahead the crack tip.
Therefore, the stress components σxx, σyy and σxy esti-
mated numerically will be compared to their exact val-
ues for different directions ahead the crack tip (Φ =
0◦, 45◦ and 90◦).

Amesh sensitivity analysis has also been performed
for the Westergaard’s crack problem, using element
sizes equal to: a/4, a/8, a/16 and a/32. KI and KII

calculation has been used to set an appropriate element
size. We have considered a sufficiently refined mesh
when the relative error between subsequent element
sizes is about 2%. As a result, the element size that sat-
isfies this condition is a/32. This final mesh is shown
in Fig. 7d.

2.3 Crack propagation for fracture tests

Two crack propagation evolutions of tests have been
numericallymodelled in order to compare the predicted
crack path of each technique. The problem schemes are
shown in Fig. 8, with dimensions given inmm. The first
problem (Fig. 8a) was studied initially by Bittencourt
et al. in (Bittencourt et al. 1996) and has been used
in several works to validate crack propagation mod-
els with new simulation strategies (Bittencourt et al.
1996) or new mesh methodologies (Ooi et al. 2015).

Fig. 8a shows a sketch of the problem with the spec-
imen dimensions. The second problem (Fig. 8b) was
developed specifically for thiswork, to validate the con-
clusions obtained from this section.

The first problem (Fig. 8a) consists of a cracked
beam subjected to three-point bending test. The beam
has three holes arranged vertically that have an influ-
ence on the trajectory of the initial crack, marked in red
in Fig 8a. The load is P = 4.5 kN and the beam ismade
of polymethylacrylate with the following mechani-
cal properties: E = 29 · 103 MPa and ν = 0.3. A
plane strain formulation and a linear elastic material
behaviour are assumed.

In the second problem (Fig. 8b) an aluminium alloy
specimenwas axially tested until fracture. Thematerial
is the aluminium alloy 7075, with E = 71.7 · 103 MPa
and ν = 0.3. The stress applied for the numerical mod-
els is P = 100 MPa. Plane strain formulation and lin-
ear elastic material have been also considered in this
problem.

The application of explicit crack modelling tech-
niques in crack propagation problems requires the use
of crack tracking algorithms without exception (Jäger
et al. 2008). Several strategies can be used for crack
tracking: fixed tracking (Jäger et al. 2008), local track-
ing (Areias and Belytschko 2005), non-local tracking
(Moës and Gravouil 2002) and global tracking (Oliver
et al. 2002). In our implementations, crack modelling
techniques are coupled with level sets based on signed-
distance functions to the crack face and crack tip (Sto-
larska et al. 2001; Duflot 2007) in order to perform the
crack tracking. For all the crack modelling techniques,
the crack path is defined by linear segments. In each
crack propagation, level set functions are calculated in
order to perform the node enrichment in X-FEM, the
node duplication in PNM or the mechanical property
degradation of elements intersected by the crack path
in the MPD.

Crack propagations in the numerical models have
been performed considering crack increments of about
Δa = 0.25 mm each. Increments are slightly different
for each method, since some of them only simulate the
crack advance along the entire element. Specifically,
only XFEM and STD-FEM combined with remeshing
are capable to model crack tips inside of an element.
The crack orientation for each crack growth increment
has been predicted according to maximum tangential
stress (MTS) criterion (Eq. 14):
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Fig. 8 Crack propagation
problems. a A cracked
beam with three holes. The
red solid line represents the
initial crack. The red dashed
line is the experimental path
obtained by Bittencourt
et al. (1996). b
Experimental test developed
for this work. The red
dashed line is the
experimental fracture path.
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The experimental fracture paths have been digital-
ized to determine its coordinates and compared with
the crack paths predicted through the numerical tech-
niques analysed in this work. Only STD-FEM tech-
nique has not been used in this section, since propaga-
tion along crack faces of a given mesh cannot suitably
reproduce the crack path and it would need of remesh-
ing. Both problems have been modelled using struc-
tured and unstructured meshes in order to analyse the
influence of the mesh discretization on the predicted
crack paths.

3 Results and discussion

3.1 Convergence analysis for an infinite array of
collinear cracks

Figure 9 shows the relative error in KI calculation for
different element sizes for each technique analysed in

this work. In this section we represent the error with
logarithmic axes (Fig. 9a) and also linear vertical axis
(Fig. 9b). This is due to the relative errors of MPD
technique, which are negative in contrast to the other
techniques.

