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Abstract In this paper, a super-convergent algorithm
is presented for the simulation of hydraulic fractur-
ing process in impervious domains using the extended
finite element framework. The hydro-fracture inflow is
modeled based on the Darcy law, in which the frac-
ture permeability is incorporated by taking advantages
from the well-known cubic law. The hydro-mechanical
coupling between the fracturing fluid flow and the sur-
rounding bulk is carried out by employing a sequen-
tial iterative procedure known as the staggered New-
ton algorithm. The convergence rate of the existing
staggered solutions in the literature is examined, and
an alternative super-convergent approach is proposed.
Finally, through several numerical simulations the san-
ity of the developed framework is demonstrated.

Keywords Hydraulic fracture propagation · Extended
finite element method · Staggered Newton iteration ·
Convergence study

1 Introduction

Hydraulic fracturing treatment is a well-known engi-
neering process during which highly conductive frac-
tures are generated within low permeability formations
due to highly pressurized fluid injection. Analytical
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solutions to the hydraulic fracturing problem are gener-
ally limited to the growth of a single hydro-fracture in
an idealized homogeneous medium (e.g., Spence and
Sharp 1985; Geertsma and De Klerk 1969; Desroches
et al. 1994; Detournay 2004). On the contrary, numer-
ical models are capable of tackling more complicated
mechanisms encountered in practice including bulk
inhomogeneities,multi-stagemultizone treatments, gel
leakage, and the presence of propping agent (e.g.,
Daneshy 1978;Beach 1980;Boone and Ingraffea 1990;
Schrefler et al. 2006; Vahab and Khalili 2017, 2018).
More recently, advanced computational frameworks
such as X-FEM (e.g., Réthoré et al. 2007; Taleghani
and Olson 2011; Khoei et al. 2014, 2015, 2016,
2018;Gordeliy and Peirce 2013, 2015),Meshless (e.g.,
Samimi and Pak 2016; Wang et al. 2010) and Phase-
field (e.g., Lee et al. 2016, 2017; Wilson and Landis
2016; Xia et al. 2017) are employed in the simulation
of hydraulic fracturing treatments in a computationally
more efficient fashion.

In a wide range of engineering problems, different
types of coupling may manifest due to the interaction
of sources related to thermal, hydraulic, mechanical,
chemical, electrical and magnetic actions. In the liter-
ature, two distinct computational strategies have been
developed in order to tackle coupled systems, namely
the monolithic (fully coupled) and the staggered (par-
titioned) schemes. The monolithic approaches take
advantages from the direct solution of the complete sys-
tem of coupled equations (Simoni and Schrefler 1991).
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The well-known (u− p) formulation of the deformable
porous media is probably amongst the most controver-
sial formulation in this category, in which a unified
unknown vector–including both the displacement (u)

and the pore fluid pressure (p) DOFs–is formed and
solved simultaneously (Segura and Carol 2008). Alter-
natively, based on the staggered implementation, each
field variable is solved individually while the rest of
the subsystems are temporarily frozen at a predicted
known value (Prevost 1997). Through the introduction
of appropriate coupling components, each subsystem is
solved and updated in a sequentialmanner until conver-
gence is attained. The application of partitioned algo-
rithms is well-understood in a variety of coupled prob-
lems, including the hydro-mechanical analysis (Pre-
vost 1997; Zienkiewicz et al. 1988), the thermo-hydro-
mechanical problem (Schrefler et al. 1997), and the
fluid-structure interaction (Farhat and Lesoinne 2000;
Matthies and Steindorf 2003).

