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Abstract Three-dimensional crack growth initiation
is examined under the assumption that the crack front
remains smooth. Two important modeling issues, spe-
cific to three-dimensional rather than two-dimensional
cracks, are addressed. First, it is established that, at
each point along the crack front, the velocity and con-
figurational force are two-dimensional vectors, lying
in the local normal plane. This allows one to gen-
eralize any two-dimensional crack growth criterion
to three dimensions. Second, a simple mesoscopic
model to account for along-the-front non-locality is
proposed. This model eliminates pathological growth
patterns ubiquitous to basic models applied to three-
dimensional cracks. Further, the model is straightfor-
ward to use as it relies on standard fracture properties
only.

Keywords Three-dimensional crack growth ·
Configurational mechanics · Line tension · Line
bending · Non-locality

1 Introduction

Themost basic setting of linear elastic fracturemechan-
ics involves a crack under pure Mode I loading con-
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ditions. Such a crack initiates its growth once the
stress intensity factor KI reaches the fracture tough-
ness KIC . This setting has been used as the blueprint for
extending fracture mechanics to cracks under mixed-
mode loading conditions. The most studied extension
involves a crack under combined Mode I and II plane
strain loading conditions; see Mahajan and Ravichan-
dar (1989), Xu et al. (1994) and Gurtin and Podio-
Guidugli (1996) for references. Under such conditions,
one is concerned with crack kinking and curving, both
modeled using variances of the growth initiation cri-
terion KI = KIC , although the former is associated
with microcrack nucleation and the latter with main
crack growth (Hull 1999). The situation becomes sig-
nificantly more complicated in the presence of anti-
plane shear, as the setting becomes essentially three-
dimensional. Furthermore, since the pioneering exper-
iments of Sommer (1969) and Knauss (1970), it has
been accepted that, under loading conditions involv-
ing anti-plane shear, the crack front may fragment; see
Lin et al. (2010) for references. The fragmentation is
a result of nucleation of microcracks along the main
crack front, which subsequently may grow or generate
the next generation of microcracks.

This paper is concerned with growth initiation of
three-dimensional cracks under general mixed-mode
loading conditions. The essential restriction adopted
here is that the crack front is a smooth curve, and
it remains smooth as the crack grows. This restric-
tion rules out not only cracks with fragmented fronts
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Fig. 1 Pathological pattern
of crack growth: a circular
crack subjected to a
non-uniform KI
distribution; b local
pathological growth pattern;
c non-local smooth growth
pattern

and other nucleation events, but also surface-breaking
cracks, for which the smoothness breaks down at
the surface. The smoothness restriction is essential
for three-dimensional cracks, as it is the underlying
assumption of asymptotic analysis leading to the K -
fields (Rice 1984).

Existing criteria for growth initiation of three-
dimensional cracks are not entirely satisfactory. For
example, consider the criterion based on extending the
two-dimensional version of the local symmetry princi-
ple (Goldstein and Salganik 1974) to three dimensions
(Xu et al. 1994; Movchan et al. 1998). In the standard
notation, this criterion states that growth is initiated
when the energy release rate

G = 1 − ν2

E
K 2

I + 1 + ν

E
K 2

I I I = Gc

(
KI I I

KI

)
, (1)

where Gc is the critical energy release rate, depen-
dent on the KI I I /KI ratio. While the logic behind
this equation is transparent, it is unclear how assump-
tions adopted in Xu et al. (1994) and Movchan et al.
(1998) for semi-infinite cracks can be extended to
other three-dimensional cracks. Further, the KI I I /KI

ratio must be somehow restricted to eliminate nucle-
ation/fragmentation events.

Another problematic aspect of (1) can be exposed
by considering a circular crack subjected to pure Mode
I loading conditions with varying KI along the front
(Fig. 1a). If the load is such that KI < KIC every-
where except for one point, where KI = KIC , then,
according to (1), the crack must advance only at that
point and nowhere else. This results in a pathologi-
cal crack front shape involving a needle (Fig. 1b). To
remedy this pathology, one should insist that the condi-
tion KI = KIC should be non-local, so that it results in
growth in a neighborhood of the critical point (Fig. 1c).
This issue has been addressed in Hodgdon and Sethna
(1993), but the model there involves an additional non-
standard fracture parameter and a kinematics assump-
tion that precludes curving.

