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Abstract Thepresent study analyzes the fundamental
properties of a rate-dependent cohesive model applied
to the description of dynamic mode-II crack propa-
gation. To make a semi-analytical treatment possible,
the idealised problem of a crack along the interface
between a semi-infinite elastic layer and a rigid sub-
strate is considered. Solutions corresponding to the
propagation of the crack tip at a constant speed are
constructed. Using asymptotic properties of the solu-
tion far from the crack tip allows obtaining the com-
plete solution of the boundary value problem by direct
integration without iterations, using a specific form of
the shooting method. By conversion of the problem to
dimensionless variables, the behavior of the system for
all possible crack velocities and arbitrary combinations
of material and geometric parameters can be charac-
terized. The dependence of fracture energy and other
important characteristics on model parameters and the
crack speed can then be analyzed. Even if the approach
is applied to a specific form of damage rate dependence
andmotivated by the analysis of delamination propaga-
tion, the same technique could be used for other classes
of interfacial cohesive rate-dependent models.
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1 Introduction

The description of rate effect on delamination in poly-
meric interfaces is a controversial issue. For adhesive
bond joints, a decrease of the critical energy release
rate in mode I, G1c, is reported in Karac et al. (2011),
while in Burak and Coker (2016) an increase of G1c is
reported in the case of a three-point impact bending test
that exemplifies low-speed mode-I dynamic fracture.
Moreover, in Smiley and Pipes (1987a) a constant value
ofG1c followedby adecrease of this value at highopen-
ing rates is reported. Formode-II solicitations, the issue
is also controversial. In Cantwell (1997), an increase of
G2c depending on the fiber type is reported for the same
PEEKmatrix, while a negative rate effect is reported in
Smiley and Pipes (1987b) for the same type of matrix,
and no variation ofG2c is reported in Tsai et al. (2001).
This shows that the physics of delamination in dynam-
ics is not fully understood yet and the experimental
methodology for properly studying those effects still
remains a challenge.

The question of rate dependence of crack propaga-
tion also arises for metallic materials, leading to the
need for a rate-dependent cohesive model. It has been
reported by numerous authors that the use of rate-
independent cohesive models results into crack speeds
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much higher than those measured or expected (see,
e.g., Valoroso et al. 2014). In the case of delamination
mode-II propagation, the same conclusion wasmade in
Guimard et al. (2009). Awell-known possible explana-
tion of this phenomenon can be found in Ravi-Chandar
andKnauss (1984).When the crack speed increases, the
development of secondary microcracks (i) diminishes
the energy available as a driving force of themain crack,
and (ii) for the same main crack increases the total area
of new surfaces and thus possibly the macroscopic crit-
ical energy release rate. This phenomenon was studied
in Zhou et al. (2005) and motivated the authors to pro-
pose a rate-dependent cohesive crack model.

In Allix and Deü (1997), a bounded-rate damage
model was proposed as a possible regularisation tool
for damage in dynamics. This approach was further
developed in Allix (2013). In Guimard et al. (2009),
the same approach was used to reproduce the crack
speed obtained in a pure mode-II delamination test.
Some fitting was suggested to possibly associate the
proposed bounded-rate model with an expression of
the resulting critical energy release rate as a function of
the crack speed. This fitting was made within a limited
range of crack velocities and thus is debatable.

All these considerations have motivated the present
paper, aiming at a deeper examination of the relation
between a rate-dependent cohesive model and its frac-
ture mechanics counterpart in dynamics. To make a
semi-analytic treatment possible, the idealised prob-
lem of delamination of an infinitely long layer from a
rigid substrate is considered, and solutions correspond-
ing to propagation of the crack tip (delamination front)
at a constant velocity are constructed. The delaminat-
ing layer is modelled as an elastic bar connected to the
substrate by an inelastic interface, which is described
by a cohesive zone model.

Mathematical description of the above problem
leads to a set of ordinary differential equations, which
is simplified by conversion to dimensionless variables.
The solution is then constructed using a specific form
of the shooting method, adapted such that the solution
satisfying all boundary conditions is obtained without
iterations. This efficient numerical technique permits
simple and fast calculations, and the dependence of the
physical characteristics of the system on the choice of
model parameters can be evaluated. Such calculations
elucidate the role of individual parameters and facilitate
identification of optimal parameter values from experi-
mental data. They also reveal some of the fundamental

features of the model, including its scaling and asymp-
totic properties. Let us note that a discussion of the
numerical difficulties encountered when trying to solve
such problem was presented in Kubair et al. (2003)
for the more complex case of mode-III crack propaga-
tion in a two-dimensional domain. A Riemann–Hilbert
approachwas applied to deal with those difficulties.We
are able to use a much simpler approach here, mainly
due to the simplified one-dimensional modelling of the
problem.

The paper is organised as follows:
In Sect. 2, basic equations describing a simplified

model of mode-II delamination are presented. The
main ingredients of a rate-independent interfacial dam-
age model, which will serve as a starting point for
later extensions to rate-dependent formulations, are
detailed. Moreover, an energetic analysis is performed,
resulting into the definition of the rate at which energy
is consumed by the delamination process.

In Sect. 3, the hypothesis of a “dynamic steady pro-
cess” is introduced. This hypothesis allows the reduc-
tion of the problem to a set of two coupled ordinary
differential equations. In this context, a continuation of
the energetic analysis leads to the definition of the rate-
dependent fracture energy, considered here as functions
of the crack speed. Other global characteristics include
the force needed to drive the crack and the speed at
which the end section moves.

In Sect. 4, analytical solutions for two versions of
the rate-independent damage model are derived. This
allows to set a basis of comparison for rate effects stud-
ied in the following sections.

In Sect. 5, bounded-rate damage models studied in
the paper are presented. A new interpretation clarifying
the formulation of themodel is proposed and discussed.

In Sect. 6, a special form of the shooting method
based on a finite difference scheme is introduced. Its
purpose is to deal with rate-dependent models when
no closed-form solutions are available. An asymptotic
development provides the boundary conditions at an
arbitrary location far from the crack tip. Then, inte-
grating backward in dimensionless space, the complete
solution is determined without iterations.

In Sect. 7, the method is applied to a particular case
studied in Guimard et al. (2009) where finite elements
were used to approximate experimental results. In the
present work, numerical solutions are computed over
thewhole range of possible crack speeds. This allows in
particular to show that the fitting of the critical energy
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Fig. 1 a Schematic representation of the delamination process:
elastic layer (yellow) attached to a rigid substrate (blue) by an
interface (black) that gets damaged (red) up to full decohesion

(white gap), b choice of coordinate system and sign convention
for the interfacial shear stress τ and applied force Fc

release rate proposed in Guimard et al. (2009) is valid
for low crack speeds only, and to demonstrate that the
rate-dependent formulation does not lead to any reduc-
tion of the theoretical limit of the crack speed. The
example also permits to characterize the influence of
inertia forces separately from the effects caused by the
rate-dependent extension of the cohesive damage law.

InSect. 8, the governing equations are converted into
a dimensionless form, which makes it possible to char-
acterize all possible cases by varying only two dimen-
sionless parameters. Possible identification of parame-
ters of the rate-dependent model based on self-similar
crack tests at different crack speeds is discussed.

In Sect. 9, we examine the effect of rate depen-
dence over a wide range of crack speeds, by comparing
the results to those obtained with the rate-independent
model. This is done for two specific forms of the dam-
age law, in order to study the effect of the shape of
the rate-independent traction-displacement curve, with
all other main characteristics of the model being fixed.
In order to obtain closed-form estimates, two extreme
cases are further analysed: the case of low crack speeds,
and the case of crack speeds close to the elastic wave
speed.

In the conclusion section, based on the obtained
results and on the questions raised in the paper, fur-
ther research directions are proposed.

2 Model for pure mode-II delamination

Delamination in pure mode II is studied here using an
idealised model of an elastic layer bonded to a rigid
substrate; see Fig. 1a. The layer is modelled as a semi-

infinite barwith rectangular cross sectionofwidthb and
depth h, and the material of the layer is characterised
by Young’s modulus E and mass density ρ. The depth
is considered as very small, so that bending effects can
be neglected and the layer can be treated as a bar under
axial tension. Interaction between the bar and the sub-
strate is described by shear stress τ , which is linked by
a nonlinear and possibly rate-dependent cohesive law
to the relative displacement between the bar and the
substrate.

The sign convention is sketched in Fig. 1b. The ori-
gin of the coordinate axis x is placed at the initial loca-
tion of the bar end section, and the axis is positively
oriented to the right, so that the semi-infinite bar corre-
sponds to the interval [0,∞). The shear stress τ arising
at the interface is positive if it acts on the bar to the right
and on the substrate to the left. The displacement of the
bar, u, is positive to the right, but the displacement jump
[[u]] is considered as the difference between the (zero)
displacement of the substrate and the displacement of
the bar, and thus is equal to −u. With this convention,
a positive displacement jump leads to a positive shear
stress. The external force Fc applied at the end section
is considered as positive to the left.

2.1 Basic equations

For the present simple model, the equation of motion
(momentum balance equation) reads

N,x (x, t) + bτ(x, t) − bhρu,t t (x, t) = 0 (1)

where N is the normal force in the bar (normal stress
times the sectional area), τ is the cohesive shear stress in
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the interface, bh is the sectional area, and u is the axial
displacement. Subscript x after a comma denotes the
derivative with respect to the spatial coordinate x , and
subscript t t after a comma denotes the second deriva-
tive with respect to time t .

The normal force in the bar is linked to the axial
strain ε = u,x by the elastic law

N = Ebhε = Ebhu,x (2)

and the shear stress at the interface is governed by the
cohesive law

τ = k (1 − D) [[u]] = −k (1 − D) u (3)

in which k is the tangential elastic stiffness of the inter-
face, D is the damage variable, and [[u]] = 0−u = −u
is the tangential displacement jump. Substituting (2)
and (3) into (1), we obtain

Ebhu,xx (x, t) − bhρu,t t (x, t)

= bk (1 − D(x, t)) u(x, t) (4)

When the end section of the bar is pulled as
schematically shown in Fig. 1a, the displacement jump
increases and damage is induced at the interface. At
points where the displacement jump [[u]] exceeds a cer-
tain limit u f , no shear stress is transmitted and the inter-
face can be considered as fully debonded. The point that
separates the fully debonded zone from the cohesive
zone will be referred to as the crack tip, even though
we do not deal here with an opening crack but with
mode-II delamination.

To obtain a complete description of the inelastic pro-
cesses taking place at the damaging interface, cohe-
sive law (3) must be supplemented by an evolution law
for the damage variable. For monotonic loading and
a rate-independent damage model, the damage vari-
able is considered simply as a function of the displace-
ment jump:

D = g([[u]]) = g(−u) (5)

2.2 Chosen expressions for the rate-independent
damage models

The damage function g affects the shape of the result-
ing cohesive curve (stress-displacement diagram). In
Guimard et al. (2009), a power law with exponent n

was used. To make sure that damage cannot become
larger than 1, such a law would need to be written in
the form

g([[u]]) =
⎧
⎨

⎩

( [[u]]
u f

)n

if [[u]] ≤ u f

1 if u f < [[u]]
(6)

Here, u f is the displacement jump at which the cohe-
sive stress vanishes. For n = 1, the dependence of
damage on displacement jump is linear and the result-
ing cohesive curve has a parabolic shape, as shown in
Fig. 2a.

According to the power law (6), nonzero damage is
induced by an arbitrarily small displacement jump and
the stress-displacement diagram is nonlinear from the
very beginning. Sometimes it may be preferable to use
a linear elastic law before a certain damage threshold
is reached. A simple example is provided by a model
with linear elasticity followed by linear softening, as
shown in Fig. 2b. The corresponding damage function
g is given by

g([[u]]) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if [[u]] ≤ u p

1 − u p

[[u]]
u f − [[u]]
u f − u p

if u p < [[u]] ≤ u f

1 if u f < [[u]]
(7)

where u p is the displacement jump at the onset of dam-
age, which at the same time corresponds to the peak of
the stress-displacement diagram.

For monotonic loading, the stress can be expressed
as a unique function of the displacement jump, given in
general by τ([[u]]) = k(1 − g([[u]]))[[u]]), as follows
from (3) combined with (5). For the power law (6), this
function is continuously differentiable for 0 < [[u]] <

u f and it is easy to show that the maximum stress

τmax = knu f

(n + 1)n+1 (8)

is attained at [[u]] = u f /(n + 1)1/n . For damage law
(7) that leads to linear softening, the maximum stress
τmax = ku p is attained right at the onset of damage,
i.e., at [[u]] = u p.

The dependence of shear stress τ on the displace-
ment jump [[u]] is graphically represented by the stress-
displacement diagram (also called the cohesive curve);
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Fig. 2 Dependence of damage (top) and shear stress (bottom) on displacement jump for (a) model based on (6) with n = 1, (b) model
based on (7) with u p = u f /3; in both cases, u f = 30 µm and k = 10 · 1012 N/m3

see the bottom part of Fig. 2. For power law (6) with
n = 1, this diagram has a parabolic shape, and for
damage law (7) it has a triangular shape. Therefore, we
will refer to the correspondingmodels using the expres-
sions “parabolic” and “triangular”. The area under the
cohesive curve corresponds to the work per unit inter-
face area supplied to the interface during a complete
failure process. On the macroscopic scale, this work
of separation (or work of fracture) is not recoverable.
For rate-independentmodels, the energy needed for full
delamination of a unit area of the interfacewill be called
the static fracture energy and denoted as Gc0. By inte-
grating function τ([[u]]) from 0 to u f , we obtain

Gc0 = knu2f
2(n + 2)

(9)

for damage law (6) and

Gc0 = 1
2ku pu f (10)

for damage law (7). In fact, in the latter case it is
sufficient to directly express the area of a triangle of
base u f and height ku p. Parameters for the exam-
ples of cohesive curves in Fig. 2 have been selected
such that both models are characterized by the same
values of k = 10 · 1012 N/m3, u f = 30 µm and
Gc0 = 1500 J/m2, which are the reference parameters
specified in Table 1.

It would be easy to generalize the rate-independent
formulation to the case of non-monotonic loading.
The dependence of the damage variable D on the cur-
rent value of displacement jump [[u]]would be replaced
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Table 1 Reference values of primary material parameters and
the corresponding derived parameters

Parameter Value Unit

(a) primary

E 151 × 109 Pa

h 1.56 × 10−3 m

ρ 1600 kg/m3

k 10 × 1012 N/m3

Gc0 1500 J/m2

τc 5 × 10−6 s

Ac 3 –

(b) derived

c = √
E/ρ 9715 m/s

u f = √
6Gc0/k 30 × 10−6 m

l0 = √
Eh/k 4.85 × 10−3 m

λ0 = l0/(cτc) 0.1 –

by the dependence of D on a history variable κ which
represents the maximum value of the magnitude of dis-
placement jump reached so far. For the present purpose,
such modification is not needed. Extension to a rate-
dependent formulation will be discussed in Sect. 5.
Here it is sufficient to note that the delayed damage
approach used in this paper will be based on a damage
evolution equation of the general form

D,t = f ([[u]], D) (11)

where f is a non-negative continuous function that van-
ishes if g([[u]]) ≤ D.