The monolithic solution technique is proven to be
highly consistent and rigorous in the solution of cou-
pled systems (Lewis et al. 1991; Simoni and Schrefler
1991). However, several difficulties may arise due to
the fact that: (i) it necessitates the development of new
modules for the solution of each coupled system, and
(ii) it leads to very large matrixes, particularly for 3D
analysis, which may only be handled through sparse
data storage (Prevost 1997; Saad 2003). On the con-
trary, the partitioned solutions are advantageous due to
the: (i) modularity feature that enables distinct special-
izedmodules to be linked in a modular fashion depend-
ing on the needs of the analysis, (ii) algorithmic struc-
ture, which facilitates parallel or sequential processing,
and (iii) computational efficiency as it circumvents the
requirement of the assembly and solution of the full
system of coupled equations which is proven to be
excessively costly (Prevost 1997). The staggered pro-
cedures, generally, on the contrary, bear difficulties in
convergence, particularly in problems involving strong
coupling (Segura and Carol 2008). Nonetheless, the
enumerated prevailing features–despite the fact they
are conditionally stable–have led to wide application
of the partitioned solvers in the design of computa-
tional frameworks (e.g., Simoni and Schrefler 1991;
Zienkiewicz and Chan 1989; Lewis et al. 1991; Boone
and Ingraffea 1990; Khoei et al. 2015).

In the present study, a novel staggered Newton
procedure is proposed for the hydro-mechanical cou-
pling analysis of the fracking problem with a super-

convergent rate. The hydro-fracture inflow is modeled
by incorporating the cubic law, in which an aperture
dependent permeability is assumed through the frac-
ture. Meanwhile, the surrounding continuum is sup-
posed to be impervious with no hydro-mechanical cou-
pling.The existing staggered solutions for the hydraulic
fracturing problem are challenged regarding their con-
vergence rate and are compared against the proposed
framework. The paper is organized as follows: in
Sect. 2, the strong, weak and discrete formulation of
the momentum balance of the bulk as well the fractur-
ing fluid flow is presented. Section 3 is dedicated to the
partitioned Newton solution procedure. In Sect. 4, the
robustness of the proposed formulation is investigated.
Finally, in Sect. 5 concluding remarks are illustrated.

2 Problem statement

Consider a 2D impervious domain �, bounded by the
external boundary �, with the unit normal vector n�

as shown in Fig. 1a. The domain contains a hydro-
fracture interface �HF subjected to the incompressible
Newtonian viscous fluid injection at the constant rate
of QINJ . The external boundary is subjected to the
prescribed traction t and the prescribed displacement
ū which are respectively imposed on �t and �u , such
that �t ∪ �u = � and �t ∩ �u = ∅ hold. The hydro-
fracture faces are indicated by positive and negative
signs, with n�HF being the normal unit vector exerted
onto the negative side of�HF . The hydro-fracture faces
may undergo fracturing fluid pressure p, while cohe-
sive tractions tcoh are formed in the vicinity of the frac-
ture tip to account for the nonlinearities associated with
the stress field. In the following sections, the governing
equations of the fractured bulk in conjunction with the
hydro-fracture inflow are presented in detail.

2.1 Fractured bulk

The linear momentum balance equation governs the
response of the fractured impervious domain. Using
the infinitesimal deformation assumption, the momen-
tum balance equation associated with the quasi-static
condition is expressed as

∇ · σ + ρb = 0. (1)

In the above relation, b is the body force per unit mass
vector, ρ denotes the bulk density, and σ stands for the
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(a) (b)

Fig. 1 Problem definition and boundary condition associated with, a the fractured domain containing a hydro-fracture interface; b the
hydro-fracture inflow

Cauchy stress tensor. Note that the Cauchy stress tensor
is related to the total strain tensor versus the constitutive
relation σ = D : ε, where D is the constitutive matrix
(Hook’s elasticity tensor in here), and ε is the strain
tensor defined as ε(u) = ∇su. The external and inter-
nal boundary conditions corresponding to the fractured
impervious domain are described as

Internal Boundary Conditions :
{

σn� = t on �t ,

u = ū on �u,

External Boundary Conditions : σn�HF
= pn�HF + tcohs on �HF . (2)

where n denoting the unit normal vector, p being the
fracturing fluid pressure, and tcohs being the cohesive
tractions. The weak formulation of the current bound-
ary value problem is obtained through the introduction
of the trail and test functions of the displacement field
u(x, t) and δu(x, t), respectively.Notably, the test func-
tion δu(x, t) must be adequately smooth to vanish on
the essential boundary conditions, while the trial func-
tion u(x, t) is required to meet the essential bound-
ary conditions and to be smooth enough to define the
essential derivatives. Following the standard procedure
in derivation of the weak form, it yields