In this paper, we rely on the vector-valued configura-
tional force J (Eshelby 1951; Knowles and Sternberg
1972) rather than the stress intensity factors. To this
end, we establish that, at each point along the crack
front, J is confined to the plane normal to the crack
front at that point. This result allows us to generalize
any of the many crack growth criteria for mixed-mode
plane strain conditions to three dimensions.

The proposed model of along-the-front non-locality
combines elements of configurationalmechanics, direct
theory of rods, and differential geometry. The con-
figurational mechanics component is influenced by
Gurtin’s vision 2000, in which configurational forces
are regarded as primitive quantities. However, our
approach is very different from that in Gurtin (2000)
and Gurtin and Podio-Guidugli (1996), as we regard
the crack front as a configurational rod subjected to
an external distributed force J. Accordingly, the pro-
posed model is based on introducing appropriate rates
of deformation, conjugate internal forces, and consti-
tutive equations, similar to the way its done in direct
theory of rods (Antman 2005). Thus, in our approach,
the significance of Eshelby’s stress is reduced to cal-
culating J, whereas in Gurtin (2000) and Gurtin and
Podio-Guidugli (1996) Eshelby’s stress plays a cen-
tral role. Our development relies significantly on ele-
mentary differential geometry, and we refer to Pressley
(2007) as an excellent source for background material.

The remainder of this paper is structured as fol-
lows. In Sect. 2, we consider the classical local set-
ting, and establish that at any point along the crack
front both v and J can be confined to the local plane
normal to the crack front. Then we exploit this result
for extending two-dimensional crack growth initiation
criteria to three dimensions. In Sect. 3, we develop a
model for quantifying along-the-front non-locality for
circular cracks. In Sect. 4, we show how this model
can be extended to general three-dimensional cracks.
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Local and non-local modeling aspects 213

Fig. 2 Three-dimensional crack and it attributes: a the disconti-
nuity surface �, crack front �, and the tangent t at x = γ (S). b
Attributes within the normal planeN (S) at x = γ (S); the vector
t = −e3, perpendicular to the plane, is not shown

In Sect. 5, we discuss key results of our work and pos-
sible extensions.

2 Local analysis

In this section, we focus on classical local relationships
between the crack front velocity v and configurational
force J. We demonstrate that, locally, both vectors are
two-dimensional, as they can be confined to the local
normal plane. This result allows us to generalize any
two-dimensional crack growth criterion to three dimen-
sions.

2.1 Velocities and forces as local two-dimensional
vectors

Consider a three-dimensional linear elastic isotropic
body containing an internal crack modeled as an open
discontinuity surface� with the boundary (crack front)
� (Fig. 2a). We assume that � is a smooth closed non-
self-intersecting curvewith a continuously varying tan-
gent. Thismeans that the points along� can be parame-
terized by a continuously differentiable function of the
arc length: x = γ (S). For this parametrization, the unit
tangent vector is calculated as

t(S) = dγ (S)

dS
= γ ′(S). (2)

The plane containing x = γ (S) and perpendicular to
t(S) is denoted by N (S) and referred to as the normal
plane.

In this paper, we are interested in basic crack growth,
and therefore assume that � evolves solely due to the
motion of �, which remains smooth closed and non-
self-intersecting. Thus crack growth over an infinitesi-
mal time interval �� between times � and � + ��

can be expressed in terms of the instantaneous velocity
field v(S):

x�+�� = x� + v(S)��. (3)

The key feature of this relation is that one can restrict
v(S) to the normal plane, as the tangential velocity
component merely changes the parameterization of the
crack front but it does not change its shape. This asser-
tion parallels that for evolving surfaces, whose instan-
taneous motion can be prescribed without specifying
the tangential velocity components.