2.3 Energetic aspects

It is instructive to look in detail at the energy bal-
ance. The external work supplied by the applied end
force Fc is partially converted into potential and kinetic
energy, and the remaining energy is available as a driv-
ing “force” of the damage process on the interface. This
consideration motivates the definition of the dynamic
energy release rate,

Prel = Fcvc − Ė pot − Ėkin (12)

as the difference between the external power input
provided by the end force Fc(t) = N (0, t) =
Ebhu,x (0, t) that moves at speed vc(t) = −u,t (0, t)

and the time derivative of the sum of potential and
kinetic energy. Superposed dot indicates differentiation
with respect to time (for functions that depend on time
only). The potential energy

Epot = bh
∫ ∞

0

1
2 Eu

2
,x dx + b

∫ ∞

0

1
2 (1 − D)ku2 dx

(13)

is obtained by summing the contribution of the strain
energy of the elastic bar and the energy stored in the
damageable interface. The kinetic energy

Ekin = bh
∫ ∞

0

1
2ρu

2
,t dx (14)

resides exclusively in the elastic bar because the inter-
face is massless and the rigid substrate is at rest.

Working out the time derivatives,

Ė pot = bh
∫ ∞

0
Eu,xu,xt dx + b

∫ ∞

0
(1 − D)kuu,t dx

− b
∫ ∞

0

1
2D,t ku

2 dx (15)

Ėkin = bh
∫ ∞

0
ρu,t u,t t dx (16)

integrating by parts,

∫ ∞

0
Eu,xu,xt dx = [

Eu,xu,t
]∞
x=0 −

∫ ∞

0
Eu,xxu,t dx

(17)

and recalling that Ebhu,x (0, t) = Fc(t) andu,t (0, t) =
−vc(t) and that the strain u,x and velocity u,t tend to
zero as x → ∞, we can transform expression (12) for
the dynamic energy release rate into

Prel = b
∫ ∞

0

[
Ehu,xx − ρhu,t t − (1 − D)ku

]
u,t dx

+ b
∫ ∞

0

1
2ku

2D,t dx (18)

Eq. (4), which follows from the momentum balance
equation (1) combined with constitutive equations (2)–
(3), implies that the expression in the brackets in the
first integral on the right-hand side of (18) vanishes,
and so the expression for the dynamic energy release
rate reduces to

Prel = b
∫ ∞

0

1
2ku

2D,t dx (19)
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Here, ku2/2 can be interpreted as the interfacial dam-
age energy release rate per unit area (it corresponds to
the negative derivative of the interfacial stored energy
density with respect to the damage variable).

The dynamic energy release rate, Prel , has been
introduced in (12) as the difference between the exter-
nal power, Fcvc, and the rate of change of the kinetic
and potential energy, Ėkin + Ė pot . The energy con-
servation law implies that the released energy must be
equal to the energy spent by the delamination process,
i.e., to the work of fracture. Therefore, we will use the
relation

Pf ra = Prel (20)

and from now on we will replace the dynamic energy
release rate Prel in the previously derived equations by
the power of fracture, Pf ra . This may seem to be just a
formalistic exercise, but it is good to bear in mind that
Prel is the rate at which energy is released during the
evolution of the system while Pf ra is the rate at which
energy is consumed by the delamination process.

3 Self-similar dynamic delamination process

3.1 Reduction to ordinary differential equation

Let us now analyze a “dynamic steady process”, i.e.,
a self-similar delamination process in which the crack
tip moves at a constant velocity ȧ and all spatial fields
travelwith the crack at the samevelocity. Such behavior
can be expected to be approached asymptotically in a
transitional process with a constant applied displace-
ment rate at the end section. Due to self-similarity,
the dependence of all variables on x and t can be
replaced by a dependence on the transformed variable
x̂(x, t) = x − a0 − ȧt where a0 indicates the crack tip
position at time t = 0. We can then write

u(x, t) = û(x̂(x, t)) (21)

D(x, t) = D̂(x̂(x, t)) (22)

u,xx (x, t) = û′′(x̂(x, t)) (23)

u,t t (x, t) = ȧ2û′′(x̂(x, t)) (24)

where û′′ denotes the second derivative of û with
respect to x̂ . Partial differential equation (4) can now
be transformed into the ordinary differential equation

bh
(
E − ρȧ2

)
û′′(x̂) = bk

(
1 − D̂(x̂)

)
û(x̂) (25)

Note that a hat over a symbol is used here for functions
that describe the dependence of a quantity on the trans-
formed variable x̂ . Ordinary derivatives of functions
of one variable will be denoted by primes, indepen-
dently of the type of independent variable (argument).
For instance, if û is a function of x̂ , we use û′ for dû/dx̂ .

In the cracked zone (i.e., fully delaminated zone)
with x̂ < 0, we have D̂ = 1 and (25) reduces to

û′′(x̂) = 0 (26)

which implies that ûmust be a linear function of x̂ . Due
to continuity of displacements and of the normal force,
function û and its derivative û′ must by continuous at
x̂ = 0, and so the values of û(0) and û′(0) uniquely
determine the linear function û(x̂) for x̂ ≤ 0. Denoting
û(0) = uc and û′(0) = εc, we can write the solution in
the cracked zone as

û(x̂) = uc + εc x̂ for x̂ ≤ 0 (27)

The values of uc and εc will be found by solving the
problem for x̂ ≥ 0 and imposing continuous differen-
tiability at x̂ = 0. Once we get these values, the dis-
placement field in the cracked zone, considered as func-
tion of the spatial coordinate and time, can be expressed
as

u(x, t) = û (x − a0 − ȧt)

= uc − εca0 + εcx − εcȧt for x ≤ a0 + ȧt

(28)

The corresponding strain

ε(x, t) = u,x (x, t) = εc (29)

is constant, and so the normal force

N (x, t) = Ebhε(x, t) = Ebhεc (30)

is also constant (independent of the spatial coordinate
and of time). Consequently, the force

Fc(t) = N (0, t) = Ebhεc (31)

needed to propagate the crack at a constant velocity is
constant in time, as may have been expected.

The velocity in the cracked zone,

v(x, t) = u,t (x, t) = −εcȧ (32)
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is also constant. The negative sign means that cross
sections in the cracked zone move to the left. The mag-
nitude of their velocity, vc = |v(0, t)| = εcȧ, is the
product of the strain in the cracked zone and the crack
speed.

Let us emphasize that equations (26)–(30) and (32)
are valid exclusively in the fully delaminated zone. In
the damage process zone, the damage variable grows
from 0 to 1 and the solution is more complicated. The
displacement and damage fields must be obtained by
solving Eq. (25) combined with the damage evolution
law and with appropriate boundary conditions. The
crack tip is characterized by D = 1, and so we need
to set D̂(0) = 1. As x̂ → ∞, the displacement should
tend to zero, and the damage as well.

3.2 Energetic aspects revisited

Equation (19) has general validity and indicates that,
locally, the energy release rate per unit area of the inter-
face is given by the product of ku2/2 and the damage
rate. In general, the total energy release rate Prel would
depend on the current distribution of displacement and
damage rate in space and would vary in time. In the
presently considered special case, when the damage
process zone propagates in a self-similar manner, each
interface point is subjected to the same displacement
and damage evolution, just shifted in time depending on
the spatial position. Consequently, the dynamic energy
release rate is constant in time and can be uniquely
linked to one parameter that characterizes the rate of
the process, e.g., to the crack speed ȧ. In view of Eq.
(20), supported by the discussion at the end of Sect. 2.3,
we will replace Prel by Pf ra and interpret the result in
terms of the work of fracture.

Substituting D,t = −ȧ D̂′ into (19), replacing Prel
by Pf ra and taking into account that D̂′(x̂) = 0 for
x̂ < 0, we obtain

Pf ra = −b
∫ ∞

0

1
2kû

2 D̂′ dx̂ ȧ = Gcbȧ (33)

where

Gc = −
∫ ∞

0

1
2kû

2 D̂′ dx̂ (34)

canbe considered as the rate-dependent fracture energy.
In contrast to the static fracture energy Gc0 introduced

in Sect. 2.2, Gc is not a material property—it depends
on the crack speed, ȧ.

Based on (34), the rate-dependent fracture energy
can be evaluated from the damage distribution D̂(x̂),
constructed for the given crack speed by solving equa-
tion (25) combinedwith the damage evolution equation
that follows from (5) or (11), rewritten in terms of û and
D̂. However, it is also possible to compute Gc from the
local value of strain at the crack tip. This can be shown
by going back to (12)–(14) and making use of the spe-
cial form of the self-similar solution. The power input
provided by the end force Fc = Ebhεc that moves at
speed vc = εcȧ is given by

Fc × vc = Ebhεc × εcȧ = Ebhε2c ȧ (35)

The fully delaminated part of the bar moves at constant
strain and constant velocity, and so its strain energy
as well as kinetic energy remains constant. However,
during a time interval dt , the previously existing fully
delaminatedpart gets longer by anewsegment of length
ȧ dt . This new segment is subjected to strain εc and
moves at speed vc = ȧεc, and so the rate at which the
sum of potential and kinetic energy increases is

Ė pot + Ėkin =
(
1
2 Eε2c + 1

2ρv2c

)
bhȧ

= 1
2 (E + ρȧ2)ε2c bhȧ (36)

The important point here is that the potential energy of
the bar and interface as well as the kinetic energy of the
bar from the current crack tip to infinity remains con-
stant, due to self-similarity. These energy terms would
have to be evaluated by integration, but since they do
not change in time, their values are not needed.

Formally, the foregoing arguments can be verified by
splitting each of the integrals in (13)–(14) into the parts
that correspond (i) to the fully delaminated segment,
from x = 0 to x = a = a0 + ȧt , and (ii) to the
cohesive and elastic zone, from x = a to infinity, and
by rewriting the integrals in terms of the shifted spatial
coordinate x̂ :

Epot = bh
∫ a

0

1
2 Eu

2
,x dx + bh

∫ ∞

a

1
2 Eu

2
,x dx

+ b
∫ a

0

1
2 (1 − D)ku2 dx

+ b
∫ ∞

a

1
2 (1 − D)ku2 dx

= bha 1
2 Eε2c + bh

∫ ∞

0

1
2 Eû

′2 dx̂
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+ b
∫ ∞

0

1
2 (1 − D̂)kû2 dx̂ (37)

Ekin = bh
∫ a

0

1
2ρu

2
,t dx + bh

∫ ∞

a

1
2ρu

2
,t dx

= bha 1
2ρ (−εcȧ)2

+ bh
∫ ∞

0

1
2ρȧ

2û′2 dx̂ (38)

The integrals of (1− D̂)û2 or û′2 from zero to infinity
are independent of time, and so differentiation of (37)–
(38) with respect to time leads to the result already pre-
sented in (36). Finally, the rate of the work of fracture
can be expressed as

Pf ra = Prel = Fc × vc − Ė pot − Ėkin

= Ebhε2c ȧ − 1
2 (Eε2c + ρȧ2ε2c )bhȧ

= 1
2bhε2c (E − ρȧ2)ȧ (39)

Comparing this with (33), we find that the rate-
dependent fracture energy is given by

Gc = 1
2hε2c (E − ρȧ2) (40)

This formula is easier to manage than (34) because it
does not require integration, but εc still needs to be
computed by solving a boundary value problem and
depends on the crack speed.

The evaluation of εc is not trivial and in most cases
needs to be done numerically. However, some insight
into the general relations that link the basic response
characteristics is gained if εc is expressed in terms of
Gc based on (40) and then eliminated from expressions
(31) and (32) for the force needed to drive the delamina-
tion process, Fc, and the speed of the fully delaminated
bar segment, vc. This leads to

εc =
√

2Gc

h(E − ρȧ2)
(41)

Fc = Ebhεc = b

√
2hEGc

1 − ȧ2/c2
(42)

vc = ȧεc =
√

2Gcȧ2

h(E − ρȧ2)
(43)

It is also useful to normalize the crack speed, ȧ, and the
bar end speed, vc, by the speed of elastic waves in the
bar, c = √

E/ρ. In terms of the relative crack speed,
α = ȧ/c, Eqs. (41)–(43) can be presented in the form

εc =
√
2Gc

hE

1√
1 − α2

(44)

Fc = b
√
2hEGc

1√
1 − α2

(45)

vc

c
=

√
2Gc

hE

α√
1 − α2

(46)

Let us note that the preceding results are in many
aspects similar to other examples of self-similar dynamic
fracture that can be found in Freund (1998).

4 Reference solutions for rate-independent model

4.1 Global characteristics

For a rate-independent model (and a monotonic pro-
cess), damage is uniquely linked to the displacement
jump by damage law (5), which can be rewritten as
D̂ = g(−û) because [[u]] = −u and the difference
between u and û and between D and D̂ is only formal.
Consequently, the integral in (34) can be transformed
into an integral with [[u]] as the integration variable:

Gc = −
∫ ∞

0

1
2kû

2 D̂′ dx̂ =
∫ u f

0

1
2k[[u]]2g′([[u]]) d[[u]]

(47)

Here, we have taken into account that D̂′ dx̂ = dD̂ =
(dg/d[[u]]) d[[u]] and we have denoted by g′ the deriva-
tive of the damage function g with respect to its argu-
ment, i.e., to the displacement jump.We have also used
the boundary conditions û(∞) = 0 and û(0) = −u f ,
the latter being the consequence of D̂(0) = 1 and
g(u f ) = 1. Integration by parts then leads to

Gc =
∫ u f

0

1
2k[[u]]2g′([[u]]) d[[u]]

=
[
1
2k[[u]]2g([[u]])

]u f

[[u]]=0

−
∫ u f

0
k[[u]]g([[u]]) d[[u]]

=
∫ u f

0
(1 − g([[u]])) k[[u]] d[[u]] =

=
∫ u f

0
τ([[u]]) d[[u]] (48)

where τ([[u]]) = (1 − g([[u]])) k[[u]] is the interfacial
shear stress evaluated from constitutive equation (3)
combined with damage law (5). This confirms that, for
a rate-independent model, the work of separation per
unit area of fully delaminated zone is independent of
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the crack speed and corresponds to the static fracture
energy,Gc0, i.e., to the area under the rate-independent
cohesive diagram.

For a given rate-independent damage law, the area
under the cohesive diagram can be evaluated from
parameters of this law and the elastic interface stiff-
ness k, as exemplified by formulae (9)–(10) derived in
Sect. 2.1. Conversely, one could consider Gc0 as one
of primary material properties and calibrate the model
accordingly.

Substituting Gc = Gc0 into (41), we find that
the axial strain in the fully delaminated zone can be
expressed as

ε(i)
c =

√
2Gc0

hE

1√
1 − α2

= εc0√
1 − α2

(49)

where

εc0 =
√
2Gc0

hE
(50)

is the value of ε(i)
c obtained for infinitely slowdelamina-

tion. Superscript i refers to the rate-independent dam-
age model. Note that Gc in (41) can in general depend
on the crack speed, but Gc0 in formula (49) covering
the special case of rate-independent model is a mate-
rial constant, and so εc0 is a material constant, too. The
right-hand side of (49) indicates that the strain in the
fully delaminated zone increases in inverse proportion
to

√
1 − α2 where α = ȧ/c is the relative crack speed.