δ�bulk =
∫

�

δε : σd� +
∫

�HF
�δu� · pn�HF d�

+
∫

�HF
�δu� · tcohsd� −

∫
�

δu · ρbd�

−
∫

�

δu · td� = 0. (3)

In the above relation, �δu� denotes jump in the varia-
tional displacement vector δu across the fracture inter-
face (i.e., �δu� = δu+ − δu−). Notably, the cohesive

traction is a function of the jump in displacement field
(i.e., tcohs = tcohs(�u�)), which is defined through con-
stitutive relations known as traction-separation laws
(Wells and Sluys 2001). In this study, a decaying expo-
nential function is applied to capture the material soft-
ening behavior in the vicinity of the cohesive crack-
tip zone as (Nguyen et al. 2001; Simoni and Schrefler
2014):

tcohsN (h) = tcohs(h).n�HF = σult exp(−αh) (4)

in which α = σult/G f , with G f and σult denoting
the fracture energy and the ultimate tensile strength of
the domain, respectively. In addition, h is the crack
opening defined as h = �u�.n�HF = �uN �. Based on
the cohesive zone model, cohesive crack tips evolve
whenever the stress level exceeds beyond the ultimate
tensile strength of the material.

Using the X-FEM, the discretized form of the dis-
placement field is obtained by employing the shifted
Heaviside enrichment function along thehydro-fracture
interface �HF . Accordingly, the displacement field
uh(x, t) is expressed by

uh(x, t) = N(x)U(t) + ÑHF (x)ŨHF (t)

=
∑
I∈N

NI (x)uI (t) +
∑

I∈NHF
NI (x).

[H(φ�HF (x)) − H(φ�HF (xI ))]ũHF
I (t),

(5)

whereN andNHF are, respectively, the complete and
enriched nodal sets associated with the standard and
enriched DOFs of the displacement field uI and ũHF

I .
Moreover, NI is the standard shape function associ-
ated with node I , and H is the Heaviside enrichment
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function corresponding to the level set function φ�HF .
Finally, N and ÑHF are, respectively, the matrix form
of the standard and enriched shape functions associated
with the standard and enriched vector of displacement
DOFs U(t) and ŨHF (t). The matrix form of the equi-
librium equation is acquired as

� =
{

�1

�2

}

=
{

Fint − Fext

F̃HF
int − F̃HF

ext + Fcohs + FHF

}
= 0, (6)

where � stands for the residual force vector in which

Fext = ∫
�t

NT td� + ∫
�

NT bd�, Fint = ∫
�

BT σd�,

F̃HF
ext = ∫

�HF (ÑHF )T td� + ∫
�

(ÑHF )T bd�, F̃HF
int = ∫

�
(B̃HF )T σd�,

FHF = ∫
�HF NT pn�HF d�, Fcohs = ∫

�HF NT tcohsd�.

(7)

Note that in the above relations, the shape func-
tion derivatives are denoted by B(x) ≡ LN(x) and
BHF (x) ≡ LÑHF (x), withL being the standardmatrix
of differential operators.

2.2 Hydro-fracture inflow

Consider a hydro-fracture interface in the local Carte-
sian coordinate system (x ′, y′) as depicted in Fig. 1b.
The hydro-fracture inflow is supposed to be incom-
pressible, and one-dimensional with negligible width
to length ratio. Neglecting the variations of the fractur-
ingfluid pressure across the hydro-fracture section (i.e.,
∂p/∂y′ = 0), the continuity equation can be described
as
∂Q
∂x ′ + �u̇N� = 0, 0 ≤ x ′ ≤ �HF (8)

where Q is the flow rate, �uN� is the projection of dis-
placement field jump in direction normal to the inter-
face (i.e., �uN� = �u�.n�HF ≡ h), and �HF is the
hydro-fracture length. In the above relation, the over-
dot indicates the derivative with respect to time. Note
that the leak-off termcanbe added toEq. (8) on thebasis
of a selection of approximate relations (e.g., Carter
1957).