Let us demonstrate that J is also confined to the nor-
mal plane. To this end, we introduce a local coordinate
system (ξ1, ξ2, ξ3)with the origin at x = γ (S), and the
unit basis vector e3(S) = −t(S). ThusN (S) is spanned
by the basis unit vectors e1(S) and e2(S). Let us define
the local crack curve C(S) as the intersection between
N (S) and �. Then the vector e1(S) is defined as the
tangent vector of C(S) at x = γ (S); this vector points
in the direction of crack growth as opposed to heal-
ing. Finally, the vector e2(S) is defined so that the local
basis vectors are orthonormal: e2(S) = e3(S) × e1(S)

(Fig. 2b). In this coordinate system, the distributed
configurational force is calculated via (configurational)
Eshelby’s stress tensor

Ei j = Wδi j − σ jkuk,i . (4)

here we regard the deformation as infinitesimal, and
denote the strain energy density byW , the stress tensor
by σ jk , and the displacement vector by uk . The config-
urational traction vector is naturally defined as

Ti = Ei j n j ,

so that now the force distributed along the crack front
can be expressed as (Shih et al. 1986)

Ji (S) =
∫

ω(S)

Tidl =
∫

ω(S)

(
niW − n jσ jkuk,i

)
dl,

(5)

whereω(S) ∈ N (S) is an infinitesimal circular contour
centered at x = γ (S), and the unit normal ni is defined
with respect to this contour. Here we do not empha-
size path-independence of the integral (Rice 1968;
Cherepanov 1967; Knowles and Sternberg 1972), as
it is neither necessary not useful for our purposes.
Let us calculate J(S) using the K -fields:

J1(S) = 1 − ν2

E

[
K 2

I (S) + K 2
I I (S)

]
+ 1 + ν

E
K 2

I I I (S)

(6)
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J2(S) = −2
1 − ν2

E
KI (S)KI I (S), (7)

J3(S) = 0. (8)

The first equation here is the well-known Irwin’s for-
mula. The second expression is not widely known, but
it is not new (Eshelby 1975; Hakim and Karma 2009).
The third expression is the most important here as it
implies that J is confined to the local normal plane.

2.2 Generalization of two-dimensional criteria

Typically, growth of two-dimensional cracks is mod-
eled as a sequence of initiation events, each followed
by incremental crack growth by an amount �a. For
example, for the local symmetry principle (Goldstein
andSalganik 1974),�a is chosen at an angle�β so that
KI I = 0 at the new tip. This process has been quan-
tified using asymptotic analysis (Cotterell and Rice
1980), which provides the relationship

�β = � (φ) , (9)

where � is a dimensionless function and

φ := − tan−1
(
KI I

KI

)
. (10)

In general, the function � is criterion specific, but the
functional form in (9) always holds.

Equation (9) can be extended to three dimensions
by retaining � and redefining �β and φ. Since v can
be confined to the local normal plane, �β is simply
interpreted as the angle within the normal plane. Next,
we observe that if KI I I = 0, (6) and (7) imply that the
mode-mixity angle can be defined as

φ = 1

2
sin−1 J2

J1
. (11)

Now we assume that (11) holds for KI I I �= 0, and thus
extend (9) to three dimensions.

3 Non-local analysis

In this section, we develop a non-local model for crack
growth initiation by considering a circular crack of
radius a loaded such that KI (S) varies along the front,
whereas KI I (S) = KI I I (S) = 0 (Fig. 1a). According
to (6) and (7), for such a loading, the only non-zero
configurational force is

J1(S) = 1 − ν2

E
K 2

I (S).

In the absence of J2, the crack remains planar, so that
v2(S) = 0, and the only non-trivial velocity field is
v1(S). To simplify the notation, in this section, we refer
to J1 and v1 as J and v, respectively.