In a similar way, Gc = Gc0 can be substituted into
(42)–(43), in order to characterize the crack-speed sen-
sitivity of the force that is needed to drive the crack,

F (i)
c = b

√
2hEGc0

1√
1 − α2

= Fc0√
1 − α2

(51)

and of the relative speed of the fully delaminated zone,

v
(i)
c

c
=

√
2Gc0

hE

α√
1 − α2

= αεc0√
1 − α2

(52)

For infinitely slow delamination, i.e., under static con-
ditions, the force needed to drive the failure process is

Fc0 = b
√
2hEGc0 (53)

This formula was derived already by Kendall (1975),
who studied the so-called peeling test and obtained
the mode-II delamination test as a special case for
peeling angle set to zero; see the Appendix for more
details.

The foregoing equations indicate that the sole inter-
facial parameter governing the conditions of propaga-
tion in a dynamic steady process for a rate-independent
damage model is Gc0, i.e., the area under the cohe-
sive diagram. Under dynamic steady-process condi-
tions, the shape of the diagram plays no role. Another
interesting point is that the influence of the relative
crack speed α on global characteristics (such as the
applied force or bar end speed) is universal, indepen-
dent of material parameters. The force is proportional
to 1/

√
1 − α2 and the bar end speed to α/

√
1 − α2.

The fracture energy (work of separation per unit area)
does not change at all. Of course, all these statements
apply exclusively to models with a rate-independent
damage law.

4.2 Analytical solution

Even though some of the global characteristics of the
failure process can be directly linked to a few geomet-
ric and material parameters, the precise distribution of
damage or displacement jump along the propagating
damage process zone depends on the specific form of
the damage law and, in general, would need to be com-
putednumerically. For the rate-independentmodelwith
damage functions introduced in Sect. 2.2, it is possible
to find analytical solutions, which may serve as a ref-
erence and benchmark for numerical methods.

Since the rate-independent formulation directly
links the damage variable to the displacement jump,
it is possible to eliminate the damage field from (25)
and rewrite the governing equation as

bh
(
E − ρȧ2

)
û′′(x̂) = bk

(
1 − g(−û(x̂))

)
û(x̂)

(54)

As already explained in Sect. 3.1, in the fully delami-
nated zone where x̂ < 0, −û > u f and D̂ = g(−û) =
1, equation (54) reduces to (26) and the solution is a
linear function (27), with constants uc and εc still to
be determined. Now we have to search for the solu-
tion of (54) in the damaging and elastic zone where
x̂ > 0, −û < u f and D̂ = g(−û) < 1. We are inter-
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ested in the particular solution that satisfies boundary
conditions û = −u f at x̂ = 0 and û → 0 as x̂ → ∞.

If the crack speed ȧ is below the elastic wave speed
c = √

E/ρ, which can be expected to be the typical
case, the expression E − ρȧ2 is positive and equation
(54) can be written as

l2û′′(x̂) = (
1 − g(−û(x̂))

)
û(x̂) (55)

where

l =
√

h
(
E − ρȧ2

)

k
(56)

is an auxiliary variable with the dimension of length.
In terms of the dimensionless ratio α = ȧ/c, equation
(56) is rephrased as

l = l0
√
1 − α2 (57)

where

l0 =
√
hE

k
(58)

is a characteristic length that can be derived from the
basic parameters h, E and k. Note that l0 is a given
constant while l depends on the relative crack speed α.

4.2.1 Solution for a damage power law

For the power law (6), the analytical solution developed
in Guimard et al. (2009) can be presented in the form

û(x̂) = (n + 2)u f

2

(

tanh2
(
nx̂

2l
+ atanh

√
n

n + 2

)

− 1

)

(59)

where tanh is the hyperbolic tangent and atanh is its
inverse. The corresponding strain at x̂ = 0 is

ε(i)
c = û′(0) = u f

l

√
n

n + 2

= u f

√
nk

(n + 2)h(E − ρȧ2)
(60)

Recall that a general formula (49) for strain ε
(i)
c was

developed in Sect. 4.1 based on energy balance argu-
ments. For the present model, the area under the cohe-

sive diagram is given by (9), and one can check that if
this expression is substituted for Gc0, the general for-
mula (49) indeed yields the same result as the present
approach based on an analytical solution of a boundary
value problem leading to formula (60).

The power lawwith n = 1will later be used to check
the numerical procedure developed for rate-dependent
damage models. This case corresponds to a quadratic
stress-displacement relation with Gc0 = ku2f /6 and

ε
(i)
c = √

1/3 u f / l.

4.2.2 Solution for a linear cohesive law

The linear softening model, described by damage law
(7), is one of themost frequently used in the literature. It
corresponds to a linear elastic behaviour of the interface
up to displacement jump u p, followed by linear soft-
ening with full damage at u f . The third parameter of
the model is the elastic interface stiffness, k. The area
under the static stress-displacement diagram is given
by (10). A cohesive law of this type is often called
“linear” because it has a linear softening branch. Tak-
ing into account that the full cohesive diagram consists
of two straight segments (linear elasticity and linear
softening), we will refer here to a triangular cohesive
diagram.

The governing differential equation (55) is written
separately in the interval of growing damage and in the
interval in which the response remains elastic:

l2û′′(x̂) = − u p

u f − u p

(
u f + û(x̂)

)
for x̂ ∈ [0, x̂e]

(61)
l2û′′(x̂) = û(x̂) for x̂ ∈ [x̂e, ∞)

(62)

Here, x̂ = 0 corresponds to the crack tip, at which û =
−u f , and x̂e denotes the point at the boundary between
the elastic zone and the damaging zone, at which û =
−u p. The value of x̂e is not know a priori and must be
determined along with the integration constants from
appropriate boundary and continuity conditions.

The general solution of equation (62) reads

û(x̂) = C1e
x̂/ l + C2e

−x̂/ l for x̂ ∈ [x̂e,∞)

(63)

whereC1 andC2 are integration constants. The solution
that we are interested in must satisfy conditions
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û(x̂e) = −u p (64)

lim
x̂→∞

û(x̂) = 0 (65)

fromwhichC1 = 0 andC2 = −u p ex̂e/ l . ConstantsC1

and C2 are eliminated but x̂e still remains unknown.
The general solution of equation (61) reads

û(x̂) = −u f + C3 sin
√

u p

u f − u p

x̂

l

+C4 cos
√

u p

u f − u p

x̂

l
for x̂ ∈ [0, x̂e]

(66)

where C3 and C4 are additional integration constants.
The solution that we are interested in must satisfy con-
ditions

û(0) = −u f (67)

û(x̂e) = −u p (68)

which imply that C4 = 0 and

C3 = u f − u p

sin
√

u p

u f − u p

x̂e
l

(69)

The remaining unknown, x̂e, can now be determined
from the condition of continuous differentiability of
û(x̂) (which follows from continuity of normal force
in the bar). By matching the derivatives of solutions
(63) and (66) at x̂ = x̂e, we obtain the equation

√

u p(u f − u p) cotg
√

u p

u f − u p

x̂e
l

= u p (70)

from which

x̂e = l

√
u f − u p

u p
arctan

√
u f − u p

u p
(71)

Substituting (71) into (69),wegetC3 = √
u f (u f − u p).

The resulting dimensionless displacement function is
thus described by

û(x̂) =

⎧
⎪⎪⎨

⎪⎪⎩

−u f + √
u f (u f − u p) sin

√
u p

u f − u p

x̂

l
for x̂ ∈ [0, x̂e]

−u p exp

(

− x̂ − x̂e
l

)

for x̂ ∈ [x̂e,∞)

(72)

where x̂e is given by (71). Finally, we can evaluate

ε(i)
c = û′(0) =

√
u pu f

l
=

√
ku pu f

h(E − ρȧ2)
(73)

Since the area under the triangular stress-displacement
diagram is given by (10), one can check again that the
strain obtained by solving the boundary value problem
and given by formula (73) is the same as what would be
obtained from the general formula (49) by substituting
Gc0 according to (10).

5 Bounded-rate damage model

5.1 Formulation of a bounded-rate delayed damage
model

In what follows we will consider a specific form of rate
dependence but the methodology derived here could be
applied to any case of local rate dependence. The prin-
cipal idea of a delayed damage model with bounded
damage rate is to consider that the damage process
cannot be arbitrarily fast and the damage rate never
exceeds a certain limit, which can be expressed as 1/τc
where τc is a characteristic time (considered here as a
material property).

A possible way to construct such a model was pro-
posed in Allix and Deü (1997). Based on the damage
function g([[u]]) determined by a static test, one defines
a slightly modified function gs([[u]]) that is equal to
the original one as long as [[u]] ≤ u f but exceeds 1
for higher values of the displacement jump [[u]]. For
instance, for the power law one can use the expression
specified on the first line of (6) even when the displace-
ment jump exceeds u f , i.e., one defines

gs([[u]]) =
( [[u]]

u f

)n

(74)

In the range [[u]] > u f where the resulting value of
gs is larger than 1, this value does not represent the
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damage anymore, but it can be used for evaluation of
a generalized damage-driving force. According to the
delayed damage model, damage is supposed to grow
only if gs([[u]]) exceeds the current damage, D, and
the damage rate increases with increasing difference
gs([[u]]) − D.

In the simplest case, the rate form of the damage
law could assume proportionality between the rate of
damage and the “driving force”, but then there would
be no bound on the rate and damage could, in princi-
ple, grow arbitrarily fast. A bounded-rate version of the
delayed damagemodel (Allix andDeü 1997) postulates
the evolution law

D,t =
⎧
⎨

⎩

1

τc

(
1 − e−Ac〈gs ([[u]])−D〉) if D < 1

0 if D = 1

(75)

where Macauley brackets 〈. . .〉 denote the positive part
(i.e., 〈x〉 = x if x ≥ 0 and 〈x〉 = 0 if x < 0) and τc
and Ac are nonnegative parameters. Parameter τc has
the dimension of time, and its reciprocal value is the
maximum possible damage rate, which explains why
we refer to a bounded-rate damage model.

If gs([[u]]) ≤ D, the positive part of gs([[u]]) − D
is zero and the formula on the first line of (75) gives
zero damage rate. If gs([[u]]) is only slightly larger
than D, the formula leads to a very low damage rate.
In the limit, for infinitely slow increase of the dis-
placement jump, the behavior predicted by the rate-
independent model with D = g([[u]]) is recovered.
On the other hand, for very fast loading, the damage
rate increases but never exceeds 1/τc. Since the dam-
age growth is delayed as compared to the response of
the rate-independent model with the same applied dis-
placement jump evolution, higher stresses are gener-
ated by the rate-dependentmodel. The value of function
gs can exceed 1, and then the formula on the first line
of (75) would predict further growth of damage even
if D is already equal to 1 and the damage is complete.
This is taken care of by the condition that the formula
should be used only as long as D < 1 and when the
damage variable becomes equal to 1, its further evolu-
tion is stopped; see the second line of (75).

In some studies dealing with delayed damage mod-
els, damage was assumed to be driven by the differ-
ence g([[u]]) − D, or, for continuum damage mod-
els, by g(κ) − D where κ is the maximum previously

reached equivalent strain; see, e.g., Desmorat et al.
(2010). Here, g is the original damage function for the
rate-independent version of the model, which is always
boundedby1. For high rates, this induces a longer delay
of the damage than the presently considered formula-
tion with an unbounded driving force related to the
extended damage function gs . In fact, for a formula-
tion based on g, the value D = 1 is never reached at a
finite time. A critical value slightly smaller than 1 has
thus to be selected for the definition of a fully damaged
material.

Faster propagation of damage during the terminal
stage can be achieved by replacing the original damage
function g by a suitablymodified function gs , as already
described. However, the definition of function gs in the
range where g = 1 may appear quite artificial and to a
certain extent arbitrary. Moreover, there exist softening
models with a long tail that approaches zero stress only
asymptotically (not at a finite value of displacement
jump), which means that function g remains smaller
than 1 for all values of [[u]]. It is then impossible to
define gs different from gwhile preserving the behavior
of the original rate-independent model in the limit of
infinitely slow damage growth.

It may thus be helpful to consider a newly proposed
type of damage evolution law, which is inspired by a
re-interpretation of formula (75) in the special case of
gs given by the power law (74) with exponent n = 1.
In this case, the argument of the exponential function
in (75) can be rewritten as

−Ac

〈 [[u]]
u f

− D

〉

= − Ac

u f

〈[[u]] − u f D
〉

= −A∗
c

〈[[u]] − g∗(D)
〉

(76)

where A∗
c = Ac/u f is a transformed parameter and g∗

denotes the inverse function of the extended damage
function gs , defined here by g∗(D) = u f D. Conse-
quently, a damage evolution law postulated in the form

D,t =
⎧
⎨

⎩

1

τc

(
1 − e−A∗

c 〈[[u]]−g∗(D)〉) if D < 1

0 if D = 1

(77)

is, in the present special case, fully equivalent to the
original law (75).

Graphically, the difference between (75) and (77) is
illustrated in Fig. 3a. The dashed line corresponds to
the rate-independent damage law (i.e., to D = g([[u]])),
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Fig. 3 Graphical interpretation of the damage-driving terms in Eqs. (75) and (77): dependence of damage on displacement jump in
rate-independent case given by a a linear function, b nonlinear function

the solid line to the graph of the extended damage func-
tion gs , and the point marked by a filled circle to the
current combination of displacement jump and damage
attained by a delayed damage model. According to the
original law (75), the damage rate is evaluated from
the difference gs([[u]]) − D, which corresponds to the
vertical distance of the “current state point” from the
inclined solid line, and according to the modified law
(77), the damage rate is evaluated from the difference
[[u]]− g∗(D), which corresponds to the horizontal dis-
tance of the same point from the same line. Since the
line is straight and has slope 1/u f , the vertical distance
multiplied by parameter Ac gives the same result as the
horizontal distancemultiplied by an adjusted parameter
A∗
c equal to Ac/u f .
The foregoing considerations look trivial, but the

important point is that even though g∗ has been intro-
duced as the inverse function of the “extended dam-
age function” gs , we only need to evaluate g∗(D) for
D < 1. Consequently, it is sufficient to invert the origi-
nal damage function g and there is no need to construct
its artificial extension to gs . In graphical terms, the ver-
tical distance in Fig. 3a depends on the shape of the
extended diagram above D = 1 while the horizontal
distance always uses just the original part of the dia-
gram below D = 1. Therefore, the modified law writ-
ten in its general format (77) can be applied to models
with any type of rate-independent damage function g
in a straightforward way, without the need for an artifi-
cial extension from g to gs . It is sufficient to construct

function g∗ by inversion of g in the range where g is a
strictly increasing function, which corresponds to the
range where 0 < D < 1. The values of g∗ at 0 and 1
are then defined by continuous extension.