With the exception of MPD, all techniques show a
clear convergence with mesh refinement (see Fig. 9a).
STD-FEM, ICM-MPC and PNM present very simi-
lar error values between them, following an analogous
trend. MPD shows the largest relative error and the
values are negative for all meshes (i.e., MPD overesti-
mates KI), in contrast to the other techniques. Despite
this fact, MPD shows a relatively good behaviour in
this problem. Regarding XFEM, it shows the least rel-
ative error in KI for each element size (see Fig. 9a)
due to the incorporation of the crack tip enrichment
functions in the solution space, and hence it is better
suited to the reproduction of the singular behaviour.We
have also included the analysis of XFEM without no
tip enrichment. This is achieved by simply constraining
the extra degrees of freedom for the crack tip elements
in our in-house implementation. As a result, it is worth
mentioning that the error increases to the level of the
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Fig. 9 Convergence analysis for an infinite array of collinear cracks. a Relative error in KI (in %) with logarithmic axes; b Relative
error in KI (in %) with linear vertical axis

Table 2 Relative errors in KI with different numerical tech-
niques for an infinite array of collinear cracks

Technique KI (Pa · m1/2) Relative error (%)

STD-FEM 0.986 1.4

MPD 1.019 1.9

ICM-MPC 0.984 1.6

XFEM 0.996 0.4

XFEM (with no crack
tip enrichment)

0.984 1.6

PNM 0.983 1.7

Exact solution obtained from Eq. (5): KI = 1.0 Pa · m1/2

rest of methods presented in Fig. 9a when no crack tip
enrichment is included.

3.2 KI for an infinite array of collinear cracks

Values of KI have been computed for each modelling
technique and compared with the exact value obtained
through Eq. (5). The estimations and relative errors
with respect to the analytical solution are shown in
Table 2.

Results presented in Table 2 show that all modelling
techniques lead to relative errors less than 2% for the
estimation of KI. As expected, due to the smeared crack
approach, MPD technique shows the highest relative
error in KI calculation. Therefore, if high accuracy is
required, the MPD technique should be avoided. On

the other hand, its simplicity regarding implementa-
tion makes it suitable to be used in geometrically com-
plicated problems, with a high number of DOFs or to
model diffuse damage, representing the initiation of
micro cracks prior to complete fracture.

STD-FEM, ICM-MPC, PNM show a fairly good
accuracy in KI estimation. ICM-MPC and PNM have
similar errors, since both techniques are based on ele-
ment subdivision. In the ICM-MPC technique the ele-
ment is explicitly subdivided, while in PNM the ele-
ment subdivision is carried out through integration of
the corresponding areas of the elements. In the stan-
dard FE (STD-FEM) crack faces are modelled explic-
itly, yielding an error slightly less than for ICM-MPC
and PNM.

Finally, XFEM shows the highest accuracy in this
problem,with a relative error equal to 0.4%with respect
to the analytical solution. This is because of the crack-
tip functions implemented in enriched elements sur-
rounding the crack tip, which allow reproducing the
singularity in terms of the asymptotic behaviour in the
crack tip vicinity. When crack tip functions are not
included in the approximation space, the results are
similar to STD-FEM, ICM-MPC or PNM.

3.3 Convergence analysis for Westergaard’s crack
problem

Figure 10 shows the relative error in KI (Fig. 10a,
b) and KII (Fig. 10c, d) calculation for all the tech-
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Fig. 10 Convergence analysis forWestergaard’s crack problem.
a Relative error in KI (in %) with logarithmic axes. b Relative
error in KI (in %) with linear vertical axis. c Relative error in KII

(in %) with logarithmic axes; d Relative error in KII (in %) with
linear vertical axis

niques analysed in this work using different element
sizes. The error is both represented with logarithmic
scale (Fig. 10a, c) and linear scale for the vertical axis
(Fig. 10b, d). This is caused by the negative and positive
relative errors of the MPD technique, unlike the other
methods. Again, we also include the XFEM technique
without crack tip enrichment.

All techniques have shown a clear convergence with
mesh refinement except MPD, which changes from
negative to positive errors when decreasing the mesh
size. STD-FEM, ICM-MPC and PNM present very
similar error values between them, with approximately
the same convergence rate. Again, XFEM shows the

smallest relative error in KI and KII for each element
size due to the crack tip enrichment functions.