The essential aspect of the proposed model is that
the crack front is treated as a configurational mechani-
cal object rather than just a geometrical one, as we did
in the previous section. This difference is manifested in
endowing the crack front with deformation rates, con-
jugate internal configurational forces, and constitutive
equations. This allows us to treat the crack front as a
configurational rod subjected to external distributed
force J (S). In this setting, non-locality arises natu-
rally, as it does in conventional mechanical rods, in
which a force applied at a point results in displace-
ments in the entire rod. A significant aspect of the
model is that it is necessary only in a small neigh-
borhood where the crack advances. Thus, on the one
hand, the model is non-local, and, on the other hand,
the non-locality is restricted to domains much smaller
than the crack radius, which we regard as the macro-
scopic length scale. Accordingly, we refer to the model
and its attributes as mesoscopic.

3.1 Rates of deformation

The key difference between purely geometric and
configurational-mechanical descriptions of the crack
front is that the latter endows the crack front with defor-
mation rates, conjugate internal configurational forces,
and constitutive equations. In this subsection, we focus
on the deformation rates. This development requires
us to introduce two basic concepts from differential
geometry of planar curves. The curvature of γ (S) and
the normal unit vector are defined as

κ(S) := ∣∣γ ′(S) × γ ′′(S)
∣∣ (12)

and

n(S) := 1

κ(S)
γ ′′(S), (13)

respectively. For the circular crack under considertaion,
the growth direction e1(S) is radial,

κ(S) = 1

a
, and n(S) = −e1(S).

A fundamental theorem of differential geometry of
planar curves states that two curves with the same
signed curvature function κs(S) are congruent. That is,
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Local and non-local modeling aspects 215

the deformation of a curve can be related to changes
between the signed curvature function evaluated at
instances � and � + ��. For the circular crack,
κs(S) = κ(S), and small changes in the front geometry
due to growth do not affect this relationship. Therefore
from now on we retain κ(S) rather than κs(S) as the
fundamental curve descriptor.

For the circular crack, (3) can be simplified as

γ �+��(Ŝ) = γ �(S) − v(S)n(S)��. (14)

here we use the argument Ŝ rather than S for the func-
tion γ �+�� to emphasize that the motion may change
the crack front length, and therefore the natural param-
eterization of the front at time�+�� is in terms of its
own arc length Ŝ. Thus the deformation can be associ-
ated with the differences between the functions κ�(S)

and κ�+��(Ŝ). To this end, we define the stretch

λ := dŜ

dS
, (15)

and the rates

λ̇(S) := lim
��→0

λ�+�� − λ�

��

and

κ̇(S) := lim
��→0

κ�+�� − κ�

��
.

Of course for our purposes it is sufficient to set λ� = 1
and κ� = 1/a.

The calculations for λ̇(S) and κ̇(S) are somewhat
tedious but straightforward. Let us outline the steps
leading to λ̇(S). First, we observe that∣∣∣∣dγ �(S)

dS
· dγ �(S)

dS

∣∣∣∣
=

∣∣∣∣∣
dγ �+��(Ŝ)

dŜ
· dγ �+��(Ŝ)

dŜ

∣∣∣∣∣ = 1.

Therefore the stretch can be calculated as

λ =
∣∣∣∣∣
dγ �+��(Ŝ)

dS
· dγ �+��(Ŝ)

dS

∣∣∣∣∣
−1/2

.

Next we calculate

dγ �+��(Ŝ)

dS
= [

γ �(S) − v(S)n(S)��
]′

= [1 + v(S)κ(S)��] t(S) − v′(S)��n(S),

so that

λ = 1 + κ(S)v(S)�� + O
(
��2

)
.

In deriving these relationships,we exploited theFrenet–
Serret formulae for differentiating the vectors t and n.
Now the rate of stretch is calculated as

λ̇(S) = κ(S)v(S) = v(S)

a
. (16)

Similar calculations result in the rate of curvature:

κ̇(S) = −v′′(S) − κ2(S)v(S) = −v′′(S) − v(S)

a2
.

