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Abstract In the context of the third Sandia Fracture
Challenge (SFC3), the details of the blind predictions
performed by the University of Texas team are pro-
vided in this article. Over the past two decades, the
peridynamic theory has shown great promise in mod-
eling autonomous crack nucleation and growth inmate-
rials. While peridynamics has been commonly applied
to simulate failure of brittle materials, its ability in pre-
dicting ductile fracture has remained mostly untested.
This fracture challenge was seen as an opportunity
to assess the state of the art of the peridynamic the-
ory in predicting the response of an additively man-
ufactured 316L stainless steel bar with a complex
geometry under the dynamic tensile experiments per-
formed by Sandia National Laboratories. The perfor-
mance of a recently proposed, generalized, ordinary
finite deformation constitutive correspondence model,
coupled with a recent state-based damage correspon-
dence model was explored over this problem. For finite
deformation material modeling, the classical elasto-
plastic framework of Simo was implemented within
the ordinary correspondence theory. Damagemodeling
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was achieved by incorporating the Johnson-Cook fail-
ure criterion using the damage correspondence frame-
work. An iterative inverse techniquewas applied to cal-
ibrate the model parameters using the longitudinal and
notched tensile tests data provided by Sandia National
Laboratories. A blind prediction of the deformation and
failure behavior of the SFC3 geometry was performed
by embedding the calibrated model in a peridynamic
simulation. Uncertainty was introduced into the model
parameters to quantify material variability. The results
are compared to the experiments conducted at Sandia
National Laboratories. While our modeling approach
led to qualitatively good results and a correctly pre-
dicted crack path, it underpredicted the load-carrying
capacity of the structure and simulated an early frac-
ture. Our post-experiment analysis identifies material
instability issues associated with the model as the pri-
mary sources of error.

Keywords SandiaFractureChallenge ·Peridynamics ·
Additively manufactured metal · Ductile fracture ·
Nonlocal · Material instability

1 Introduction

Following the successful completion of the first two
Sandia Fracture Challenges (Boyce 2014, 2016), the
third of the series (SFC3) was issued by Sandia
National Laboratories in January of 2017 providing
an intriguing opportunity for the fracture mechanics
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community through a round robin format. An unbi-
ased forum—by means of a truly blind prediction
environment—was organized for the researchers to
assess their current modeling capabilities in predict-
ing ductile fracture and identify missing information
necessary to improve prediction. The detailed descrip-
tion of the challenge input and objectives, and a com-
prehensive comparison and discussion on the results
from all participants are provided in the leading article
of SFC3 (Kramer et al. 2019). This international chal-
lenge invited volunteer participating teams to predict
the deformations and failure behavior of a specially
designed additively manufactured 316L stainless steel
bar with a complex geometry, under dynamic tensile
loading. The challenge geometrywas developed to con-
tain multiple through holes and internal cavities, which
could have not been fabricated from conventional man-
ufacturing, such that no obvious closed-form solution
exists for the prediction of failure.Mechanical-test data
from a set of experimental tensile tests were provided
for the teams to facilitate calibration of their selected
models. To ensure making purely blind predictions,
without knowledge of the actual experiments, the orga-
nizers extracted experimental data from the actual test-
ing of the challenge specimen only after the prediction
submission due date in July 2017.

Participants were requested to include multiple
quantities of interest, both macroscopic and local mea-
sures, in their report summarized here:

• load-displacement response of the challenge struc-
ture,

• Hencky (logarithmic) strains in the vertical direc-
tion (loading direction) at four points P1–P4 and
along four lines H1–H4 on the surface, shown in
Fig. 1,

• contours of vertical Hencky strains on the front
view of surface at crack initiation and at complete
failure.