The rigorous transformationpresented in (76) applies
only to the special case of linear function gs . In this
case, formulations based on (75) and (77) are fully
equivalent. For nonlinear functions, the replacement
of (75) by (77) leads to a different model, as indicated
graphically in Fig. 3b. Here, the horizontal distance is
not proportional to the vertical distance, and the mod-
ified model does not exhibit the same behavior as the
original one. Still, it is ensured that if the displacement
jump increases very fast, the “driving force” (horizon-
tal distance) can be large even if the damage variable
is already close to 1.

For illustration, for the power law (6) the inverse
function is given by

g∗(D) = u f D
1/n (78)

and for the law (7) that corresponds to linear softening,
it is given by

g∗(D) = u pu f

u f − (u f − u p)D
(79)

Physically, g∗(D) corresponds to the displacement
jump that would induce damage D under static load-
ing. The value of g∗ at D = 0 is the damage threshold,
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equal to 0 for the power law (because damage starts
growing right at the onset of loading) and to u p for the
law leading to linear softening. For both laws, g∗(1)
= u f .

5.2 Transformation to dimensionless variables

Let us return to the problem of self-similar dynamic
delamination. Recall that the equation of motion com-
bined with the assumed form of the solution valid for
the dynamic steady process resulted intoEq. (25). In the
rate-independent case, the damage variable was elim-
inated by substituting the damage law, and a second-
order ordinary differential equation (54) was obtained
in Sect. 4.2. For the rate-dependent damage model, Eq.
(25) needs to be solved simultaneouslywith the damage
evolution Eq. (77), which has the character of a first-
order differential equation. Since an analytical solution
is not available for the rate-dependent case, the problem
will be solved numerically.

To simplify the description and to reduce the num-
ber of parameters, it is useful to convert the displace-
ment and the spatial coordinate into dimensionless vari-
ables. The dimensionless displacement is defined here
as ũ = −û/u f , because then ũ = 1 corresponds
to the state at complete damage (when the displace-
ment jump [[u]] = −û attains the critical value u f ).
On the other hand, the spatial coordinate is normalized
by the length parameter l introduced in (56), because
then the coefficient l2 multiplying the term with the
second derivative in the governing equation will be
replaced by 1. Therefore, the dimensionless coordinate
is defined as x̃ = x̂/ l. In rigorous notation, we will
denote by D̃ the damage variable considered as a func-
tion of the dimensionless coordinate x̃ , which means
that D̂(x̂) = D̃(x̂/ l).

Since

û(x̂) = −u f ũ(x̂/ l) (80)

dû(x̂)

dx̂
= −u f

dũ(x̂/ l)

dx̃

dx̃

dx̂
= −u f

l

dũ(x̂/ l)

dx̃
(81)

d2û(x̂)

dx̂2
= −u f

l2
d2ũ(x̂/ l)

dx̃2
(82)

and since l is defined such thath(E−ρȧ2)/kl2 = 1,Eq.
(25) rewritten in terms of the dimensionless variables
reduces to

ũ′′(x̃) =
(
1 − D̃(x̃)

)
ũ(x̃) (83)

For convenience, we use again primes for derivatives,
this time with respect to x̃ .

In the following analyses, the bounded-rate delayed
damage model will be used in its newly proposed form
(77). In the interval in which damage grows mono-
tonically and remains smaller than 1, we can use the
first line on the right-hand side of (77) and drop the
Macauley brackets. Taking into account that

D, t = ∂D

∂t
= dD̃

dx̃

dx̃

dx̂

∂ x̂

∂t
= D̃′ 1

l
(−ȧ) = − ȧ

l
D̃′

(84)

we can rewrite the damage evolution equation (77) in
the partially damaged region as

D̃′ = − l

ȧτc

(
1 − e−Ac(ũ−g̃∗(D̃))

)
(85)

where g̃∗ is the inverse function of the dimensionless
function g̃ defined by g̃(ũ) = g(u f ũ), which leads to
g̃∗(D) = g∗(D)/u f . For the model with a parabolic
cohesive diagram, described by the damage law (6) and
inverse damage function (78) with n = 1, the corre-
sponding dimensionless inverse damage function has
the form

g̃∗(D̃) = D̃ (86)

Note that in (85) we have returned back to the origi-
nal parameter Ac, which was hidden in (77) in the form
of a transformed parameter A∗

c = Ac/u f , introduced
just for simplicity. After conversion to the dimension-
less form, it is more convenient to use Ac, which is
dimensionless and its value can be directly compared
to what was originally used in (75).

For further analysis, it is convenient to introduce a
dimensionless parameter

λ = l

ȧτc
= l0

cατc

√
1 − α2 = λ0

√
1

α2 − 1 (87)

where λ0 = l0/(cτc) is a dimensionless material
parameter and α = ȧ/c is the relative crack speed.
The final form of the dimensionless differential equa-
tion derived from the rate-dependent damage law (77)
is

D̃′(x̃) = −λ
(
1 − e−Ac(ũ(x̃)−g̃∗(D̃(x̃)))

)
(88)

123



60 M. Jirásek, O. Allix

Note that (88) is applicable only in the damage process
zone (zone of incomplete damage), represented here by
the interval (0,∞). In the fully delaminated zone, i.e.,
for x̃ < 0, it has to be replaced by D̃′(x̃) = 0.

Eqs. (88) and (83) represent a set of two differential
equations, one of the first order and the other of the sec-
ond order, for two unknown functions, ũ and D̃. They
have to be solved on [0,∞) with boundary conditions

D̃(0) = 1 (89)

lim
x̃→∞

ũ(x̃) = 0 (90)

lim
x̃→∞

D̃(x̃) = 0 (91)

The solution depends on dimensionless parameters λ

and Ac.

6 Numerical algorithm: the direct shooting method

In general, an approximate solution of Eqs. (83) and
(88) has to be constructed numerically. These second-
and first-order nonlinear differential equations are
solved on the semi-infinite interval [0,∞) and their
solution should satisfy oneboundary condition at x̃ = 0
and two conditions at x̃ → ∞. It will be shown that the
solution can be found efficiently by an adapted version
of the shooting method. The main idea of this method
is that a boundary value problem is transformed into
an initial value problem by adding one or more artifi-
cial initial conditions, and the values imposed by the
added conditions are then iteratively modified until the
solution obtained by numerical integration satisfies the
boundary condition(s) on the other end of the interval.

In the present case, one might start at x̃ = 0, impose
the “true” condition D̃(0) = 1 and two artificial con-
ditions ũ(0) = ū0 and ũ′(0) = ū′

0, and then look for
values of ū0 and ū′

0 for which the numerically inte-
grated solution tends to zero as x̃ approaches infinity.
However, for a general choice of ū0 and ū′

0, the numer-
ical solution would become unbounded and it would be
impossible to define real-valued functions of ū0 and ū′

0
that represent the limits of D̃ and ũ at infinity. It is there-
fore much better to perform the numerical integration
in the opposite direction. Of course, the procedure can-
not really start from x̃ = ∞ with values of D̃ and ũ set
to zero, but it can start from a point that is sufficiently
far from the origin, with assigned initial values which
correspond to the asymptotic form of the solution that
approaches zero as x̃ =→ ∞.

The numerical integration will start at a point x̃ =
x̃s that is sufficiently far from the origin, such that
D̃(x̃s) � 1. For x̃ ≥ x̃s , the effect of damage is negli-
gible and Eq. (83) can approximately be replaced by

ũ′′(x̃) = ũ(x̃) (92)

The solution of this linear differential equation that van-
ishes at plus infinity is

ũ(x̃) = ũse
−(x̃−x̃s ) for x̃ ≥ x̃s (93)

where ũs is the value of ũ at x̃ = x̃s . Note that
ũ′(x̃) = −ũse−(x̃−x̃s ), and so ũ′(x̃s) = −ũs . We still
have to find the corresponding asymptotic form of the
damage field. To keep the presentation as simple as
possible, we consider here function g̃∗ given by (86),
which corresponds to the power damage law (6) with
exponent n = 1. Generalization to other forms of func-
tion g̃∗ would be straightforward. Since both ũ and D̃
are assumed to be small for x̃ ≥ x̃s , we can use the
approximation

e−Ac(ũ(x̃)−D̃(x̃)) ≈ 1 − Ac(ũ(x̃) − D̃(x̃)) (94)

and replace (88) by

D̃′(x̃) = −λAc(ũ(x̃) − D̃(x̃)) (95)

Substituting from (93), we obtain

D̃′(x̃) − λAc D̃(x̃) = −λAcũse
−(x̃−x̃s ) (96)

This is a non-homogeneous linear differential equation,
which has a general solution

D̃(x̃) = λAc

1 + λAc
ũse

−(x̃−x̃s ) + Cex̃ (97)

where C is an arbitrary integration constant. To satisfy
condition (91), we set C = 0 and evaluate

D̃s = D̃(x̃s) = λAc

1 + λAc
ũs (98)

Based on the derived form of the asymptotic solu-
tion, the shootingmethod can start frompoint x̃s instead
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of from infinity. If we select a suitable value of ũs , we
can impose “initial” conditions

ũ(x̃s) = ũs (99)

ũ′(x̃s) = −ũs (100)

D̃(x̃s) = λAcũs
1 + λAc

(101)

and then integrate numerically Eqs. (88) and (83)back-
wards, i.e., with decreasing x̃ . In principle we should
find x̃s and ũs such that the numerical solution would
satisfy the condition D̃(0) = 1, which is the only
boundary condition that has not been taken into account
yet. However, since the governing differential equa-
tions are autonomous (i.e., do not depend explicitly on
the independent variable x̃), it is not even necessary to
iterate on ũs or on x̃s . It suffices to select an arbitrary
x̃s and an arbitrary (but sufficiently small) ũs , perform
numerical integration and find the point x̃ = x̃D at
which D̃(x̃D) = 1. After that, the already computed
solution is simply shifted in space by x̃D to the left,
such that the point atwhich D̃ = 1 gets to the origin and
conditions (99)–(101) are actually valid at x̃ = x̃s−x̃D .
The only restriction is that the initial value ũs must be
sufficiently small. In fact, it is better to first select D̃s

sufficiently small, e.g., D̃s = 10−4, and then compute
from (98) the corresponding

ũs =
(

1 + 1

λAc

)

D̃s (102)

To avoid the need for selecting an arbitrary value of
x̃s , and also for stepping in space in the negative direc-
tion, it is useful to introduce a transformed spatial vari-
able ξ = x̃s − x̃ . The spatial fields are then considered
as functions of ξ , the initial conditions are imposed at
ξ = 0, coordinate ξ is incremented and the values of ũ
and D̃ updated. For the purpose of numerical solution,
Eqs. (88) and (83) are rewritten as

D̃′(ξ) = λ
(
1 − e−Ac(ũ(ξ)−D̃(ξ))

)
(103)

ũ′′(ξ) =
(
1 − D̃(ξ)

)
ũ(ξ) (104)

Note the change of sign on the right-hand side of (103)
as compared to (88), which is caused by the fact that
the primes now denote derivatives with respect to ξ ,
and d/dξ = −d/dx̃ . No change of sign is needed for
the second derivative in (104).

The finite difference approximation is based on the
forward Euler scheme for (103) and on the central dif-

ference scheme for (104). In a typical step number k,
the equations are approximated by

D̃k+1 − D̃k

Δξ
= λ

(
1 − e−Ac(ũk−D̃k )

)
(105)

ũk+1 − 2ũk + ũk−1

(Δξ)2
= (1 − D̃k) ũk (106)

whereΔξ is the step size, and ũk and D̃k are the approx-
imate values of D̃(ξk) and ũ(ξk), with ξk = k Δξ ,
k = 0, 1, 2, . . .. To initialize, the value of D̃0 is directly
set to the selected small value D̃s , and the value of ũ0
is set to ũs given by (102). For the first step, we also
need the value of ũ−1, which is evaluated from the same
asymptotic approximation (93) as ũ0, leading to

ũ−1 = ũs e
−Δξ (107)

After initialisation, the values of damage and displace-
ment are computed using the recursive formulae

D̃k+1 = D̃k + λΔξ
(
1 − e−Ac(ũk−D̃k )

)
(108)

ũk+1 = 2ũk − ũk−1

+(Δξ)2(1 − D̃k) ũk, k = 0, 1, 2, 3, . . .

(109)

The simulation is terminated when D̃k+1 exceeds 1.
Then, the point ξD at which D̃ = 1 is estimated from
the condition

D̃k + (ξD − ξk)λ
(
1 − e−Ac(ũk−D̃k )

)
= 1 (110)

which yields

ξD = ξk + 1 − D̃k

λ
(
1 − e−Ac(ũk−D̃k )

) (111)

Now we can set x̃ = ξD − ξ and plot the computed
solution as function of the original dimensionless coor-
dinate, x̃ , or of the distance from the crack tip, x̂ = l x̃ .

For simplicity, the foregoing numerical scheme has
been developed for a specific form of function g̃∗,
given by (86). To cover the general case, it is suffi-
cient to replace everywhere the term e−Ac(ũk−D̃k ) by
e−Ac(ũk−g̃∗(D̃k )), in particular in formulae (105) and
(111), and at the same time to adjust formula (102) for
the initial value of displacement. Determination of the
asymptotic behavior for x̃ → ∞ depends on the ini-
tial part of cohesive diagram. If nonzero damage occurs
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for an arbitrarily small displacement jump (which is the
case for the power law (6)), the term D̃(x̃) in the lin-
earized expression on the right-hand side of (94) needs
to be replaced by g̃∗′

0 D̃(x̃) where g̃∗′
0 is the derivative

of g̃∗ evaluated at D̃ = 0 (note that, for the model with
a parabolic cohesive diagram, g̃∗′

0 = 1). When this is
taken into account in the derivation, the resulting for-
mula (102) is generalized to

ũs =
(

g̃∗′
0 + 1

λAc

)

D̃s (112)

On the other hand, if damage remains equal to zero
for all displacement jumps below a threshold value u p

(which is the case for the model with a triangular cohe-
sive diagram), equation (88) or (95) should actually be
replaced by D̃′(x̃) = 0 in the elastic zone character-
ized by ũ(x̃) ≤ u p/u f .We can then select point x̃s such
that ũ(x̃s) = u p/u f and the asymptotic displacement
field given by (93) is exact. The numerical scheme is
initialized by setting ũs = u p/u f and D̃s = 0.

7 Reference example and comparison with FE
solution from the literature

7.1 Reference set of material parameters

In the first calculation illustrating the numerical pro-
cedure developed in the preceding section, the values
of primary material parameters listed in Table 1a are
considered, giving rise to the derived parameters eval-
uated in Table 1b. To evaluate parameter u f from the
initial interface stiffness k and static fracture energy
Gc0, it is necessary to specify the shape of the cohesive
curve considered in the example. A power damage law
(6) with n = 1 is used here, which means that rela-
tion (9) can be rewritten as Gc0 = ku2f /6, leading to

u f = √
6Gc0/k. Recall that the corresponding dimen-

sionless inverse damage function g̃∗ has the form (86).