(17)

This expression involves two terms. The first one is
familiar from elementary theory of bending. The sec-
ond term reflects the fact that even self-similar growth,
which does not involve bending, reduces the curvature.
Thus, for mechanical modeling, it is useful to introduce
the rate of bending curvature

μ̇(S) := κ̇(S) + κ(S)λ̇(S) = −v′′(S), (18)

which together with λ̇(S), we adopt as the strain rates.
This choice will be further justified in the next subsec-
tion.

3.2 Principle of virtual power

In classical mechanics, the principle of virtual power is
introduced as a weak form of equilibrium. It defines the
internal forces implicitly, as the conjugates to the cho-
sen strain rates, and yields the equilibrium equations
for those forces. In our case, the power generated by
J is equated to the power dissipated on deforming the
crack front and moving the entire crack as a rigid body:∮

�

J (S)v(S)dS =
∮

�

[F(S)λ̇(S) + M(S)μ̇(S)]dS
+R · V + T · �. (19)

here the line tension F and bending moment M are
introduced simply as the internal configurational forces
conjugate to the rates of deformation λ̇ and μ̇, respec-
tively. The force R and torque T are the resultants of
the distributed force J (S), and V and � are the rigid
body translational and angular velocities, respectively.
Of course, for planar cracks,many components of these
vectors are equal to zero.
The integral on the right-hand side of (19) can be inte-
grated by parts using (16) and (18):∮

�

[F(S)λ̇(S) + M(S)μ̇(S)]dS

=
∮

�

[F(S)κ(S) + M ′′(S)]v(S)dS. (20)
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216 G. J. Rodin

If J is self-equilibrated, so that R = T = 0, then (20)
yields the strong form of equilibrium

κ(S)F(S) + M ′′(S) = J (S), (21)

which involves the familiar membrane and bending
components. Since the internal forces F and M were
introduced as the conjugate quantities to the rates λ̇ and
μ̇, the fact that we arrived at the familiar equilibrium
equation (21) lends further support to the choice of λ̇

and μ̇ as the strain rates.

3.3 Constitutive equations

The rates of deformation and internal forces reveal that
the crack front behaves as a configurational rod sub-
jected to tension and bending. Therefore it is appropri-
ate to consider constitutive equations in the form

F = η∗A∗λ̇,

M = η∗ I ∗μ̇. (22)

here η∗ is a configurational viscosity, A∗ is a cross-
sectional area, and I ∗ is a moment of inertia of the
configurational rod. The asterisk sign is used to declare
that (22) merely mimics the well-established constitu-
tive equations of elementary beam theory. Nevertheless
the constitutive equations in (22) warrant two observa-
tions. First, they provide proper dimensional groups,
and therefore can be rewritten in the form

T = η∗πρ2λ̇

M = η∗ π

4
ρ4μ̇, (23)

where ρ is a cross-sectional radius. Second, in the con-
text of linear elastic fracture mechanics, modulo a mul-
tiplier, the only sensible choice forρ is the process zone
size at initiation. For small-scale yielding conditions,
the process zone is governed by plasticity, and the zone
size can be estimated as

ry = 1

2π

(
KIC

σy

)2

,

where σy is the yield stress (Broek 1986).
One must also specify constitutive equations for the
rigid body motion modes. But the macroscopic rigid
body motion modes are expected to be much slower
in comparison to the mesoscopic growth modes, and
therefore we assume that the last two terms in (20)
are negligible. As a result we can adopt (21) as the
statement of equilibrium.

3.4 Asymptotic analysis

Once we combine (16), (18), (21), and (23), we obtain
the differential equation

η∗ π

4
ρ4vIV(S) + η∗π

(ρ

a

)2
v(S) = J (S). (24)

In classical mechanics, this equation represents a vis-
cous beam with a bending viscosity πη∗ρ4/4 resting
on a continuous viscous foundation with the viscosity
πη∗(ρ/a)2. Since we are interested in constructing an
approximate solution in a mesoscopic neighborhood of
a reference point x0 = γ (S0), specifying the boundary
conditions is neither necessary nor useful. To this end,
(24) can be approximated, and rewritten as

d4v(ξ)

dξ4
+ 4v(ξ) = 4v̂0, (25)

where

l = √
ρa, (26)

ξ = S − S0
l

, (27)

and

v̂0 = J (S0)l4

πη∗ρ4 . (28)

Since ρ � a, l is the mesoscopic scale because
ρ � l � a. Also note that the left-hand side of (25)
implies that over themesoscopic scale, the bending and
membrane contributions have the same order of mag-
nitude.