The University of Texas team found this challenge
as an opportunity to explore the capabilities of the
state of the art of the perdynamic theory in predicting
ductile fracture. Peridynamics is a nonlocal reformu-
lation of the classical solid mechanics and was initi-
ated by Silling (2000) mainly to provide consistency
in representing a mechanical system whether or not
any discontinuity (e.g. cracks) is involved. Due to its
capabilities in handling material failure without any
complicated numerical treatments at discontinuities,

Fig. 1 Schematic of the challenge geometry surface to denote
the referenced locations in the challenge questions (P1–P4, H1–
H4) and gage displacement measurement locations (P5–P10)

the theory has been widely applied to a broad range
of challenging problems, e.g. simulating nanostruc-
tures (Silling and Bobaru 2005), failure in concretes
(Gerstle et al. 2007; Yaghoobi and Chorzepa 2017;
Nikravesh and Gerstle 2018), crack branching phe-
nomenon (HaandBobaru2010), pitting corrosiondam-
age (Jafarzadeh et al. 2018, 2019), intraply fracture
in composites (Bobaru et al. 2018), damage in solder
joints (Mehrmashhadi et al. 2019), homogenized mod-
eling of porous materials (Chen et al. 2017), and meso-
scale simulation of intra-granular fracture (Behzadi-
nasab et al. 2018b).

This article presents a background on peridynamics
and includes our reasoning in selection of appropri-
ate material and failure models. Modeling and calibra-
tion efforts are detailed next, followed by a compari-
son between the blind predictions and the experimental
data. Subsequently, sources of discrepancy between the
results are discussed. The paper concludes with a sum-
mary and recommendations for future work.

2 Background on peridynamics

Silling (2000) introduced the peridynamic theory by
extending the classical theory of solid mechanics and
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Fig. 2 A nonlocal peridynamic body in its reference, unde-
formed configuration with horizon δ

reformulating the balance of linear momentum in an
integral form

ρ
∂2u(x, t)

∂t2
=

∫
H(x)

f
(
x′, x, t

)
dVx′ + b(x, t),

where ρ is the mass density in the reference configura-
tion, u is the displacement vector field, and b is a pre-
scribed body force density field. x and t are dependent
variables defining the position vector in the reference
configuration and time, respectively. The integral func-
tional on the right-hand side of the equation evaluates
the internal state of a peridynamic body by relating
pairwise forces between its material points.

Peridynamics, anonlocal theory, states that the inter-
nal forces on a material point x is the result of its
interactions with its neighbors x′, within a finite dis-
tance, which exerts a pairwise vector-valued function
f
(
x′, x, t

)
(with units of force per volume squared) on

x. H(x) constitutes a neighborhood set containing all
the neighbors of x and is called the family of x. In a
3-dimensional configuration, the neighborhood set is
typically defined by a sphere with radius δ, called the
horizon. A peridynamic bond is a vector defined in the
undeformed configuration from x to a neighbor x′, typ-
ically given the symbol ξ = x′ − x. An example of a
peridynamic body is given in Fig. 2.

The state-based peridynamics (Silling et al. 2007)—
a generalized peridynamic framework and the most
commonly one used today—expresses the pairwise
force function in a general form

f
(
x′, x, t

) = T(x, t)〈x′ − x〉 − T(x′, t)〈x − x′〉,

in which T(x)〈x′ − x〉 denotes the peridynamic force-
vector state and maps a bond 〈x′ − x〉 in its deformed
configuration to its force state.T is governed by consti-
tutive relations and generally depends upon the defor-
mation of the neighborhood set. In addition, it can
be related to other parameters such as the history of
deformation (plastic deformation), temperature, defor-
mation rate, etc.

2.1 Finite deformation modeling

Silling et al. (2007) introduced a correspondence mod-
eling framework by providing a bridge between local
and peridynamic material models through kinematic
variables to enable incorporating the well-established
classical constitutive theories into peridynamics. Later,
Tupek and Radovitzky (2014) identified some short-
comings associatedwith themodel, such as the unphys-
ical issue of matter interpenetration, which are allowed
within the peridynamic formulation and would impose
practical difficulties, especially in dealing with large
deformations. As a remedy, they introduced the notion
of non-linear bond strainmeasures in peridynamics and
extended the original theory. Their model was recently
generalized by Foster and Xu (2018), who presented
a constitutive correspondence framework with kine-
matic variables (e.g. a nonlocal right Cauchy–Green
deformation tensor) that can be applied directly to finite
deformation plasticity and does not suffer from surface
effects, a well-known issue in peridynamics. The gen-
eralized, ordinary, finite deformation correspondence
theory of Foster and Xu (2018) uses the second Piola–
Kirchhoff (P–K) stress as an intermediate quantity in
determining the bond force. Suppose the mechanical
response of a classical family of hyperelastic materials
is described by the second P–K stress (S) in a body as:

S(x) = Ŝ(C(x)), C(x) = FTF =
(

∂y
∂x

)T
∂y
∂x

,

where C is the right Cauchy–Green deformation ten-
sor, rooted to the deformation gradient tensor F. C is
approximated by the peridynamic finite deformation
correspondence theory as:

C̄(x) =
(∫

H(x)
ω〈ξ 〉

∣∣Y〈ξ 〉∣∣2 ξ ⊗ ξ

|ξ |4 dξ

)
: L−1(x),

where ω is a positive-valued weight function called
the influence state, describing the relative degree of
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interactions between material points;Y is the deforma-
tion state, mapping bonds onto their deformed images;
and L is a super-symmetric fourth-order shape tensor
defined by

L(x) =
∫
H(x)

ω〈ξ〉ξ ⊗ ξ ⊗ ξ ⊗ ξ

|ξ |4 dξ . (1)

Then the force state in a finite deformation correspon-
dence material is given by

T(x)〈ξ 〉 = ω〈ξ 〉
((

ξ ⊗ ξ

|ξ |4
)

: L−1(x) : S(x)
)
Y〈ξ 〉,

in which S = S(C̄).
The classical elastoplastic framework of

Simo (1988a) has beenwidely accepted for finite defor-
mations modeling. The theory is established upon a
multiplicative decomposition of the deformation gradi-
ent into elastic and plastic parts; kinematically speak-
ing,

F = FeFp.

Therefore, the right Cauchy–Green deformation tensor
and its plastic part are related to the deformation gradi-
ent and its associated plastic part through the following
relations:

C = FTF, Cp = FpTFp.

Tomake the case suitable formetal plasticity, the defor-
mation gradient is further split into a volumetric and a
deviatoric response

F = J 1/3 F̄,

C = J 2/3 C̄,

in which J = det (F) = √
det (C).

An uncoupled form of the free energy is introduced
by Simo (1988a)

Ψ̂ (Cp−1
,C,Q) = U(J ) + Ψ̂dev(C̄,Cp) + Ξ(Q), (2)

where Q constitutes a set of internal plastic variables
that characterizes the plastic response

Q̇ = γ̇H(C,Cp,Q),

in whichH(C,Cp,Q) is a prescribed plastic hardening
moduli.

Inspired by Ciarlet (1988), the following convex
stored-energy function is considered:

U(J ) = k
J 2 − 1

4
− k

2
ln J, (3)

where k is the bulk modulus. The deviatoric-energy
function is adopted as (Simo and Hughes 2006):

Ψ̂dev(C̄,Cp) = μ
(
Cp−1 : C̄ − 3

)
, (4)

in which μ is the shear modulus.

Using Eqs. (2)–(4) and the hyperelasticity relation

S = 2
∂Ψ̂

∂C
, the second P–K stress is governed by

S = k
J 2 − 1

2
C−1 + μ J−2/3 DEV

[
Cp−1

]
,

where DEV is the deviatoric function in the material
frame

DEV[·] := (·) − 1

3
[C : (·)]C−1.

Plastic deformation is described based on Von-Mises
yield criterion

φ(C,Cp) = σe − σy ≤ 0,

in which σy and σe are the yield and effective stresses,
respectively.

σe =
√
3

2
(DEV S)I J (DEV S)K LCI KCJ L ,

= μ J−
2
3

√
3

2

(
Cp−1C

) : (
CCp−1)− 1

2

(
Cp−1 : C)2

.

Theprinciple ofmaximumplastic dissipation is invoked
by Simo (1988a) to describe the plastic flow

∂

∂t

(
Cp−1

)
= −2γ̇

(
Cp−1 : C

)
N,

where N is the yield surface normal direction

N = 3

2

DEV S
σe

.