7.2 Integration parameters and numerical accuracy

For each given value of the relative crack speed α, we
determine λ from (87), combine it with the given value
of Ac = 3, and numerically solve the problem consist-
ing of equations (83) and (88) with boundary condi-
tions (89)–(91) using the shooting method described in

Sect. 6. In this way, we obtain the dimensionless dis-
placement ũ and damage D̃ as functions of the dimen-
sionless coordinate x̃ , and we can evaluate the normal-
ized strain at the crack tip, ε̃c = −ũ′(0), which is then
easily transformed into the actual strain at the crack tip,

εc = dû(0)

dx̂
= −u f

dũ(0)

dx̃

dx̃

dx̂
= −u f

l
ũ′(0) = u f

l
ε̃c

(113)

Finally, the axial force in the fully delaminated part is
obtained from (31), the velocity of the fully delami-
nated part from (32), and the rate-dependent fracture
energy from (40).

Consider a crack propagating at 10% of the elas-
tic wave speed. For ȧ = 0.1c we get α = 0.1,
λ = λ0

√
1/α2 − 1 = 0.1

√
100 − 1 ≈ 0.995 and

l = l0
√
1 − α2 = 0.995 l0 = 4.83 × 10−3 m. For

λ = 0.995 and Ac = 3, the initial value of displace-
ment according to (102) is

ũs =
(

1 + 1

λAc

)

D̃s

=
(

1 + 1

0.995 × 3

)

D̃s ≈ 1.335D̃s (114)

We select for instanceΔξ = 10−4 and D̃s = 10−3, and
then we set D̃0 = D̃s = 10−3, ũ0 = ũs = 1.335 D̃s =
1.335×10−3 and ũ−1 = ũs e−Δξ = 1.33488×10−3 as
initial values for the finite difference scheme described
in (108)–(109). After 73,727 steps, the damage at
ξk+1 = 7.3727 is found to be 1.000045 while the
damage at ξk = 7.3726 was 0.999982. By using for-
mula (111), or simply by linear interpolation, we obtain
ξD = 7.372628. The numerical solution plotted as a
function of the auxiliary coordinate ξ is shown in Fig. 4.
To check that the results are really accurate, the solution
has been rerun with a larger step Δξ = 10−3. When
the new curves would be plotted into Fig. 4, they could
not be visually distinguished from the original ones.

A finite difference formula applied to the displace-
ment values ũk = 1.3324555 at ξk and ũk+1 =
1.3325331 at ξk+1 leads to dũ/dξ ≈ (ũk+1−ũk)/Δξ =
0.776 (in higher precision, 0.7762). This is the quantity
that has been denoted as ε̃c and corresponds to the neg-
ative derivative of ũ with respect to x̃ at the crack tip.
The computed values of ε̃c for various combinations
of numerical parameters are listed in Table 2. It turns
out that the accuracy achieved with D̃s = 10−2 and
Δξ = 10−3 is sufficient.
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Fig. 4 Reference case, crack speed ȧ = 0.1 c: a damage and
b dimensionless displacement obtained by the shooting method
with spatial step Δξ = 0.0001, starting from initial damage

D̃s = 0.001 at ξ = 0 and reaching complete damage D̃ = 1 at
ξ = ξD = 7.372628

Table 2 Reference case—accuracy of the numerical solution

Initial damage Spatial step Normalized strain
D̃s Δξ ε̃0

10−3 10−4 0.77619629

10−3 10−3 0.77626748

10−3 10−2 0.77698393

10−2 10−4 0.77619793

10−2 10−3 0.77626914

10−2 10−2 0.77698610

From the computed normalized strain ε̃c = 0.7762,
all the relevant physical quantities can be evaluated.
The actual strain in the fully delaminated part obtained
from (113) is εc = ε̃cu f / l = 4.822 · 10−3, the force
per unit width applied at the end of the bar is according
to (42) given by Fc/b = Ehεc = 1.136 · 106 N/m,
and the speed at which the bar end moves is obtained
from (43) as vc = ȧεc = 4.684 m/s. The dynamic
fracture energy can be expressed from (40) as Gc =
1
2 Ehε2c (1 − α2) = 2711 J/m2.

The numerical solution presented in Fig. 4 can be
replotted in terms of the physical coordinate x̂ = l x̃ ,
which represents the distance from the crack tip, with
the dimensionless displacement ũ transformed into the
real displacement û = −u f ũ; see Fig. 5a, b. For com-
parison, the dashed curve in Fig. 5a indicates the level
of damage that would be obtained for the same dis-

placement jump if the model was considered as rate-
independent, i.e., without a delay in damage evolution.
The difference between the solid and dashed curves is
due to the delay of damage. It is also instructive to look
at the distribution of stresses. The shear stress on the
damaging interface is plotted in Fig. 5c and the normal
stress in the elastic bar in Fig. 5d. Again, the dashed
curve in Fig. 5c corresponds to the shear stress that
would be produced by the same displacement jump if
the model was considered as rate-independent. In that
case, the peak value of shear stress, obtained at dis-
placement jump [[u]] = u f /2 = 0.015 mm, would be
τmax,0 = ku f /4 = 75 MPa, and the shear stress would
vanish at points where the displacement jump exceeds
u f = 0.03 mm. The additional shear stress transmitted
by the interface is rate-dependent and originates from
the delay of damage. Note that the shear stresses evalu-
ated using the rate-independentmodel are fictitious and
are shown here just to get an idea about the rate effect.
These stresses do not satisfy the equations of motion
and if the model was really rate-independent, the distri-
bution of displacement jump along the damage process
zone would need to be recomputed.

7.3 Effects of inertia and rate dependence

The calculation presented in the previous subsec-
tion refers to dynamic delamination of an interface
described by a rate-dependent damage model. It is
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Fig. 5 Reference case, crack speed ȧ = 0.1 c: spatial distribu-
tion of a damage, b displacement, c shear stress on the interface
and d normal stress in the bar; dashed curves in a and c rep-

resent values that would be obtained for the same displacement
field using a rate-independent model

instructive to compare the results to those that would
be obtained with the corresponding rate-independent
model presented in Sect. 4. In fact, to get a complete
picture, we will consider not only dynamic delamina-
tion, but also alternative approaches that exploit static
equilibrium equations, with inertial forces neglected.
Formally, this can be done by setting the bar density
ρ to zero. By exhausting all possible combinations of
basic assumptions, we will be able to separately assess
the effect of inertia and the effect of rate dependence
incorporated in the damage law.

The assumptions regarding inertia (considered or
neglected) and interface damage (rate-dependent or
rate-independent) can be combined in four different
ways. In Table 3, five lines are presented, because the

case of no inertia combinedwith rate-independent dam-
age can have two interpretations (but the results are
essentially the same); see the last two lines referring to
the “static” case.

Let us first discuss the dynamic cases, because
they have already been analyzed. Line 1 summarizes
the results obtained numerically for the rate-dependent
model in Sects. 7.1–7.2, and line 2 presents the results
that follow from the analytically derived formulae for
the rate-independent model presented in Sect. 4.1. For
the given set of material parameters from Table 1 and
for relative crack speed α = 0.1, formula (49) gives
strain εc = 3.587 · 10−3, and the force per unit width
Fc/b = 0.845MN/mandend speedvc = 3.484m/s are
then evaluated from slightly rearranged Eqs. (51)–(52).
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Table 3 Comparison of response values obtained with various combinations of assumptions

Line Case ȧ (m/s) ρ (kg/m3) Damage model τc (μs) α λ ε̃c εc (10−3) Fc/b (MN/m) vc (m/s) Gc (J/m2)

1 Dynamic 972 1600 Rate-dependent 5 0.1 0.995 0.7762 4.822 1.136 4.684 2711

2 Dynamic 972 1600 Rate-independent 0 0.1 ∞ 0.5774 3.587 0.845 3.484 1500

3 Quasi-static 972 0 Rate-dependent 5 0 1. 0.7748 4.789 1.128 4.653 2702

4 Static 972 0 Rate-independent 0 0 ∞ 0.5774 3.569 0.841 3.467 1500

5 Static 0 0 ∞ 0.5774 3.569 0.841 0 1500

Recall that the work of separation per unit delaminated
area is, for the rate-independent model, automatically
equal to the static fracture energy Gc0 = 1500 J/m2.
By comparing these analytical results with the values
in line 1 of Table 3 we find that rate effects increase the
fracture energy by 81 %, while the applied force, end
speed and strain in the delaminated part all increase
by 34 %. This is not by chance, since Fc and vc are
proportional to εc, see Eqs. (42)–(43), and the dynamic
fracture energy is proportional to ε2c , see (40). It is also
worth noting that the rate-independent model is a limit
case of the rate-dependent model, with characteristic
time τc set to zero. The corresponding value of dimen-
sionless parameter λ is infinity, because λ defined in
(87) is inversely proportional to τc.

Now we proceed to the discussion of modeling
approaches that neglect inertial forces. When this
assumption is combined with a rate-dependent dam-
age model, we refer to a quasi-static case; see line 3 in
Table 3. Time still has its direct physical meaning, and
faster processes need to overcome a higher resistance
in terms of the force needed to drive the crack or frac-
ture energy. However, since the density is set to zero,
the “elastic wave speed” is infinite and it does not make
sense to work with the relative crack speed (it would
be zero for all finite values of absolute crack speed).
To get a meaningful comparison, we consider the same
value of absolute crack speed as in the dynamic cases,
i.e., ȧ = 972 m/s. Even though α = 0, parameter λ has
a finite value, but it must be evaluated as λ = l0/(ȧτc).
For the given parameters, we get λ = 1, which slightly
differs from the value 0.995 obtained in the dynamic
case for the same rate-dependent model. The corre-
sponding ε̃c = 0.7748 is computed numerically by
solving the same problem as in the dynamic case, just
with λ set to 1 instead of 0.995. When ε̃c is trans-
formed into the actual strain, εc, it is now multiplied
by u f / l0 while in the dynamic case it was multiplied

by u f / l with l = l0
√
1 − α2 = 0.995 l0. The strain

εc = 4.789·10−3 obtained in the quasi-static case turns
out to be by 0.7 % lower than in the dynamic case, and
the same relative decrease occurs for the force and end
speed. The fracture energy is reduced only by 0.4 %.
So the effect of inertia is, for the given crack speed,
very small, much less important than the effect of rate
dependence of damage evolution.Of course, thiswould
no longer be true for higher crack speeds. If the quasi-
static approach is used, there is no limit on the crack
speed,while for the dynamic approach the force needed
to drive the crack tends to infinity as the crack speed
tends to the elastic wave speed.

When the inertial forces are neglected and the dam-
agemodel is considered as rate-independent, time loses
its physical meaning because the model does not pos-
sess any characteristic time. This case is referred to as
static; see line 4 in Table 3. The response characteris-
tics then do not depend on the crack speed. Parameter
λ is infinite, and the value of ε̃c = ε̃c0 = 1/

√
3 is the

same as for the rate-independent damage model used
in dynamics. However, the transformation to εc is now
done using factor u f / l0 instead of u f / l, and the result
is by 0.5 % smaller than in the dynamic case. The same
holds for the force and end speed, while the fracture
energy is not reduced, since it is always equal to Gc0 if
the damage model is rate-independent.

In fact, most of the results presented in line 4 of
Table 3 would remain the same for any other crack
speed. This brings us to another interpretation of the
static case, presented in line 5. Suppose that we con-
sider the actual physical process as infinitely slow,
i.e., we take the limit of ȧ → 0+. For such a pro-
cess, it does not matter whether we set density to zero
or to its real value, because the acceleration vanishes
and so do the inertial forces. Also, it does not mat-
ter whether we consider the damage model as rate-
dependent or rate-independent, because the damage

123



66 M. Jirásek, O. Allix

rate approaches zero and both types of formulation
lead to the same response. The corresponding value of
parameter α = ȧ/c = ȧ

√
ρ/E is zero because ȧ = 0

and E > 0 (so it does not matter whether we set ρ = 0
or ρ > 0), and parameter λ tends to infinity. Thismeans
that ε̃c = 1/

√
3 can be expected to be obtained in the

limit when λ → ∞, independently of the value of
Ac, which is the other dimensionless parameter that
normally affects the outcome of the numerical proce-
dure. The resulting force needed to drive the crack in a
static way is Fc0 given by formula (53), and the frac-
ture energy is Gc0. These results are the same as for a
non-zero crack speed handled by a model that neglects
inertia forces and rate dependence of damage. The only
difference between these cases (lines 4 and 5) is in the
end speed, vc. To make formula (52) applicable to the
case when α = 0 and c = ∞, it is good to divide both
sides by α and rewrite the equation as

v
(i)
c

ȧ
= εc0√

1 − α2
(115)

For α = 0, this gives v
(i)
c = εc0ȧ. So if the crack

speed has a given nonzero value, as in line 4 of Table 3,
we obtain a nonzero end speed v

(i)
c , in the present case

equal to 3.569·10−3×972m/s= 3.467m/s. In the limit
of crack speed ȧ approaching zero, v

(i)
c tends to zero

as well, but the ratio v
(i)
c /ȧ tends to a known nonzero

limit, εc0 = √
2Gc0/(hE). Even though formula (52),

and thus also (115), is valid for the rate-independent
damage model only, the same limit of vc/ȧ would be
obtained for the rate-dependent model. The reason is
that when the relative crack speed α tends to zero,
parameter λ tends to infinity and ε̃c tends to ε̃c0 inde-
pendently of the value of Ac.

7.4 Solution over the full range of crack speeds

Similar calculations as in Sect. 7.2 can be performed
for other crack speeds. A special case arises for zero
crack speed, because for ȧ = 0 equation (87) yields
λ = ∞.Of course, it is not possible to use the numerical
algorithm with parameter λ set literally to infinity, but
one can use a very high value. The numerical results
then become very close to the analytical solution for
the rate-independent model, presented in Sect. 4.2.

Figure 6a shows the damage profiles in front of the
crack tip and Fig. 6b shows the displacement profiles.

The crack speed is seen to have a strong effect on these
profiles, especially on the displacements. The solid
curves that correspond to the zero crack rate in Fig. 6
have been constructed based on analytical expressions,
and the dashed curves represent numerically computed
results for crack speeds from 0.1 c to 0.9 c. Fig. 6a also
contains another solid curve constructed for the oppo-
site extreme case, ȧ = c, which is just a theoretical
limit.

The delamination zone (damage process zone) is
bounded on one side by the crack tip, at which the
damage variable is equal to 1, and on the other side it
should be bounded by the point at which damage just
starts growing. However, the presentmodel uses a dam-
age lawwith zero threshold, and so the damage variable
is in theory greater than zero at all points of the inter-
face. On the other hand, we know that damage decays
to zero exponentially and fromFigs. 5a and 6a it is clear
that it becomes negligible at some finite distance from
the crack tip. To be able to characterise the size of the
delamination zone, we consider this zone as extend-
ing from the crack tip to the point where D = 0.001.
Fig. 7a shows the dependence of the size of delamina-
tion zone on the relative crack speed. The solid curve
corresponds to the rate-dependent model and, for com-
parison, the dashed curve shows the results for the rate-
independent model, which can be analytically deduced
from equations (56) and (59); see Sect. 9.3 for a deeper
discussion.