In the absence of boundary conditions, we construct
an asymptotic solution of (25) by regarding v0 = v(S0)
as given. Further we want the solution v(ξ) to be even,
decay for large |ξ |, and twice continuously differen-
tiable. In this setting v0 can be treated as an unknown
constant, or determined from macroscopic consider-
ations. This is similar to the way the stress intensity
factors are treated in fracture mechanics. The desired
solution is

v(ξ) = v0e
−|ξ | (sin |ξ | + cos ξ)

−v̂0

[
1 − e−|ξ | (sin |ξ | + cos ξ)

]
. (29)

The obvious drawback of (29) is its dependence on v̂0
and ultimately on η∗, which makes it unappealing for
most practical purposes. Therefore we seek an approx-
imation to (29) which does not involve η∗. To this end,
we observe that if the bending viscositywere negligible
then the solution would be simply

v(ξ) = v̂0.
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Local and non-local modeling aspects 217

Fig. 3 Thenormalizednon-local velocityfieldv/v0 as a function
of the normalized distance ξ

Therefore, in the presence of bending viscosity, on the
one hand,

v0 < v̂0,

because the bending viscosity makes the entire sys-
tem more viscous. On the other hand, v0 and v̂0 must
have the same order of magnitude because the bending
and membrane contributions are of the same order over
lengths O(l). Since in (29) the term proportional to v0
is O(1) and the term proportional to v̂0 is O(ξ2), one
can approximate it with the expression

v(ξ) ≈ v0e
−|ξ | (sin |ξ | + cos ξ) , (30)

which does not depend on η∗.
While (30) is easy to use, it is not compactly sup-

ported, and thereforemay introduce spurious velocities
along the front. To avoid this,we seek an approximation
of (30) with the following properties:

• Compactly supported on the interval −1 < ξ < 1.
• Differ from (30) by no more than O(ξ2).
• Twice continuously differentiable.
• Even.

A function that satisfies these conditions is

v(ξ)=
{

v0e−|ξ | (1 − |ξ |)3 (1 + 4 |ξ |) if |ξ |≤1

0 if |ξ |>1.
.

(31)

We adopt this function as the mesoscopic model, and
plot it in Fig. 3.

4 General cracks

For planar non-circular cracks, the model is straight-
forward to extend because, to the second order, near
x0 = γ (S0), any curve can be approximated as a circle

with the radius 1/κ(S0). Thus one can generalize the
mesoscopic model to non-circular cracks by replacing
a with 1/κ(S0).

For non-planar cracks, the geometric complexity
increases significantly.Nevertheless, as far as themeso-
scopic model is concerned, we only have to focus on
identifying the mesoscopic length l. Since for non-
planar cracks, the cross-sectional radius ρ is expected
to enter the expression for l the sameway it does in (26),
our focus is on replacing the local curvature κ(S0)with
a quantity that represents both � and �. Our proposal
is very simple to state: κ(S0) must be replaced with∣∣κg(S0)∣∣, the absolute value of the geodesic curvature.
Thus (26) takes the form

l =
√

ρ∣∣kg(S0)∣∣ . (32)

In what follows, we arrive at (32) in an inductive man-
ner using simple examples and heuristic arguments, but
the replacement of κ(S0) with

∣∣κg(S0)∣∣ is intuitive, as
the geodesic curvature is a measure of how the curve
curves with respect to the imbedding surface.
By definition

kg(S) := γ ′′(S) · [
N × γ ′(S)