A power-law hardening material is a generic model
capable of capturing metal plasticity. Since the peri-
dynamic finite deformation correspondence model is
limited to isotropic materials, an isotropic power-law
rule is used to model the hardening response of the
material

σy = σ0

(
1 + ε̄ p

ε0

)n

,

where ε0, n, and σ0 are the hardening parameters, and
ε̄ p is the effective plastic strain

˙̄ε p =
√
2

3
γ̇ .
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A negligible strain rate dependency is assumed as
the displacements are applied slowly. No temperature
dependency is considered either.

The numerical integration scheme including the
elastic trial step and plastic return mapping is similar
to the one detailed in Simo (1988b) with slight modifi-
cations. For brevity, it is sufficed to refer the interested
reader to the cited work.

2.2 Failure modeling

Irreversible bond breakage is typically employed in
peridynamics to achieve damage modeling. Critical
stretch failure criterion (Silling 2000) is a common
approach for incorporating material failure. While this
model was originally developed for bond-based peri-
dynamics, it has been widely used in the state-based
theory, which is arguable (Foster et al. 2011; Tupek
et al. 2013). Although the application of the critical
stretch failure criterion may be justifiable to simulat-
ing failure of brittle materials (Ha and Bobaru 2010;
Behzadinasab et al. 2018a; Mehrmashhadi et al. 2019),
it is certainly too simplistic to accurately predict ductile
fracture.

Tupek et al. (2013) presented a state-based damage
correspondence framework to embrace classical (local)
failure models within the peridynamic formulation. In
their theory, the influence state is decomposed into two
parts

ω(|ξ |, x, x′) = ωξ (|ξ |) ωD(D,D′),
in which ωξ is the conventional (spherical) influence
function, describing the relative degree of interaction
between neighboring material points in the undamaged
frame of material, and ωD is a non-increasing function
of the damage state D. In this notation D = D(x, t)
and D′ = D(x′, t). This function is valued 1 for a virgin
material and 0 for a completely damaged one. In this
setting, the spherical part of the influence function is
adopted as

ωξ (|ξ |) =
{
1 if |ξ | < δ,

0 otherwise,

which is a common approach in peridynamic model-
ing. The damage-based part of the influence function is
chosen in a similar manner to element deletion in finite
elements, i.e.,

ωD(D, D′) =
{
1 if max(D, D′) < 1,

0 otherwise.

In this manner a material point loses all its interactions
with the body (except for the contact forces if a self-
contact feature is considered) once its damage exceeds
a critical value.

Influence of stress triaxiality and ductility on fail-
ure of metallic alloys are widely accepted. Therefore,
the classical Johnson–Cook failure criterion (1985)was
chosen to govern the evolution of damage

D =
∫ t

0
Ḋ dτ, Ḋ = ˙̄ε p

ε f
,

with ε f defined as

ε f = d1 + d2 exp

(
−d3

σm

σe

)
,

where d1, d2, d3 are material parameters, and σm is the
hydrostatic part of stress defined by

σm = 1

3
S : C.

3 Modeling and calibration details

The material and damage models, formulated in the
previous section, were implemented in Peridigm (Parks
et al. 2012), which is an open-source, massively paral-
lel peridynamic code, originated from Sandia National
Laboratories. Because the material model was lim-
ited to isotropic materials, the transverse tensile data
was neglected, and only the longitudinal and notched
experimental data sets were utilized for calibrating the
model parameters.With respect to the longitudinal ten-
sile data, since no strain rate dependency was included,
only the data initially provided by Sandia Labs were
used: AM-finish longitudinal specimens pulled in ten-
sion at a rate of 0.05mm/s. Notched tests were per-
formed with a loading rate of 0.015mm/s. To enhance
computational efficiency, only the gage sections of the
specimens were considered in our modeling. CUBIT
Mesh Generation Toolkit (Blacker et al. 1994) was
used to generate the geometries and their discretized
forms.Eachgeometrywasfirst discretized in a near uni-
form manner with tetrahedral elements of edge length
0.16mm (this specific number was chosen such that
25 layers of peridynamic node exist along the thick-
ness of the challenge geometry, which was believed
to result in a refined enough particle discretization),
then peridynamic nodes were placed on the centroid of
each element. This procedure resulted in 7, 17, and 25
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102 M. Behzadinasab, J. T. Foster