It is interesting that, for the rate-independent model,
the size of the delamination zone decreases with the
crack speed while the opposite trend is obtained in
the intermediate range of crack speeds in the rate-
dependent case. Independently of the crack speed,
the displacement obtained with the rate-independent
model is a unique function of the dimensionless coor-
dinate x̃ = x̂/ l. With increasing crack speed ȧ, the
characteristic length l decreases and tends to zero as
ȧ tends to the elastic wave speed, c. No matter which
specific definition of the process zone size is used, this
size scales with l and thus decreases with increasing
crack speed. On the other hand, for the rate-dependent
damage model, higher crack speeds in general lead to
lower spatial gradients of damage and thus to longer
delamination zones. Under steady dynamic conditions,
the spatial gradient of damage is equal to the dam-
age rate divided by the crack speed, and the damage
rate cannot exceed the limit value 1/τc. This consid-
eration also leads to the hypothetical limit distribution
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of damage for crack speed equal to the elastic wave
speed, plotted in Fig. 7a as the solid straight line with
slope 1/(cτc). For lower crack speeds, the damage rate
is close to its limit value in a shorter zone near the
crack tip and the damage profiles start at the crack tip
with an almost linear segment that gets steeper as the
crack speed decreases. For low crack speeds, the dam-
age rates are also low and their bound controled by τc
becomes irrelevant. The damage profiles then approach
the analytical solution valid for the rate-independent
model.

As seen in Fig. 7a, the size of the delamination
zone obtained with the rate-dependent model remains

between 34 and 51 mm, for all crack speeds. For com-
parison, the maximum shear stress that develops on
the interface is plotted in Fig. 7b as function of the
crack speed. The value of maximum shear stress starts
at τmax,0 = 75MPa for the static case and dramatically
increases with increasing crack speed. For the rate-
independent model, it would remain equal to 75 MPa
for all crack speeds; see the dashed horizontal line.

In Fig. 8, the force needed to drive the crack at a
constant speed is plotted against the crack speed. With
increasing crack speed, the force increases dramati-
cally, but it remains finite for all crack speeds smaller
than c. This becomes clear from the graph in Fig. 8b,
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which is plotted in logarithmic scale on the vertical
axis. The fracture energy, Gc, is represented by the
thick solid curve in Fig. 9, again both in linear and
semilogarithmic scales.

For instance, for a crack propagating at 82 % of
the elastic wave speed, the force is 3000 times larger
and the fracture energy is by 7 orders of magnitude
larger than in the static case, so it becomes virtually
impossible to drive the crack that fast. Also, even if
such a high force could be exerted, the resulting normal
stress would be extremely high and the material would
hardly be able to transmit it. Therefore, our analysis of

the behavior for crack speeds close to the elastic wave
speed is related to the mathematical properties of the
model rather than to the real physical response. The
analysis reveals that a formulation with bounded dam-
age rate does not lead to any reduction of the theoretical
crack speed limit.

In Guimard et al. (2009), inspired by an idea pro-
posed in Kanninen and Popelar (1985), a fitting of the
rate-dependent fracture energy over the range of exper-
imentally accessible crack speeds was proposed. For
the given studied composite material, the maximum
accessible crack speed was about 2000 m/s. In fact, for
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higher speeds the computed strain would exceed the
limit strain of the tested material. The proposed fitting
was based on the empirical formula

Gc(ȧ) = Gc0

1 −
(

ȧ

vlim

)m (116)

where m is an exponent with typical values between
0.5 and 0.9, and vlim is a parameter with the dimension
of velocity. The optimal values of vlim and m were
then determined by fitting numerical data extracted
from finite element analyses. If the fitting procedure
is applied to the present numerical results in the range
of crack speeds between 0 and 2400 m/s, the result-
ing optimal parameters are vlim = 3080 m/s and m =
0.646. In the considered range, the agreement between
accurately computed numerical results (solid curve)
and approximation formula (116) (dashed curve) is
quite good; see Fig. 9a. Nevertheless, the notation vlim
used in Guimard et al. (2009) and the denomination
limit speed used in this paper were misleading. In fact,
as it clearly appears from Fig. 9b, the theoretical limit
speed for the proposed rate-dependent model is actu-
ally c.

8 Parametric analysis

Let us now systematically explore the role of individ-
ual parameters and the overall behavior of the system.
After conversion to dimensionless form, the equations
to be solved are (83) and (88). The solution depends
on parameters λ and Ac. Parameter Ac is one of two
parameters of the rate-dependent damage law (the other
parameter being τc). Recall that parameterλ introduced
in (87) is given by

λ = λ0

√
1

α2 − 1 (117)

where

λ0 = l0
cτc

=
√

Eh

k

1

cτc
= 1

τc

√
hρ

k
(118)

is a dimensionless material parameter that depends on
the mass of the bar per unit area of the interface, hρ,
elastic interface stiffness, k, and characteristic time of

damage growth, τc. While λ0 is a material parameter,
the value of λ depends not only on the material but also
on the relative crack speed, α = ȧ/c.

The limit λ → ∞ corresponds to the static case with
ȧ = 0, and λ = 0 corresponds to the other extreme
crack speed, ȧ = c. To get a more natural relation
between the crack speed and the dimensionless param-
eter, let us define a new parameterμ = 1/λ2 and trans-
form (117) into

μ = μ0
α2

1 − α2 = μ0
ȧ2

c2 − ȧ2
(119)

where

μ0 = 1

λ20
= kτ 2c

hρ
(120)

By inversion, the relative crack speed can be expressed
in terms of the ratio μ/μ0 as

α =
√

μ/μ0

1 + μ/μ0
(121)

For example, cases with μ = 0.1μ0, μ0 and 10μ0

correspond to relative crack speeds α = ȧ/c ≈ 0.30,
0.71 and 0.95.

One advantage of using parameter μ instead of λ is
that equation (88) can be rewritten as

−√
μ D̃′(x̃) = 1 − e−Ac(ũ(x̃)−g̃∗(D̃(x̃))) (122)

and the static limit is easily obtained by setting μ = 0.
In this special case, (122) reduces to ũ(x̃) = g̃∗(D̃(x̃)),
which is the inverse dimensionless form of the rate-
independent damage law D = g(u). In general, the
boundaryvalueproblemconsistingof differential equa-
tions (122) and (83) combined with boundary condi-
tions (89)–(91) is solved numerically. For each com-
bination of parameters μ and Ac, the corresponding
value of ε̃c = −ũ′(0) can be computed. Therefore, ε̃c
can be considered as an implicitly defined function of
μ and Ac. Once this function becomes available, it is
straightforward to evaluate the dependence of various
physical quantities of interest (force, bar end speed,
fracture energy) on the crack speed. The key point is
that this can be done for an arbitrary combination of
material parameters such as E , ρ, h, k, Gc0, or τc. The
influence of these physical properties is fully captured
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by the transformation betweenμ and ȧ, and a complete
description of the system reduces to a dimensionless
function ε̃c of two dimensionless arguments,μ and Ac.
Graphically, this function can be presented by plotting
the dependence of ε̃c on μ for several selected values
of Ac. Such graphs will be referred to as the master
curves.

Master curves for a model built as a rate-dependent
extension of the damage power law (6) with exponent
n = 1 (i.e., with the dimensionless inverse damage
function g̃∗ given by (86)) are plotted in Fig. 10a in
logarithmic scale, which makes it possible to cover an
extremely wide range. Parameter Ac has been set to
3 as a typical value (see the thick solid curve), and
then to 0.1, 1, 10 and 100 for comparison, to show the
influence on the master curve. In all cases, ε̃c mono-
tonically increases with increasing μ. In the limit of
μ → 0+, all curves approach the same value, inde-
pendent of Ac. This unique limit value represents the
normalized strain that would be obtained with the rate-
independent version of the model, for which Ac plays
no role. In Sect. 4.1 it was shown that the strain at the
crack tip, εc0, is for the rate-independent model given
by (50), and the corresponding normalized strain is

ε̃c0 = l0
u f

εc0 =
√

Eh

k

1

u f

√
2Gc0

hE
= 1

u f

√
2Gc0

k
(123)

For the presently considered power damage law with
exponentn = 1, the area under the static cohesive curve
is Gc0 = ku2f /6, and so ε̃c0 = 1/

√
3. In general, ε̃c0

is a dimensionless constant related to the shape of the
cohesive diagram. Numerical results plotted in Fig. 10a
indeed tend to 1/

√
3 as μ tends to zero. To better show

the initial trend at low crack speeds (i.e., for small val-
ues of μ), the graphs are replotted in Fig. 10b with
ε̃c/ε̃c0 − 1 on the vertical axis; more detailed discus-
sion will follow in Sect. 9.3. Even though the shape of
the curve for the very high value Ac = 100 may seem
unusual, it is the correct one and has been verified using
numerical calculations with high accuracy.

From a master curve with ε̃c plotted as function of
μ ≡ 1/λ2, we can construct (for a given set of mate-
rial parameters) the corresponding curves with various
physical quantities plotted as functions of the crack
speed. Primary physical quantities of interest include
the force needed to drive the crack, Fc, the speed at
which the free end of the bar is moving during steady
crack propagation, vc, and the fracture energy, Gc. Let
us start from the rate-dependent fracture energy Gc

given by (40). Substituting expression (113) for strain
εc and making use of definition (56) of length l, we
obtain

Gc = 1
2hε2c (E − ρȧ2) = 1

2h
u2f
l2

ε̃2c (E − ρȧ2)

= 1
2ku

2
f ε̃

2
c (124)
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For zero crack speed, the relation between Gc0 and
ε̃c0, already derived in (123), is recovered as a special
case. Since Gc0 = ku2f ε̃

2
c0/2, equation (124) can be

rewritten as

Gc = Gc0
ε̃2c

ε̃2c0
(125)

Let us emphasize that ε̃c0 is a dimensionless con-
stant dependent exclusively on the shape of the rate-
independent cohesive curve. For the damage law con-
sidered here, we have ε̃c0 = 1/

√
3 and formula (125)

reads Gc = Gc0ε̃
2
c/3.

The force needed to drive the crack at the given crack
speed, Fc, and the speed of the fully delaminated zone,
vc, can be obtained from equations (45)–(46), rewritten
here as

Fc = b
√
2hEGc

1√
1 − α2

= b
√
2hEGc0

ε̃c

ε̃c0

1√
1 − α2

= ε̃c

ε̃c0

Fc0√
1 − α2

= ε̃c

ε̃c0
F (i)
c (126)

vc

c
=

√
2Gc

hE

α√
1 − α2

=
√
2Gc0

hE

ε̃c

ε̃c0

α√
1 − α2

= ε̃c

ε̃c0

v
(i)
c

c
(127)

Recall that F (i)
c and v

(i)
c are the force and the bar end

speed evaluated for the rate-independent model at the
same crack speed, and Fc0 is the static force (i.e., the
force in the limit of crack speed approaching zero).

From the expressions in (125)–(127) combined with
(120)–(121) it is clear that the master curves in Fig. 10a
contain complete information on rate effects for all pos-
sible combinations of parameters. For a given material,
the corresponding value of μ0 can be evaluated from
(120), and parameter μ can then be mapped onto the
relative crack speed using formula (121). For instance,
for the reference material parameters listed in Table 1,
the value of μ0 is about 100. This means that μ = 100
corresponds to the relative crack speed ȧ/c ≈ 0.71.
In Fig. 10a we can see that for this value of μ and
for Ac = 3, the value of ε̃c is about 100, and thus
the fracture energy is about 30,000 times larger than
in the static limit, as follows from equation (125) with
ε̃c0 = 1/

√
3, and the force needed to drive the crack

at this speed is about 250 times larger than in the static

limit, as follows from equation (126) with ε̃c0 = 1/
√
3

and α = 0.71. On the other hand, μ = 10 corresponds
to the relative crack speed ȧ/c ≈ 0.3, and the value
of ε̃c found in Fig. 10a for Ac = 3 is about 2 (a more
precise value is 1.86). Thus the fracture energy would
be roughly 12 times larger than in the static limit (more
precisely, 10.4 times larger), and the force would be
about 3.4 times larger. This is consistent with the pre-
vious results obtained for the particular material prop-
erties and presented in Figs. 8, 9. The advantage of the
dimensionless master curves is that they are applicable
to other combinations of material properties (and other
bar thicknesses). For a bar with μ0 = 10, the increase
of fracture energy by one order of magnitude would
occur at relative crack speed around 0.7 (provided that
Ac is still equal to 3).

Based on the master curves and on equations (120)–
(121) and (125)–(127), it is easy, for each specific com-
bination of material parameters and bar thickness, to
transform themaster curve into the corresponding plots
of normalized force F/Fc0, normalized speed vc/c and
normalized fracture energyGc/Gc0 versus normalized
crack speed ȧ/c. For the reference set of parameters,
such plots are shown in Fig. 11a–c. In linear or semilog-
arithmic scales, the force graph would have the same
shape as in Fig. 8 and the fracture energy graph would
have the same shape as in Fig. 9, just with dimen-
sionless variables on both axes. To provide additional
insight, the graphs in Fig. 11a, c show the normalized
force increase and the normalized increase of fracture
energy due to rate effects in logarithmic scale. The
dashed lines correspond to analytical approximations
(132)–(134), to be derived later.

The graphs can be replotted for various combina-
tions of parameters, which is useful for identification
of material properties from real tests. As an exam-
ple, Fig. 11d shows the dependence of relative force
increase on relative crack speed for three different com-
binations of parameters Ac and μ0. Suppose that all
material properties characterizing the rate-independent
response have been identified from static tests and that
the mass density ρ is known. The remaining unknown
parameters are Ac and τc, and parameter τc is uniquely
linked to μ0 by (120). If only one dynamic delamina-
tion test is available and themeasured data indicate that
the applied force increased by 70% of the static value
leads to the crack speed equal to 10%of the elasticwave
speed, then it is possible to find many combinations of
Ac andμ0 thatwould reproduce this behaviour; three of
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no
rm

al
iz
ed

fo
rc
e
in
cr
ea
se
,
F
c
/
F
c
0
−

1

0.250.20.150.10.050

3

2.5

2

1.5

1

0.5

0

Fig. 11 Dependence of a relative force increase, b normalized
bar end speed, and c relative increase of fracture energy on rel-
ative crack speed for the reference material with Ac = 3 and

μ0 = 100; d dependence of relative force increase on relative
crack speed for three sets of material parameters

them are shown in Fig. 11d. However, if an additional
test shows that the applied force increased by 142%
of the static value leads to the crack speed equal to
15% of the elastic wave speed, then the optimal com-
bination of parameters Ac = 3 and μ0 = 260 can
be uniquely identified from the graphs. Subsequently,
parameter τc = √

hρμ0/k can be determined from μ0

and from the already available parameters (bar thick-
ness, h, bar material density, ρ, and elastic interface
stiffness, k).

9 Comparison between rate-dependent and
rate-independent models

9.1 Global response characteristics

One objective of this paper is to analyse the differences
caused by the extension to bounded-rate delayed dam-
age as compared to the initial rate-independent version
of the model. In fact, the best solution of this problem
would be to derive an analytical expression reflecting
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the combined effect of the two additional parameters
introduced to describe the rate effect, τc and Ac. Unfor-
tunately, such relations are not available, and one needs
to rely on numerical determination of some character-
istic curves, such as the relative increase of the criti-
cal strain, force or fracture energy. Nevertheless, some
analytical insight may be obtained in the extreme cases
of low or high crack speeds, which will be treated in
Sects. 9.3–9.4.