]
, (33)

where N is the unit normal with respect to �. To cal-
culate this normal, we suppose that � is parametrized
as x = σ (p, q), where p and q are local surface coor-
dinates. Then

N =
∂σ
∂p × ∂σ

∂q∣∣∣ ∂σ
∂p × ∂σ

∂q

∣∣∣ .
As a first example, let us compare a circular crack of
radius a with a semi-infinite circular cylindrical crack
of radius a (Fig. 4a, b). The fronts for these two cracks
are identical, but e1 = er for the circular crack and
e1 = ez for the cylindrical crack; here er and ez as the
basis vectors of the standard cylindrical coordinates. If
both cracks grow uniformly along e1, then � of the cir-
cular crack undergoes self-similar expansion, whereas
� of the cylindrical crack undergoes rigid body transla-
tion along the z-axis. The latter growth mode does not
fit the framework adopted in Sect. 3, as the front does
not deform. With this example, we are not concerned
about generality of results developed in Sect. 3, as we
regard a non-deforming crack front merely as an inter-
esting counter-example rather than a case of practical
significance. Rather we seek a length parameter capa-
ble of discriminating between the two circular fronts,
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218 G. J. Rodin

Fig. 4 Three cracks and their attributes: a circular, b circular
cylindrical, c truncated spherical

and the geodesic curvature senses the difference, as
κg = 1/a for the circular crack and κg = 0 for the
cylindrical crack.

Our next example involves a truncated spherical
crack formed by cutting a sphere of radius R with a
plane located at a distance h from the center (Fig. 4c).
In this case � is a circle of radius a = √

R2 − h2. It
is convenient to parameterize the cut with the azimuth
angle θ , so that h = R cos θ and a = R sin θ . The
expressions for the curvatures are

κ = 1

R sin θ
and κg = 1

R tan θ
.

Note that κg < 0 for θ > π/2, which justifies the use
of

∣∣κg∣∣ rather than just κg in (32).
If θ = π/2 then κg = 0 and the crack is hemi-

spherical. In this particular case, e1 is perpendicular to
the equator, and uniform growth along e1 involves rigid
body motion. Thus, the fronts of the hemi-spherical
and cylindrical cracks have the same growthmodes and
geodesic curvatures. In general, e1 is along the negative
meridional direction,

e1 = −eθ = −er cos θ + ez sin θ,

where er is along the radial direction of the standard
cylindrical coordinates attached to � (Fig. 4c). A uni-
form crack growth increment along e1 with velocity v,
shrinks the crack front from a to a − v cos θ��, so
that the corresponding rate of stretch is

λ̇ = −v cos θ

a
= − v

R tan θ
= −vκg.

Upon comparison of this equation with (16), one can
conclude that κg should be a good candidate for replac-
ing κ . Note that there is no minus sign in (16) because
κ ≥ 0 and growth along e1 results in expansion of �.

This is a moot point since κ is replaced with
∣∣κg∣∣ rather

than κg .

5 Discussion

In this paper, we examined three-dimensional crack
growth initiation under the assumption that the crack
front remains smooth. We addressed two important
modeling issues. First,we established that, at eachpoint
along the front, the velocity and configurational force
can be confined to the local normal plane. This allows
us to generalize any two-dimensional criterion to three
dimensions. Second, we developed a simple meso-
scopic model for along-the-front non-locality to elim-
inate pathological growth patterns like the one shown
in Fig. 1.

While the replacement of three stress intensity fac-
tors with two configurational forces, adopted in Sect. 2,
is entirely rigorous, it limits onesmodeling capabilities.
In particular, for local symmetry principle, KI I (S) = 0
(7) implies that there is only one non-zero configura-
tional force component,

J1(S) = 1 − ν2

E
K 2

I (S) + 1 + ν

E
K 2

I I I (S).