through-thickness layers of (peridynamic) nodes and
8859, 115,618, and 397,801 total number of nodes for
the longitudinal, notched, and challenge specimens,
respectively, with each node having 3 degrees of free-
dom. A typical horizon size in peridynamics equals 2.5
to 3 times the average node spacing. A horizon size of
0.43mm was adopted in this work. As we were fac-
ing a time limit in this project, no effort was attempted
to study the effect of different discretization schemes.
Therefore, the same average mesh and horizon sizes
were used for all three geometries.

Explicit dynamic time integration was used in the
simulations.Direct displacement controlwas employed
to apply boundary conditions, where the displacements
were prescribed on 5 layers of peridynamic nodes at
each end. To expedite the simulations, since no strain
rate dependency was involved, boundary conditions
were exerted at a faster rate than the experiments, 1m/s
in this case (an alternative approach would be to uti-
lizemass scalingwith a larger time step size).While the
adopted loading rate sounds a lot higher than the exper-
imental counterpart, the inertia effects are considered
ignorable except for the early loading stage (part of the
elastic region). This conclusion was made after com-
paring the simulation results of the longitudinal test
with three different loading rates 1m/s, 0.1m/s, and
0.01m/s. The higher applied rate was used throughout
the simulations for efficiency. For the calibration tests,
a time step size of 20ns was used. The correspond-
ing value for the prediction phase was 16ns. All the
simulations were performed on the Texas Advanced
Computing Center (TACC) Stampede and Stampede2
clusters. 2040 processors were utilized to simulate the
challenge problem in 2 h.

The calibration geometrymodels in discretized form
are shown in Fig. 3. Eight material and failure con-
stants needed to be calibrated: two elasticity moduli
(the Young’s modulus E and the Poisson’s ratio ν),
three hardening parameters (σ0, ε0, n), and three fail-
ure variables (d1, d2, d3). The elasticity constants were
determined first, where E was obtained by calculat-
ing the slope of the stress-strain curve from the longi-
tudinal tensile data through fitting the best line to its
elastic region. ν was decided to be 0.3, a typical value
for stainless steel; the associated error was argued to
be ignorable since the plastic behavior of the struc-
ture was expected to dominate its response. Then the
Dakota project (Adams et al. 2014), an open-source,
robust, and efficient optimization software, was uti-

Fig. 3 Tetrahedral elements, with average edge of 0.16mm,
were used to discretize models of the gage sections of the a
longitudinal and b notched test geometries. Peridynamic nodes
were then placed at the centroid of each element and assigned
with the associated cell volume. Units are in mm

lized to select the other parameters through a genetic
optimization algorithm engaging an inverse method
illustrated in Fig. 4. The process involved peridynamic
simulations of the calibration experiments with trial
model constants, then comparison of the resulting load-
displacement plots to the experimental results and com-
puting the error. The objective was to minimize the fol-
lowing error function:

Ψ = ψL + ψN , ψ =
m∑
j=1

∣∣∣Fsim
j − Fexp

j

∣∣∣
Fexp
j

, (5)

where ψL and ψN are the relative errors between the
simulation and experiment for longitudinal andnotched
tests, respectively. In the definition of the relative error
ψ , Fj is the load at the j th level of elongation for m
number of levels of elongation, which was taken to be
200. Fexp

j was calculated by averaging the experimen-
tal loads for each strain data point.