The hydro-fracture inflow is modeled by taking
advantages from the Darcy law as

Q = 1

f

h3

12μ

∂p

∂x ′ ≡ κHF
μ

∂p

∂x ′ , (9)

in which κHF is the hydro-fracture permeability deter-
mined on the basis of the cubic law (κHF = κh, where
κ is the intrinsic permeability of the fracture), μ is the
fluid dynamic viscosity, and f is themodification factor
in range of 1.04–1.65 originally suggested by Wither-
spoon et al. (1980) to account for deviations from the
ideal condition of smooth crack faces in laminar flow
condition (for non-Darcian flow condition see Chen
et al. 2019).

The boundary conditions associated with the hydro-
fracture are determined based on the assumption of

zero-lag between the flow front and the crack tip in
conjunction with the flow rate at the injection point as

HF Boundary Conditions :
{ Q|x ′=0 = QINJ ,

Q|x ′=�HF = 0.
(10)

The finite difference method is utilized for the solution
of the equations governing the hydro-fracture inflow.
To this end, the discretization points are supposed to
be a set of points positioned at the intersection of
the hydro-fracture with the element edges. The fluid
pressure p and flow rate Q along the hydro-fracture
are approximated by adopting the first-order upwind
scheme as

∂Q j+1
n

∂x ′
n

= Q j+1
n − Q j

n


x
′ j
n

,

∂p j+1
n

∂x ′
n

= p j+1
n − p j

n


x
′ j
n

, (11)

where j stands for the j th discretization point, and n
indicates the nth time step of the solution. In a similar
manner, the crack opening velocity �u̇N� is approxi-
mated by

�u̇N�
j
n+1 = �uN�

j
n+1 − �uN� jn


t
. (12)

in which 
t is the time increment adopted for the time
domain discretization (i.e., 
t = tn+1 − tn). It is note-
worthy that positive values obtained for the fracturing
fluid pressure are not added in this study due to the fact
that no fluid may sustain suctions beyond its vapour
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pressure pv . Indeed, this phenomenon occurs as a result
of delay in the flow front with respect to the fracture
tip evolution, which is referred to as the fluid-lag in
the literature (Mohammadnejad and Khoei 2013). Fol-
lowing Boone and Ingraffea (1990), the fracturing fluid
pressure is capped at the vapour pressure in the current
study.

3 Solution strategy

In this section, the staggered solution procedure
employed for the coupled hydro-mechanical analy-
sis is represented. Moreover, the fixed-point algorithm
applied for the imposition of the boundary conditions
to the hydro-fracture inflow is described.

3.1 The staggered Newton solution procedure

The staggered Newton scheme takes advantages from
an iterative procedure which considers the solution of
each set of the governing equations separately in a
sequential manner. Accordingly, within each time step,
the iterative procedure starts with the assumption of a
fixed fracturing fluid pressure along the hydro-fracture
interface, and it solves the solid phase equations. To this
end, the momentum balance equation given by Eq. (6)
is linearized using the standard Newton–Raphson pro-
cedure as

� i+1
n = � i

n + (JU)indU
i+1
n = 0. (13)

In the above relation, JU is the tangential Jacobian
matrix (stiffness matrix) given by JU = ∂�/∂U, in

which U =
〈
U(t) ŨHF (t)

〉
is the complete set of

displacement field DOFs, and i stands for the itera-
tion number. The displacement field is then updated
by Ui+1

n = Ui
n + dUi

n , which in turn results in the
updated fracture profile. Next, the updated displace-
ment field is regarded as fixed, and the discrete form of
the flow continuity in Eqs. (8–9) can be solved along
the hydro-fracture as{

Q = Ji+1
Q

H,

P = Ji+1
P

Q,
(14)

where Q, P and H are, respectively, the vectors con-
taining the values of the flow rate, pressure and open-
ing at discretization points, with JQ and JP being the
matrix of coefficients manifested in a finite difference

solution. The updated pressure field is adopted in order
to start the next iteration. The iterative procedure is
repeated until a convergence criterion is met, which
here is defined based on the relative error in the norm
of residual forces as

ηi+1 =
∥∥� i+1

n − � i
n

∥∥
‖F‖ ≤ η∗, (15)

with η∗ being a preassigned target error, and F =〈
Fext , F̃HF

ext − Fcohs − FHF
〉T
.