It is clear that any prescribed J1(S) can be realized by
infinitely many combinations of KI (S) and KI I I (S),
ranging from pure Mode I to pure Mode III. For small
values of the ratio KI I I /KI , the crack grows smoothly,
similar to pureMode I cracks. In contrast, for large val-
ues of the ratio, the crack front fragments by forming
secondary cracks, and this behavior must be associ-
ated with nucleation/fragmentation rather than growth.
This dependence on the ratio KI I I /KI is reflected
in the right-hand side of (1). Of course this limita-
tion does not invalidate our work, but rather demon-
strates its limitations, and suggests that a more gen-
eral approach is required for modeling both growth and
nucleation/fragmentation. Such an approachmust over-
comemajor conceptual obstacles, as dominant K -fields
require smooth fronts whose characteristic along-the-
front length scale must significantly exceed the process
zone size. This requirement may be difficult to satisfy
in the presence of nucleated micro-cracks.

The second issue was resolved by regarding the
crack front as a configurational rod, and developing
a basic mechanical model to describe its behavior. A
proposed approximate solution, given by (27), (31), and
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(32), is a twice differentiable function, compactly sup-
ported over a neighborhood of the crack front (Fig. 3).
Further, it does not involve any non-standard fracture
parameters, but it involves v0 as a free parameter. Its
determination is particularly instructive for hydraulic
fracturing problems (Rungamornrat et al. 2005; Cas-
tonguay et al. 2013; Detournay 2016), where v0 is dic-
tated by the balance between the volume created by
crack growth vis-a-vis the volume of injection fluid.
The proposed mesoscopic model was developed by
significantly extending the scope of configurational
mechanics, by introducing appropriate rates of defor-
mation, conjugate configurational internal forces, and
constitutive equations. While the geometric and equi-
librium equations have a solid footing, the constitu-
tive equations were constructed using nothing more
than dimensional analysis. Nevertheless, we are com-
fortable with the key constitutive assumption that the
characteristic cross-sectional radius ρ is the process
zone size. The structure of governing equations echoes
numerous connections between configurational and
structural mechanics (Bigoni et al. 2015). Furthermore,
recent developments in interpreting configurational
forces in the Newtonian (as opposed to Lagrangian)
context of continuum mechanics (Ballarini and Royer-
Carfagni 2016) lend more support to the approach pre-
sented in Sect. 3.

Differential geometry of planar curves was central
to introducing the strain rates and relating them to the
crack front velocity. To accomplish this, it was essen-
tial to replace κs , fundamental to identifying the curve
shape, with κ , natural for carrying out calculations. For
the circular crack, the distinction between κs and κ is
immaterial, but in general onemust require that κs does
not change its sign in the mesoscopic neighborhood of
x0.

Formally, our approach easily extends to three-
dimensional curves, and it results in the equations

λ̇ = −κvn,

κ̇ = (κ2 − τ 2)vn − v′′
n − τ ′vb − 2τv′

b,

τ̇ = κτ ′′ − κ ′τ ′ + 2κ3τ

κ2 vn+ 3κτ ′ − 2τκ ′

κ2 v′
n+ 2τ

κ
v′′
n

−τ
(
2κτ ′ − τκ ′)

κ2 vb+ κ2 − τ 2

κ
v′
b−

κ ′

κ2 v′′
b+ 1

κ
v′′′
b .

In these equations, the subscript b refers to the bi-
normal direction, and τ is the torsion. For three-
dimensional curves, the shape is fully prescribed by the

functions κ(S) and τ(S), so there is no need to nego-
tiate between κs and κ . However, this is true only for
κ(S) > 0, and one can easily establish that by elimi-
nating points with zero curvature, one effectively elim-
inates the difference between κ and κs .

Using the principle of virtual power, we introduced
the internal forces conjugate to the rates of deforma-
tion. For planar curves, those included line tension and
line bending. The former is an established concept in
mechanics of dislocations, while the latter is critical to
non-locality. That is, if line bending is neglected, the
proposed model becomes local. In three dimensions,
τ̇ induces the line twisting T . Further, the principle of
virtual power yields two equilibrium equations relating
the F , M , and T to Jn and Jb. However those equa-
tions are extremely complicated and their usefulness is
unclear.
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