Even though, for rate-independentmodels, the shape
of the cohesive curve has no influence on the global rate
effect, this is not necessarily the case for rate-dependent
models. Therefore, the comparison will be made here
not only for the power damage law (6) with exponent
n = 1, which leads to a parabolic shape of the cohesive
curve, but also for damage law (7), which leads to a
triangular cohesive curve (i.e., to linear softening).

The inverse damage function for damage law (7)was
specified in (79), and its dimensionless form is

g̃∗(D) = g∗(D)

u f
= u p

u f − (u f − u p)D
= η

1 − (1 − η)D

(128)

where η = u p/u f is a dimensionless parameter that
corresponds to the ratio between the displacement jump
at peak stress, u p, and displacement jump at full delam-
ination, u f . In this comparative calculation, all primary
material parameters, including the interface stiffness
k and the static fracture energy Gc0, are supposed to
have the reference values specified in Table 1a. For-
mula u f = √

6Gc0/k, which was used for evaluation
of the derived parameter u f in Table 1b, is specific to
the power damage lawwith exponent n = 1. In order to
get the same value of u f for the model with a triangu-
lar cohesive diagram, we need to set u p = u f /3, i.e.,
η = 1/3, because then ku pu f /2 = ku2f /6 and formula
(10) gives the same result as formula (9) with n = 1.
In the rate-independent case, the dependence of global
characteristics (such as the fracture energy, strain in
the fully delaminated segment, or applied force) on the
crack speed would be the same for both cohesive laws,
only the shapes of the damage and displacement pro-
files would differ. Let us note here that by enforcing k,
u f and Gc0 to be the same for both cohesive diagrams,
we obtain different values of themaximum shear stress,
as shown in the bottom part of Fig. 2. The stress at the
peak of the rate-independent cohesive diagram is given
by τmax = kηu f = ku f /3 for the triangular diagram

with η = u p/u f = 1/3, and by τmax = ku f /4 for the
parabolic diagram.

The graphs presented in Figs. 12–14 have been con-
structed for material parameters presented in Table 1,
except for the value of characteristic time τc, whose
effect is examined in Fig. 12. In order to assess
the rate effects, it is instructive to compare, for a
given applied force, the crack speeds obtained for
the rate-independent model and for the rate-dependent
model with various values of τc. Recall that the rate-
independent model can be considered as a limit case
of the rate-dependent one, with τc set to zero. For each
fixed value of the applied force, increasing τc leads
to a reduction of the crack speed; see Figs. 12a, c. In
Guimard et al. (2009), the bounded-rate delayed dam-
age formulation was introduced to reproduce the mea-
sured crack speed, which otherwise would have been
between three and four times larger. It appears that,
for the treated example characteristic of a delamina-
tion mode-II specimen, the results are very sensitive
to the value of τc, especially for values close to 1 μs.
Even for values around 2 μs, the rate effect is quite
important, as noticed in Guimard et al. (2009). This is
probably more obvious from Fig. 12b, d, where the rel-
ative increase of the applied force with respect to the
rate-independent model is displayed as a function of
the relative crack speed.

Even though the overall trend is the same, impor-
tant differences exist between the results obtained with
the rate-dependent extensions of two different damage
functions. It turns out that rate effects are more pro-
nounced for the model with a triangular cohesive dia-
gram than for the parabolic one. The reason for these
differences will be discussed in the next subsection.

9.2 Influence of shape of cohesive curve on the
process zone and consequences for rate effects

Since all the primary parameters are kept the same,
the differences between the global responses for the
rate-dependent extensions of models with parabolic
and triangular cohesive diagrams are due to the dif-
ferent forms of function g̃∗ presented in Fig. 13, which
induce different profiles of damage and displacement
jump along the process zone, depending of the rela-
tive crack speed. In Fig. 14a, c, the damage profiles for
the two models are displayed for the reference param-
eters from Table 1. Due to the threshold of damage
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Fig. 12 Influence of the characteristic time τc on the crack speed
as function of the applied load for a parabolic and c triangular
cohesive curve; and the relative increase of the applied force with

respect to the value obtained with the rate-independent model as
function of the relative crack speed for b parabolic and d trian-
gular cohesive curve; parameter Ac = 3 is fixed

introduced in the model with triangular cohesive dia-
gram, the process zone is more concentrated than for
the parabolic one. Therefore, the gradient of damage
is more pronounced for the model with triangular dia-
gram. Since the time derivative is related to the spa-
tial derivative through the relation ∂/∂t = −ȧ d/dx̂ ,
the damage rate is globally higher for the triangular
model, which explains the more pronounced effect for
that model. For relative crack speeds close to 1, the
rate of damage approaches 1/τc in a large part of the
process zone for both models, which implies that those
differences become less significant.

Another peculiar effect of the delayed damage for-
mulation is that it extends the size of the process
zone for increasing crack speed. For a rate-independent

model, the damage profile depends on x̃ = x̂/ l only.
Therefore in that case, as l decreases with the relative
crack speed, the profile of the damage (i.e., the process
zone) becomes more localised. The opposite trend is
obtained for the rate-dependent model, at least for the
parameters used in this example. It is to be noted that
the size of the process zone is not a property of the
interface only. In fact, it is a structural property, as is
documented by the expression for the dimensionless
parameter μ. Therefore, rate effects cannot be seen as
intrinsic to the interface. For instance, it is impossible
to express the fracture energy Gc as a unique function
of the crack rate, ȧ, even if all properties of the inter-
face (i.e., the static cohesive diagram and parameters
Ac and τc) are fixed.
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9.3 Analytical approximation for low crack speeds

The case of low relative crack speed is of particular
interest, since it is the one which is mostly encountered
in experiments. To get a better idea about the initial
increase of ε̃c (for small μ), the master curves were
replotted in Fig. 10b in terms of the relative increase,
defined as ε̃c/ε̃c0 − 1, where ε̃c0 = 1/

√
3 is the value

of ε̃c that corresponds to the zero-rate limit (for the
model based on a parabolic cohesive diagram). From
this graphical representation it is clear that, in a certain
range, the curves can be approximated by straight lines.
It can be checked that the slope of these lines, which
are plotted in logarithmic scale, is 1/2. Therefore, the
increase of ε̃c is initially proportional to the square root
of parameter μ. This can be theoretically justified by
the fact that, for low crack speeds, ũ can be expected
to remain close to D̃ (i.e., to the value of g̃∗(D̃)) and
the exponential function in (122) can be approximately
replaced by a linear one. The equation then reduces to
a linear differential equation,

ε D̃′(x̃) = ũ(x̃) − D̃(x̃) (129)

and the dimensionless solution becomes dependent
only on one dimensionless parameter, ε = √

μ/Ac,
and not on μ and Ac separately.

For low crack speeds, the value of ε is small. By
asymptotic expansion of the solution in terms of powers
of ε, one could construct an approximation of the dis-
placement and damage fields valid for low crack speeds
and show that the dependence of ε̃c on ε must have the

form ε̃c = ε̃c0 + ε̃c1ε + O(ε2) where ε̃c0 = 1/
√
3

is the value of ε̃c obtained for μ = 0 (static limit,
see Sect. 4.1), and ε̃c1 is some dimensionless constant.
Since ε = √

μ/Ac, the asymptotic expansion leads to
the approximation

ε̃c ≈ 1√
3

+ ε̃c1

√
μ

Ac
(130)

Instead of trying to find ε̃c1 analytically, we can evalu-
ate it by fitting of the numerically computed results for
low values of μ, which leads to ε̃c1 = 1/

√
6.

Approximation (130) is valid for small values of μ,
i.e., for low crack speeds, for which ȧ/c ≈ √

μ/μ0

where μ0 = kτ 2c /(hρ); see (120). It is thus possible to
rewrite (130) in terms of the crack rate as

ε̃c ≈ 1√
3

+ τc

Ac

√
k

6hρ

ȧ

c
(131)

Substituting this into (125)–(127), we construct first-
order approximations

Gc

Gc0
= ε̃2c

ε̃2c0
= 3 ε̃2c ≈ 1 + τc

Ac

√
2k

hρ

ȧ

c
(132)

Fc
Fc0

= ε̃c

ε̃c0

1√
1 − α2

=
√
3 ε̃c√

1 − α2

≈ √
3

(
1√
3

+ τc

Ac

√
k

6hρ

ȧ

c

) (

1 + ȧ2

2c2

)

≈ 1 + τc

Ac

√
k

2hρ

ȧ

c
(133)

vc

ȧ
= vc

αc
=

√
2Gc0

hE

ε̃c

ε̃c0

1√
1 − α2

≈
√
2Gc0

hE
+ τc

Ac

√
Gc0k

h2Eρ

ȧ

c
(134)

which allow to compare the global characteristics for
low crack speeds to those for infinitely slow crack prop-
agation. The same first-order approximations are also
valid when comparing the global characteristics for
the rate-dependent model to the rate-independent one
because the differences between the rate-independent
quantities and the static limit case are of the second
order in ȧ/c. Recall that, for the rate-independent dam-
agemodel, the effect of inertia forces is reflected by the
factor 1/

√
1 − α2, which is then in (133) approximated
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Fig. 14 Spatial distribution of a damage and b normalized displacement for rate-dependent extensions of models with parabolic and
triangular cohesive diagrams, for crack speeds ȧ between 0.1 c and 0.9c

by 1 + ȧ2/(2c2) and has no effect on the first-order
expansion. The same holds for (134), where the inter-
mediate step is skipped.

Since c = √
E/ρ, approximation (132) could be

rewritten in terms of the absolute crack speed as

Gc

Gc0
≈ 1 + τc

Ac

√
2k

hE
ȧ (135)

This shows that rate effect on the fracture energy does
not solely depend on the interface characteristics but
also on the stiffness of the elastic bar. The same could
be said about the rate effect on the force and bar end
speed; see (133)–(134).

From approximations (131)–(135) it can be deduced
that the key parameter which controls the rate effect in
the low-speed regime is the ratio τc/Ac. This is natural,
since for slow processes the driving force [[u]]−g∗(D)

remains small and if the exponential function in the
damage evolution law (77) is expanded into Taylor
series, the linear part of the approximation can be writ-
ten as

D,t = A∗
c

τc

([[u]] − g∗(D)
) = Ac

τc

[[u]] − g∗(D)

u f

= Ac

τc

(
ũ − g̃∗(D)

)
(136)

To be able to identify parameters Ac and τc sepa-
rately, one should consider not only the regime of low
crack speed but also the intermediate one. The opposite

extreme case when τc alone is the main control param-
eter of the rate effect will be examined in Sect. 9.4.

The validity of approximations (132)–(133) is con-
firmed by the graphs in Fig. 15, which show the relative
increase of the applied force and fracture energy with
the relative crack speed, evaluated for the reference set
of parameters, leading to μ0 = 100. The thick dashed
curves correspond to the model with a parabolic cohe-
sive diagram, for which the low-speed approximations
are given by (132)–(133). Similar approximations can
be constructed for the model with a triangular cohe-
sive diagram, only the values of ε̃c0 and ε̃c1 need to be
recalculated. The value of ε̃c0 can be obtained analyti-
cally from equation (123), which has a general validity.
For the triangular cohesive diagram, the static fracture
energy is Gc0 = ku pu f /2, and substituting this into
(123) we get ε̃c0 = √

u p/u f = √
η. The particular

choice in our examples is η = 1/3, and so ε̃c0 has the
same value 1/

√
3 as for the model with the parabolic

cohesive diagram, and equation (130) remains valid.
The value of ε̃c1 must be estimated numerically. For
η = 1/3, the result is ε̃c1 ≈ 0.765. Therefore, for the
model with the triangular cohesive diagram, the fac-
tor 1/

√
6 in equation (131) would need to be replaced

by 0.765, and equations (132)–(134) would need to be
modified accordingly. As a result, the dotted straight
lines in both parts of Fig. 15 that represent the first-
order approximation for the model with triangular dia-
gram are vertically shifted with respect to the lines for
the model with parabolic diagram. This means that if
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(solid) cohesive diagrams, and their linear approximation for low crack speeds (dotted)

all basic parameters remains the same, the model with
triangular diagram gives a stronger rate effect. How-
ever, one could obtain the same rate effect (at least
in the range of low crack speeds) for both models if
the fraction τc/Ac is properly adjusted. For the model
with triangular diagram, this fraction would need to be
reduced by the factor 1/(0.765

√
6) ≈ 0.534 as com-

pared to the model with parabolic diagram. This could
be achieved by decreasing τc, by increasing Ac, or by
combining both modifications.

An estimate of the size of damage process zone
can be constructed by exploiting the analytical solu-
tion available for the rate-independent model (which
also approximately applies to the rate-dependentmodel
if the crack speed is very low). For the model with
parabolic cohesive diagram,we can exploit the solution
given by (59) with n = 1. Substituting û = −10−3u f

(which corresponds to D ≈ 0.001, considered as the
conventional value defining the boundary of the pro-
cess zone) and l = l0, we obtain an analytical formula
for the size of the process zone,

Ld0 = 2l0

(

atanh

√

1 − 2

3
× 10−3 − atanh

√
1

3

)

(137)

For l0 = 4.76 mm we get Ld0 = 35.14 mm, which is
an agreement with the values plotted in Fig. 7a in the
range of ȧ/c ≤ 0.2.

For the model with triangular cohesive diagram, the
boundary of the process zone is well defined because
damage remains equal to zero for [[u]] ≤ u p. In the
rate-independent case, the size of the process zone is
equal to x̂e given by formula (71) that was derived in
Sect. 4.2.2. At low crack speeds, this can also be used as
an estimate for the rate-dependent model. Substituting
l = l0 and u p = ηu f into (71), we obtain

Ld0 = l0

√
1 − η

η
arctan

√
1 − η

η
(138)

For l0 = 4.76 mm and η = 1/3, this gives Ld0 =
10.54 mm, which is in agreement with the damage pro-
files for ȧ up to 0.2 c plotted by solid curves in Fig. 14a.

9.4 Analysis for high crack speeds

Figure 14a indicates that, for crack speeds approach-
ing the elastic wave speed, the shape of the damage
profile is almost linear, at least in some range. This is
not by chance. For high crack speeds, damage must
propagate fast, but the maximum damage rate dic-
tated by the delayed damage law (77) is 1/τc. The
maximum damage rate is approached when the differ-
ence [[u]] − g∗(D) becomes much larger than 1/A∗

c =
u f /Ac. Since g∗(D) ≤ u f , the condition is certainly
satisfied if the displacement jump becomesmuch larger
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than u f (1 + 1/Ac). In that case, the right-hand side
of equation (122) can be approximately replaced by
1, and the corresponding damage distribution is then
described by:

D̃(x̃) ≈ 1 − x̃√
μ

(139)

Of course, this formula is applicable only for x̃ ∈
[0,√μ] and becomes somewhat inaccurate near the
right end of this interval. In dimensionless form, the
size of the delamination zone can be estimated as

√
μ.