3.4 KI, KII for Westergaard’s crack problem

In this section the different numerical techniques have
been applied to solve theWestergaard’s crack problem.
Values of the SIFs KI and KII in plane mixed mode
have been estimated using each technique and com-
pared with the exact values obtained through Eqs. (6
and 7). Relative errors with respect to the exact solu-
tion are shown in Table 3. Since this is a mixed mode
problem, the propagation angle is not zero and the rel-
ative error in the propagation angle is also shown in
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Table 3 Relative errors in KI, KII and propagation angle for the Westergaard’s problem solved with each numerical technique

Technique KI (Pa · m1/2) KI relative error (%) KII (Pa · m1/2) KII relative error (%) Relative error
in propagation
angle (%)

STD-FEM 0.979 2.10 0.991 0.90 − 0.35

MPD 0.978 2.19 1.038 − 3.84 − 1.68

ICM-MPC 0.972 2.84 0.995 0.48 − 0.68

XFEM 0.996 0.40 0.998 0.19 − 0.06

XFEM (with no crack tip
enrichment)

0.974 2.58 0.994 0.63 − 0.56

PNM 0.981 1.94 0.991 0.94 − 0.29

Exact values obtained from Eqs. (6 and 7): KI = KII = 1.0 MPa · m1/2, θex,MTS = 53.13◦

Table 3. The value of reference is given by the MTS
criterion, Eq. (14), after substituting the exact SIFs
(θex,MTS = 53.13◦).

Results in Table 3 are in line with those obtained for
an infinite array of collinear cracks. There are differ-
ences between the MPD technique and the rest of the
methods: the MPD technique yields a larger error than
the rest of the techniques in KII, and it is higher than
the one obtained for KI, contrary to the other meth-
ods. STD-FEM, ICM-MPC, XFEM and PNM present
always relative errors less than 3%, thus providing good
accuracy in the SIFs calculation under mixed mode.
XFEM provides again the best accuracy in the SIFs
calculation due to the crack tip enrichment functions.
The deactivation of the crack tip functions in XFEM
leads to results very similar to the ones given by STD-
FEM or ICM-MPC.

Wenote in passing the differences foundbetween the
relative errors in KI and KII regardless the technique
used. For all methods except MPD, the relative error in
KI is greater than in KII, being even more than twice
for STD-FEM, ICM-MPC, XFEM and PNM. These
variations in the error in KI and KII were also observed
by Giner et al. (2009) and deserve further study.

Regarding the angle estimation, it is very interesting
to note that the relative errors are minimal, because
the angle estimation depends on the ratio KII/KI and
the errors in KI and KII tend to compensate. For the
predicted angle, all techniques show a relative error less
than 1%, except for theMPD technique, which presents
a greater error, about 3%. Note that even MPD yields
an acceptable error, especially taking into account the
simplicity of the method, due to the mentioned error
compensation between KI and KII.

3.5 Stresses ahead the crack tip (σxx, σyy and τxy)

The stresses σxx, σyy and τxy ahead the crack tip for
each modelling technique have been analysed for the
Westergaard’s problem, since the exact analytical stress
field is available (Eqs. 8 and 9). Stresses have been
plotted for different angles ahead the crack tip (Φ =
0◦, 45◦ and 90◦), although in this section only values
forΦ = 0◦ are shown in Fig. 11,where d is the distance
to the crack tip. Values of stresses are normalized with
respect to the applied remote stress. Results for Φ =
45◦ and 90◦ are plotted in Fig. 13. In addition, colour
error maps are shown for each technique in Fig. 12. In
these figures, the vonMises stress is compared with the
analytical solution.

Results show a good accuracy in stresses ahead the
crack tip for methods based on an explicit crack repre-
sentation, especially at a distance greater than 10% of
the half crack size a. As expected, MPD technique is
less accurate, especially for the τxy stress component.

The singular asymptotic behaviour for σyy and Φ =
0◦ is well reproduced with all the methods. For this
stress component, numerical methods show a good
accuracy even for distances very close to the crack tip.

For the σxx component, the ICM-MPC technique
yields the best asymptotic behaviour. STD-FEM shows
also good accuracy for distances close to the crack tip,
even better than XFEM, despite crack tip asymptotic
functions of the method. Predictions for τxy present
similar error between the different techniques. The
MPD shows the highest error, probably due to signifi-
cant variations in the first elements ahead the crack tip
due to the smeared crack representation.
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Fig. 11 Comparison of stress components for Westergaard’s crack problem ahead the crack tip with different techniques for Φ = 0◦.
a σxx; b σyy; c τxx

Error maps (Fig. 12) reinforce the conclusions
obtained from the stress components analysis. MPD
technique is the less accurate method with large errors
surrounding the crack tip and XFEM shows the lowest
relative error in the area around the crack tip due to the
crack tip enrichment functions.

Results along radiuses Φ = 45◦, 90◦ are shown in
Fig. 13 and follow similar trends as for the caseΦ = 0◦.
In general, the predictions are reasonably good and tend
to give better results for cases where stress intensity is
higher, e.g. τxy for the case Φ = 45◦. Again, the MPD
technique is the least accurate.

3.6 Crack propagation in real experiments

Figure 14 shows the structured andunstructuredmeshes
and the numerical crack paths predicted by each numer-
ical technique. The numerical path predictions are com-
pared to the one obtained experimentally reported in
(Bittencourt et al. 1996). As mentioned previously, the
STD-FEM technique is not used in this section, since
it would involve continuous remeshing at each crack
increment.