In order to pursue an efficient optimization scheme,
a reasonable range of values was assigned to each vari-
able, then the best set (resulting in the least error defined
in Eq. (5)) was found through the Efficient Global
Optimization (EGO) method of Dakota. The harden-
ing constants were calibrated by considering the range
of data before the crack initiation—before the soften-
ing begins. Note that the failure model does not play
any role before damage reaches a threshold value; thus,
the damage model was turned off during the calibra-
tion of hardening rule. Finally, the failure parameters
were tuned by simulating thewhole range of the experi-
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Fig. 4 An iterative process to calibrate the model involving an
inverse method. Multiple peridynamic simulations were initially
performed with an engineering sense to find reasonable model

constants (by comparing the simulation results with the experi-
ments) and choose the specific range of parameters listed in the
first block

Table 1 Tuned model parameters, extracted by the optimization procedure involving an inverse method

E (GPa) ν σ0 (MPa) ε0 n d1 d2 d3

175 0.3 536 0.265 0.48 0.04 2.5 3

ments. The calibrated variables are provided in Table 1,
and the resulting load-displacement curves are plotted
in Fig. 5. A good agreement is observed between the
simulations and experiments. A comparison of the log-
arithmic strain contours at an instance of the notched
tensile test ismade between the experimental DICmea-
surements and peridynamic results, shown in Fig. 6.

4 Blind predictions

As described in the previous section and shown in
Fig. 7, the gage section of the challenge geometry
was modeled and meshed with tetrahedral elements
in a semi-uniform way, then peridynamic nodes were
placed on the centroid of each cell.

A considerable variability in the bulk response of
the material was evident from the given calibration
data—see Fig. 5. The variation were attributed to two
main factors: small geometrical differences between
the samples (imperfections from manufacturing) and

material variations due to different thermal distribu-
tions during additive manufacturing. Due to a limited
time frame, we sufficed to the nominal geometrical val-
ues and did not explicitlymodel each individual sample
in our modeling. Instead, uncertainty was introduced
into the material parameters. Corresponding to the evi-
dent scatter in the tensile load displacement data in the
hardening regime, a range of σ0 values from 5% lower
to 5% higher than the nominal value was considered
(510–562 MPa). To address the variability in the fail-
ure response, d1 was varied from 0.02 to 0.08, d2 from
2 to 3, and d3 from 2.7 to 3.3. Blind simulations of the
challenge problem over the range of material constants
were performed next.

The correct crack path was captured from our blind
predictions. As shown in Fig. 8, the failure initiated
near the intersection between the through hole and
the angled channels, then propagated along the chan-
nels. It is interesting to note that our model predicted
that the crack nucleation did not exactly start at the
intersection—see Fig. 9.
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(a)

(b)

Fig. 5 Comparison of the load-displacement results from the
model and experiments for the a longitudinal and b notched
calibration tests. Gray color indicates the experimental data, and
black shows our model results. A large variability in the bulk
response of the structure is seen in the experimental data

Fig. 6 The strain contours for the notched tensile test are in
qualitatively good agreement between a the peridynamic simu-
lation and b the experimental DICmeasurements. The snapshots
correspond to Gage Displacement of 0.3 mm

Fig. 7 Gage section of the challenge geometry wasmodeled and
discretized using tetrahedral elements with average edge 0.16.
Peridynamic nodes were then placed at each element centroids
and assigned with the corresponding cell volumes. Units are in
mm

The macroscopic load-displacement response of the
structure is compared between the blind predictions and
experimental data in Fig. 10. The curves show an initial
elastic behavior of the structure, followed by a nonlin-
ear hardening response, and eventually a softening phe-
nomenon due to crack initiation and growth. Evidently,
our modeling approach underestimated the hardening
behavior of thematerial and resulted in an early failure.
The transition period from crack initiation to complete
failure also took longer in our simulations.

Figure 11 illustrates histories of the vertical logarith-
mic strains at the points P1, P2, P3, and P4. For each
plot, the strains initially increase with the loading and
eventually reach a plateau. The strain values at P3 and
P4 are much higher than P1 and P2, which is expected
as we already know that the fracture initiated closer to
the former points.