To get the real physical size, we must transform x̃ to
x̂ = l x̃ , which means that the size of the delamination
zone at high crack speed is expressed as:

Ld1 ≈ l
√

μ = ȧτc (140)

Since this estimate is valid for crack speeds close to
the elastic wave speed, we can replace ȧ by c. For the
reference set of parameters, this leads to

Ld1 ≈ c τc = 9715×5×10−6 m = 48.575mm (141)

which agrees well with the damage profiles plotted in
Fig. 14a for ȧ/c close to 1; see also Fig. 7a. Note that
this estimate does not depend on the shape of cohe-
sive diagram (parabolic, triangular, or any other), since
the high-speed limit of the damage profile is controled
exclusively by parameter τc and by the elastic wave
speed.

10 Conclusions

The proposed simplified model for mode-II interfa-
cial crack propagation combined with a direct shooting
method adapted to the case of self-similar crack propa-
gation has allowed to characterize rate effects induced
by incorporation of rate dependence into the damage
law. The rate effects have been studied by looking at the
relations between the crack speed and global charac-
teristics such as fracture energy, applied force, and the
speed of the end section on which the force is acting.
The main results can be summarized as follows:

– For a rate-independent formulation, the solution
can be derived analytically, at least for the types
of damage function considered here. The fracture

energy is in this case independent of the crack speed
and equal to its static value. The relation between
other global characteristics (such as the applied
force and the end speed) and the crack speed can be
described in closed form, and the effects of inertia
are characterized by universal functions, indepen-
dent of the specific form of the damage law.

– For a rate-dependent formulation based on a bound-
ed-rate damage law, the problem can be converted
into a dimensionless form and the solution then
depends exclusively on two dimensionless vari-
ables, provided that the type of the underlying
damage law is fixed. Graphically, the response of
the system in dimensionless format can be char-
acterized by a family of so-called master curves.
By transforming back into the physical space, the
global characteristics can be deduced and the role
of all physical parameters can be elucidated.

– For slow crack propagation, the increase of the
applied force or end speed is approximately pro-
portional to the crack speed.

– In general, the fracture energy, applied force and
end speed increase with increasing crack speed but
remain finite for all crack speeds lower than the
elastic wave speed. Therefore, the bounded-rate
damage formulation does not lead to any reduction
of the maximum possible crack speed.

– From the practical point of view, the increase of
the applied force and consumed energy as functions
of crack speed is so dramatic that the crack speed
that can actually be attained in real tests becomes
limited.

– Even in a self-similar process, the rate effects are
governed by the process zone. The spatial distri-
bution of displacement jump along this zone deter-
mines the variation of the displacement jump rate
in time at a fixed point and thus also the fracture
energy. For a given geometrical setup (in the present
paper a thin semi-infinite layer bonded to a rigid
substrate), one can describe the fracture energy as
function of the crack speed. However, if the geom-
etry is changed, the characteristics of the process
zone would change as well and the dependence of
fracture energy on crack speed would be modified.
In this sense, rate effects cannot be seen as intrinsic
to the interface.

Approaches used in this paper could be appliedwith-
out problems to other rate-dependent damage models
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and it would be interesting to compare in the sameman-
ner the properties of those models. It would be interest-
ing to extend the analysis to mode-I and mixed-mode
interfacial crack propagations.
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Appendix: Peeling test

Mode-II delamination can be regarded as a special
case of the peeling test, in which an elastic strip is
detached from a rigid substrate by a force Fc that pulls
in an inclined direction, under a prescribed angle θ ; see
Fig. 16a. If the peeling process is considered as rate-
independent, the energy balance equation written for a
steady process contains terms that represent the exter-
nal work, energy dissipated by debonding, increase of
potential energy of elastic deformation and increase of
kinetic energy. For an increment in which the length of
the debonded zone increases by da, the energy balance
equation can be written as

Fc du = Gc0b da + 1
2 Eε2c bh da + 1

2ρv2bh da (142)

where du is the distance by which the loaded end of
the sheet subjected to force Fc moves in the direc-

tion aligned with the force, εc is the axial strain in
the debonded sheet, and v is the constant speed at
which this part moves. The left-hand side of (142) is
the incremental supplied work, and the terms on the
right-hand side correspond to the energy dissipated by
creating a newly debonded area b da, elastic energy
stored by stretching the newly debonded segment of
volume bh da to strain εc, and kinetic energy of the
newly debonded segment that was initially at rest and
after debonding is moving at speed v. It is worth not-
ing that the first term on the right-hand side of (142),
which represents the dissipated energy (or work of sep-
aration), is considered here as independent of angle θ .
This means that mode mixity is assumed to have no
influence on the energy needed to separate the surfaces.
In the case of adhesion, this assumption is acceptable,
as proven, e.g., by the experiments of Kendall (1975)
performed on rubber crosslinked against a glass plate.

As shown in Fig. 16b, the distance du can be
expressed as the difference between the length of the
newly debonded stretched segment, da(1+εc), and the
projection of the initial length of this segment, da cos θ .
Substituting

du = (1 + εc)da − cos θda (143)

into (142) and dividing both sides by b da, we obtain

Fc
b

(1+εc−cos θ) = Gc0+ 1
2 Ehε2c+ 1

2ρhv2 (144)

(a) (b)

θ

Fc

da

da cos θ

Fc

θ

da (1 +
ε
c )

du
da

Fig. 16 a Schematic representation of the peeling test: elastic
sheet (yellow) attached to a rigid substrate (blue) by an adhe-
sive interface (black), pulled by a force Fc in a direction inclined

by angle θ , b graphical evaluation of incremental displacement
du = da(1+ εc) − da cos θ that corresponds to an increment of
debonded length da
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Since the sheet is assumed to be linear elastic, the strain
is easily expressed as

εc = Fc
Ebh

(145)

From Fig. 16b it is also possible to deduce the speed
at which the sheet end (and thus the entire debonded
segment) moves. The horizontal component of the dis-
placement of the sheet end is da − da(1 + εc) cos θ

and the vertical component is da(1 + εc) sin θ . Con-
sequently, the speed of the delaminated part, v, can be
linked to the crack speed, ȧ, by the relation

v = ȧ
√

(1 − (1 + εc) cos θ)2 + ((1 + εc) sin θ)2

= ȧ
√

(1 + εc)2 − 2(1 + εc) cos θ + 1 (146)

Substituting (145) and (146) into (144),we construct
a quadratic equation for the force Fc. The derivation is

somewhat easier to manage if we consider εc instead
of Fc as the primary unknown. Equation (144) with Fc
replaced by Ebhεc and with v expressed according to
(146) reads

Ehεc(1 + εc − cos θ) = Gc0 + 1
2 Ehε2c

+ 1
2ρhȧ

2
(
(1 + εc)

2 − 2(1 + εc) cos θ + 1
)

(147)

When (147) is divided by Eh and the fraction ρ/E is
replaced by 1/c2 where c is the elastic wave speed, we
obtain

εc(1 + εc − cos θ) = Gc0

Eh
+ 1

2ε
2
c

+ 1
2
ȧ2

c2

(
(1 + εc)

2 − 2(1 + εc) cos θ + 1
)

(148)

This is the energy balance equation in a dimensionless
form, which can further be rewritten as

2εc(1 + εc − cos θ) = 2γ + ε2c

+α2
(
(1 + εc)

2 − 2(1 + εc) cos θ + 1
)

(149)

where α = ȧ/c is the relative crack speed and

γ = Gc0

Eh
(150)

is a dimensionless parameter characterizing the ratio
between the fracture energy and the elastic sectional
stiffness per unit width. For stiff and weakly bonded
sheets, this parameter is small compared to 1.

Equation (149) can be recast into a quadratic equa-
tion

(1 − α2)ε2c + 2(1 − α2)(1 − cos θ)εc

− 2(γ + α2(1 − cos θ)) = 0 (151)

with εc as the unknown variable. Since the coefficients
at ε2c and at εc are positive while the absolute term is
negative, the equation has two real roots, one positive
and one negative. Since the peeling test leads to tension,
only the positive solution is physically meaningful, and
so we get

εc = − 2(1 − α2)(1 − cos θ) + √
4(1 − α2)2(1 − cos θ)2 + 4(1 − α2)2(γ + α2(1 − cos θ))

2(1 − α2)

=
√

(1 − cos θ)2 + 2γ + 2α2(1 − cos θ)

1 − α2 − (1 − cos θ) (152)

This is the fully general solution, fromwhich a number
of special cases can be derived by various simplifica-
tions.

1. Static peeling test:
Setting α = 0, we obtain

εc =
√

(1 − cos θ)2 + 2γ − (1 − cos θ)

=
√

(1 − cos θ)2 + 2Gc0

Eh
− (1 − cos θ)

(153)

Fc = Ebhεc = b
√
E2h2(1 − cos θ)2 + 2EhGc0

− Ebh(1 − cos θ) (154)

This is the static solution, valid for slow tests in
which the kinetic energy remains very small, and
so the last term on the right-hand side of (144) can
be neglected. A quadratic equation for Fc that cor-
responds to such a reduced version of (144) was
constructed by Kendall (1975), who then validated
formula (154) experimentally by performing peel-
ing experiments at various angles on sheets of ethy-
lene propylene rubber crosslinked against a glass
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plate. In these tests, the rubber sheet thickness was
h = 0.75 mm and the elastic modulus measured in
tensile tests was E = 1.21MPa.Kendall was aware
of the fact that the debonding energy is actually
rate-dependent and he adjusted the loading such
that the crack speed was the same for all peeling
angles (about 80 µm/s). At this speed, the debond-
ing energy taken fromGent andKinloch (1971)was
Gc0 = 5 J/m2. The corresponding value of param-
eter γ = Gc0/(Eh) = 5.5 · 10−3 is much smaller
than 1.

2. Static peeling test, stiff sheet:
Setting α = 0 and γ � 1, we obtain

εc = (1 − cos θ)

(√

1 + 2γ

(1 − cos θ)2
− 1

)

≈ (1 − cos θ)
γ

(1 − cos θ)2
= γ

1 − cos θ

= Gc0

Eh(1 − cos θ)
(155)

Fc = Ebhεc ≈ bGc0

1 − cos θ
(156)

This case corresponds to a slow peeling test per-
formed with a sheet which has a high axial stiff-
ness (note that the assumption γ � 1 means that
Eh � Gc0). In this case, the elastically stored
energy is negligible compared to the dissipated
energy, and the effect of axial strain on the exter-
nal work (reflected in (144) by the term Fcεc/b)
can be ignored, too. With these simplifications and
under static conditions, the energy balance equation
reduces to

Fc
b

(1 − cos θ) = Gc0 (157)

and formula (156) can be deduced directly, with
no need to solve a quadratic equation. In fact, the
same result could also be obtained by neglecting
the quadratic term in equation (151). For α = 0,
the reduced linear equation for εc reads

2(1 − cos θ)εc − 2γ = 0 (158)

and its solution

εc = γ

1 − cos θ
(159)

corresponds to (155).

3. Static mode-II delamination:
Setting α = 0 and cos θ = 1, we obtain

εc = √
2γ =

√
2Gc0

Eh
(160)

Fc = Ebhεc = b
√
2EhGc0 (161)

In this case, the sheet is pulled in the direction paral-
lel to the interface, which corresponds to theMode-
II delamination problem analyzed in the present
paper. Naturally, the derived formula (161) corre-
sponds to formula (53) from Sect. 4.1 (in which Fc
is denoted as Fc0). Note that in this case it would
not be correct to simplify equation (144) by set-
ting εc = 0, even if the strain is actually small.
The reason is that if angle θ vanishes, we have
cos θ = 1and εc is no longer negligiblewith respect
to 1 − cos θ . Also, the term with ε2c on the right-
hand side of (144), which is related to the elastic
energy, must not be deleted because it is of the same
order as the left-hand side, which is related to exter-
nal work. Since the left-hand side of (144) is pro-
portional to the product of the force and strain, no
external work would be supplied if the sheet were
considered as infinitely stiff. This is a particular
feature that distinguishes the special case of mode-
II delamination (θ = 0) from the peeling test in an
inclined direction (θ > 0). The elastic energymight
be negligible for sufficiently large angles and stiff
materials, but as the peeling angle tends to zero, this
energy becomes important and in the limit case it is
absolutely essential, as noticed already by Kendall
(1975). The present formula (161) corresponds (in
a somewhat different notation) to Kendall’s for-
mula (6), and the present formula (156) corresponds
to Kendall’s formula (5). In fact, the approxima-
tion used in (155) if γ is small with respect to
(1 − cos θ)2, so for small peeling angles it is not
sufficient to check that γ � 1. Indeed, the peel-
ing forces reported in Kendall (1975) are very well
approximated by (156) for peeling angles for which
1−cos θ is 0.2 or greater (i.e., (1−cos θ)2 is at least
0.04 and exceeds γ = 5.5·10−3 by an order ofmag-
nitude, but a clearly marked deviation is observed
if 1 − cos θ is at or below 0.1.

4. Dynamic mode-II delamination:
Setting cos θ = 1, we obtain

εc =
√

2γ

1 − α2 =
√

2Gc0

Eh(1 − α2)
(162)

123



82 M. Jirásek, O. Allix

Fc = Ebhεc = b

√
2EhGc0

1 − α2 (163)

The derived expression for Fc corresponds to equa-
tion (51) from Sect. 4.1, in which the applied force
is denoted as F (i)

c , to emphasize that the result is
valid for a rate-independent delamination model.

5. Dynamic peeling test atmoderate speed, stiff sheet:
This simplification is based on assumptions that
α2 � 1 and γ � 1, but the derivation requires
detailed justification. In analogy to case 2, but this
timewith a nonzero value of the relative crack speed
α, it is assumed that the quadratic term in (151)
is negligible with respect to the other terms. The
reduced linear equation

2(1−α2)(1− cos θ)εc − 2(γ +α2(1− cos θ)) = 0

(164)

leads to

εc = γ + α2(1 − cos θ)

(1 − α2)(1 − cos θ)
= γ

(1 − α2)(1 − cos θ)

+ α2

1 − α2 (165)

The assumption that the quadratic term in (151)
is negligible is justified if εc � 1. Looking at the
resulting formula (165), we realize that the assump-
tion is valid only if γ � 1 and α2 � 1. Con-
sequently, as long as εc remains small, the factors
1 − α2 are very close to 1, and so (165) can be
reduced to

εc = γ

1 − cos θ
+ α2 (166)

The corresponding force

Fc = Ebhεc = bGc0

1 − cos θ
+ ρbhȧ2 (167)

agrees with the result that is obtained directly from
(144) if εc is set to zero and v is expressed from
(146) with εc set to zero. For ȧ = 0, formula (167)
reduces to (156), as expected. It is important to note
that even though the static formula (156) is accurate
whenever Gc0 � Eh, its extension to the dynamic
formula (167) is applicable only if the crack speed
ȧ is sufficiently small, such that ȧ2 � c2. If this is

not the case, the strain cannot remain small and it
is better to evaluate it from the full formula (152).
Of course, for large strains it becomes questionable
whether the linear elastic law can still be used. To
reflect the true material behavior, one would need
to replace the quadratic expression for the elastic
energy (i.e., the second term on the right-hand side
of (144)) by a more appropriate hyperelastic poten-
tial.
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