Numerical predictions are in good agreement with
the experimental path (Bittencourt et al. 1996) for all
techniques, since crack orientation using the MTS cri-
terion depends on the ratio KII/KI and the errors in KI

and KII tend to compensate for each method. XFEM
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Fig. 12 Contour map of relative errors in vonMises stress respect the analytical solution inWestergaard’s crack problem.White dashed
line shows the location of the crack
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Fig. 14 Crack path
numerical predictions for a
fracture test reported in
(Bittencourt et al. 1996) and
comparison with the
experimental crack path. a
Structured mesh used in the
model. b Results obtained
with the structured mesh. c
Unstructured mesh used in
the model. d Results
obtained with the
unstructured mesh
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shows the best accuracy, with a path prediction very
similar to the experimental crack path. The rest of tech-
niques MPD, ICM-MPC and PNM show in general
good accuracy, and the path prediction can be regarded
as sufficiently good for practical purposes, even for the
least accurate method MPD.

Figure 15 shows the structured and unstructured
meshes and the numerical predictions for an experi-
mental problem developed by the authors. Again, ICM-
MPC, PNM and XFEM show in general good accu-
racy in crack path prediction, even for unstructured
meshes. In this problem,MPD shows larger differences
between its crack path prediction and the experimental
one, although the first increments are realistic.

The use of unstructuredmeshes affects mainly to the
MPD technique. In the problem of Fig. 14, the MPD
approach is the only one that slightly varies the trajec-
tory of the path when an unstructured mesh is used.
However, crack path predictions by the rest of tech-
niques are not significantly influenced by the mesh pat-
tern. Similarly, in Fig. 15 the trajectory is slightly influ-
enced by the unstructured mesh, increasing its error
respect experimental results. It is important to remark
that a small element size is used in these crack propaga-
tion problems, providing good crack path predictions
with all the techniques with the exception of the MPD
approach.
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Fig. 15 Crack path
numerical predictions for a
fracture test developed for
this work and comparison
with the experimental crack
path. a Structured mesh
used in the model. b Results
obtained with the structured
mesh. c Unstructured mesh
used in the model. d Results
obtained with the
unstructured mesh

4 Conclusions

In this work, a comparison between different numer-
ical crack modelling techniques has been performed,
analysing their behaviour for two bidimensional prob-
lems of the LEFM with known solution. Pros and cons
of each technique as well as their main features have
been reviewed in the document. Problems have been
modelled using the commercial codeAbaqus and user’s
subrourtines, assessing the performance of these tech-
niques in terms of mesh sensitivity, SIF calculation,
stresses ahead the crack tip and crack path prediction.

The convergence of the solution when the element
size is reduced has been analysed for a pure mode I
problem, leading to good convergences for all tech-

niques. The XFEM method has proven to be the most
accurate, because of the crack tip enrichment functions
of its formulation.

The convergence of the methods under mixed mode
loading has been analysed using the Westergaard’s
crack problem, leading to similar results to those
obtained for pure mode I. For this problem, relative
errors in the computation of KI and KII are slightly
high for some of themethods, especially theMPD tech-
nique. However, these errors are less evident in terms
of the crack propagation angle. This is due to the angle
dependence on the ratio KII/KI, with errors in KI and
KII that tend to compensate for each method.

The in-plane components of stresses ahead the crack
tip have been compared with analytical solutions for
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three different angular directions (radiuses from the
crack tip). In addition, error maps have been included
for vonMises stress, comparing the methods presented
in this work with analytical results. In general, most
methods show results similar to the analytical solution
of reference. The XFEM yields the best results thanks
to the enrichment functions, beingMPD the least accu-
rate.

Despite the very different approaches and formu-
lations of each method, all of them can predict crack
propagation paths with a reasonable accuracy for prac-
tical purposes. This has been verified comparing the
predicted paths with an experimental path reported
in the literature and an experiment developed in our
laboratory for this work. Indeed, even the least accu-
rate method MPD leads to reasonable good crack path
estimations for the first of the problems because the
ratio KII/KI used for computing the orientation angle
is still preserved. The use of structured and unstruc-
tured meshes has been checked, concluding that if a
small enough element size is used the crack path is not
affected by this fact, except for the MPD technique.

Therefore, simple techniques such as MPD can be
used to estimate crack propagation paths in complex
geometries, branching or coalescence, since its imple-
mentation is direct and does not need remeshing, nodal
enrichment or topological variations. However, when
accurate values of SIFs or local stresses are sought,
XFEM is especially useful thanks to the enrichment
functions of its formulation, which allow to reproduce
the asymptotic LEFM fields close to the crack tip.
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