Figure 12 shows the vertical Hencky strains along
the lines H1, H2, H3, and H4. The complex patterns are
rooted to the existence of multiple holes and cavities.
For example, strain values drop over the middle part
of H2, which must be related to the channels and the
spherical cavity underneath. H4 is the closest line to the
location of failure initiation and has the largest strain
values amongst all.
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Fig. 8 Contours of vertical Hencky strains compared between
the experimental DIC measurements and prediction at a–b crack
initiation and c–d complete failure

Fig. 9 Our simulations show that failure initiated near the inner
corners of the intersection between the through hole and the angle
channels. Damage contours shown in b correspond to the front
view of the clipped blue segment of a zoomed along the yellow
line. For the sake of visualization, peridynamic nodes are shown
with spheres. The legend only applies to b

Fig. 10 Macroscopic behavior of the challenge specimen com-
pared between the simulations and experiments. The blind pre-
dictions resulted in an underestimation of the load-carrying
capacity of the structure and an early prediction of crack ini-
tiation

As shown in Fig. 8, the overall patterns of the pre-
dicted vertical Hencky strain contours qualitatively
resemble the experimental DIC measurements; how-
ever, there are evident differences in the strain values,
especially at the crack initiation instance. Similarly, our
blind predictions were able to qualitatively capture the
overall trend of the local strains but not quantitatively.
As perceived from Figs. 11 and 12, our approach over-
predicted the strains initially but underpredicted later
(similar to the early crack initiation of our predictions).

5 Post-experiment analysis and sources of
discrepancy

Post-experiment analysis showed that the model
could recover the load-displacement response of the
challenge structure with different model parameters,
shown in Fig. 13. Effect of the horizon size on the
macroscopic behavior was also studied. As should be
expected, keeping the material parameters constant, a
smaller horizon size would reduce the non-locality and
hence lead to a localization in plasticity and damage,
i.e., a reduced plastic zone and an increased tendency
to failure. Therefore, as shown in Fig. 14, a smaller
horizon would result in a smaller load-carrying capac-
ity and an earlier crack initiation. A similar study can
also be carried out on the effect of different influence
functions. In this work the spherical influence func-
tion takes only values of 1 and 0. Alternative choices

123
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(a) (b)

(c) (d)

Fig. 11 Histories of the vertical logarithmic strains at a P1, b P2, c P3, and d P4 over the course of loading. Peridynamic blind
simulations overpredicted the values earlier but underpredicted later

include linear, exponential, and power-law degrada-
tions of ωξ (|ξ |) with respect to |ξ |. It must be pointed
out that the proper way to use a different horizon (or
a different influence function) would be to recalibrate
the model using the new horizon size (influence func-
tion). However, we did not conduct such study since
our analysis identified some instability issues inherent
in the model as described later in this section.

It is evident from the tension tests data that the yield
stress is considerably higher (approximately 15%) in
the transverse direction than the longitudinal. Hence,
the lack of anisotropy in our model was initially specu-
lated as a major origin of error. However, it was learned
that some other participating teams (most notably
teams E-K) did not consider anisotropy in their mod-
els, yet captured the hardening regime very well. Two
factors were found later to be the main sources of dis-
crepancy in our results.

Post-experiment assessment revealed that material
instability issues (different from numerical instabili-
ties) exist within the peridynamic generalized, ordi-
nary, finite deformation constitutive correspondence
model under compression loading (Behzadinasab and
Foster 2019). Our analysis showed that while themodel
is superior to the previous peridynamic non-ordinary
correspondence model (Silling et al. 2007) in dealing
with tensile forces, even small compressions around a
material point can lead to instabilities. The instability
issue is in fact rooted to the application of the classi-
cal right Cauchy–Green deformation tensor (the peri-
dynamic finite deformation model corresponds to this
kinematic measure), which has a well-know compres-
sion issue such that large degrees of material compres-
sion lead to instabilities. The exposure of the nonlo-
cal integral operator has exaggerated the problem to
the extent that very small compressions (as little as
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(a) (b)

(c) (d)

Fig. 12 Comparison of the simulation and experimental results
of vertical logarithmic strains along 4 lines a H1, b H2, c H3,
and d H4 at four instances of loading F1, F2, F3, and F4. Peri-

dynamic blind simulations overpredicted the values earlier but
underestimated later

0.1%) can cause instability (Behzadinasab and Fos-
ter 2019). These material instabilities can manifest as
premature material damage, thus undermine reliability
of the results. Although this fracture challenge dealt
mostly with tensile forces, there still exist compression
states due to the existence of several holes and channels
in the structure of the challenge material (and around
the notches in the notched specimen), also because of
the dynamic nature of loading through wave propa-
gation. Nevertheless, due to the dominance of tensile
forces in this challenge, our blind predictions yielded
the correct crack path and captured the bulk response
trend reasonably well. The mismatch would have been
larger if more extensive compression was involved.

We also attribute some of the errors after crack initi-
ation to our failure modeling. Relying on a Lagrangian
frame when extensive damage occurs around a mate-

Fig. 13 Post-experiment analysis showed that the model could
recover the macroscopic response with a different set of material
parameters.Black line represents the peridynamic simulation and
other colors indicate experimental data

rial point under large deformations can induce addi-
tional errors. Suppose a peridynamic family becomes
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Fig. 14 Effect of horizon size on the macroscopic response.
Decreasing the horizon size leads to localization in damage,
resulting in an earlier failure

Fig. 15 A large deformation scenario which the damage model
cannot handle due to use of a Lagrangian framework. For sim-
plicity a 2-D setup is considered where a circular neighborhood
defines the family of the orange point in the undeformed config-
uration. The red color shows the points that are located near the
crack surface in the current configuration, hence have reached the
threshold damage and lost all their associated bonds. The green
points are the only peridynamic nodes having unbroken bonds
with the orange point in the Lagrangian, undeformed neighbor-
hood. It is readily confirmed that these remaining bonds form
a rank deficient, thus non-invertible shape tensor (Eq. (1)). The
situation is similar in 3-D

very distorted as it goes under large deformations, as
shown in Fig. 15. In that case, if a crack passes through
the neighborhood and breaks many of the bonds, the
remaining unbroken bonds in the undeformed con-
figuration may constitute a rank deficient, thus non-
invertible shape tensor (defined in Eq. (1)). Due to
numerical errors, a computer may not detect such ten-
sor as singular (by calculating its determinant to be
a small, yet non-zero value), hence continue with the
simulation, leading to large errors afterwards. To rem-
edy this problem, a Semi-Lagrangian framework can be
effective in constructing family of peridynamic nodes
in the current configuration, to ensure that every node

has enough intact bonds in calculating its shape tensor
(and the corresponding nonlocal kinematic variables).
A study on the use of Semi-Lagrangian kernels for peri-
dynamics is currently being undertaken.

6 Concluding remarks

The third Sandia Fracture Challenge was seen as an
opportunity by the University of Texas team to assess
the state of the art of the peridynamic modeling of duc-
tile fracture. The details of our simulations in response
to the challenge problem were presented in this article.
Two recent material and damage correspondence mod-
els were used to leverage the well-developed local the-
ories within the peridynamic framework. The classical
elastoplastic theory of Simo (1988a) was used within
the generalized, ordinary, finite deformation consti-
tutive correspondence model of peridynamics (Foster
andXu 2018). The state-based damage correspondence
framework (Tupek et al. 2013) also enabled the appli-
cation of Johnson–Cook failure criterion (Johnson and
Cook 1985) to thismodeling.Our blind predictions cor-
rectly captured the location of crack initiation and its
growth path. Overall, our results were in good qualita-
tive agreement with the experiments—with many sim-
ilarities in the patterns of local strain measurements
and the trends of the macroscopic and microscopic
measures. However, our modeling approach underes-
timated the load-carrying capacity of the structure and
predicted an earlier fracture. Our post-experiment anal-
ysis revealed two major reasons behind the discrep-
ancy. First, the peridynamic finite deformation corre-
spondence model exhibits material instability issues in
dealing with compression loading. The second source
of error is attributed to the use of Lagrangian frames
within the correspondence theory (in calculating a
shape tensor and a nonlocal kinematic variable) that
can induce large instability errors when severe damage
occurs around a material point undergoing extremely
large deformations—which is expected in ductile fail-
ure. Future work will seek to incorporate application
of Semi-Lagrangian kernels to the peridynamic frame-
work.
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