3.2 The fixed point algorithm

In practice, hydraulic fracturing treatments are gen-
erally performed through the application of constant
injection rate at the borehole. In this fashion, pres-
sure breakage andfluctuations—as crucialmechanisms
in hydraulic fracturing—can be properly recognized
(Milanese et al. 2016). Nevertheless, this set of bound-
ary conditions (i.e., Eq. (10)) leads to an ill-posed sin-
gular set of equations regardless of the computational
approach taken since the pressure field lacks a reference
value (Nick and Matthäi 2011). It is noteworthy that in
the literature, alternative boundary conditions can be
foundwhich circumvent this ill-posedness yet lack gen-
erality (e.g., through the assumption of the fracturing
fluid pressure to be vanished at crack tips by Papanasta-
siou (1999), which is easily violated in toughness dom-
inated propagation regimes (see Detournay 2004)).

To overcome the ill-posedness of the problem, fol-
lowing Boone and Ingraffea (1990) and Khoei et al.
(2015), the injection rate at the borehole is replaced
by the injection pressure as an intermediate boundary
condition, which is modified such that the prescribed
injection rate is acquired (i.e.,

{
( p|x ′=0 ≡ pINJ ) ⇒

(q|x ′=0 ≡ qINJ )
}
).However, the impositionof such a

boundary condition has been quite challenging, and the
existing approaches in the literature suggest extremely
inefficient algorithms which require a huge number of
iterations (e.g., Boone and Ingraffea 1990; Secchi and
Schrefler 2012; Khoei et al. 2015). Alternatively, here a
super-convergent method is proposed which is claimed
to ensure the satisfying convergence of the solution.
Indeed the strong coupling between the two phases is
responsible for the low convergence rate; yet, through
the introduction of an indirect coupling schemehere the
sources inducing oscillations in the solution are rapidly
annihilated. To this end, the displacement field acquired
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by the solution to the fractured bulk (i.e., Eq. 13) is
replaced by a modified displacement field before being
employed to solve the equations governing the hydro-
fracture inflow (i.e., Eq. 14) as:

(i) Scaling facture profile A crucial source of failure
in convergence is due to the fact that the pressure
gradient is highly dependent upon the fracture pro-
file (i.e., ∂p/∂x ′ ∝ 1/h3). Even minor variations
in fracture openings induce huge changes in the
pressure field, which is a significant drawback in
rapid convergence rate. To overcome this issue, the
fracture profile is assumed to be self-similar within
each iteration and is scaled to the target fracture
volume by means of a scaling factor γ as

H̄
i+1 = γ i+1

H
i+1, where γ i+1

=
(

V tar
INJ

(VINJ )i+1

)
(16)

with VINJ and V tar
INJ being the current and tar-

get fracture volume, respectively (i.e., VINJ =∫ �HF
x ′=0 h dx and V tar

INJ = QINJ .t).
(ii) Implicit fracture profile In staggered solutions, the

fracture profile is observed to oscillate from one
configuration to another within iterations. To cir-
cumvent such oscillations, the fracture profile is
calculated implicitly by means of employing a
weighted combination of the fracture openings in
the previous two following iterations as
¯̄
H

i+1 = αH̄
i+1 + (1 − α)H̄i , (17)

where α is the implicit weight factor (0 ≤ α ≤ 1).

Using the abovementioned modification factors, the
injection pressure is iteratively updated by using the

modified fracture profile ¯̄
H

i+1 as pi+1
INJ = λi+1 piINJ ,

where λ is the pressure modification factor defined as
λi+1 = (Qtar

INJ /Qi
INJ ). It is noteworthy that inKhoei

et al. (2015) it is suggested to employ λβ as the neces-
sary and sufficient modification factor for the injection
pressure with β being a reduction factor in range of
0 ≤ β ≤ 1.0 (optimum at β = 0.25). In the numerical
simulations section, the performance of the proposed
approach is examined and compared to those existing
in the literature.

4 Numerical simulation results

In this section, the performance of the proposed algo-
rithm in the simulation of the hydro-fracture growth

in semi-infinite domain is investigated. The first ana-
lytical solution to this example, known as the KGD
problem, was proposed by Khristianovic and Zheltov
(1955), and Geertsma and De Klerk (1969) and is in
form of

KGD :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CMOD = c1
(

μ(1−ν)Q3

G

)1/6
t1/3 ≡ h|x ′=0 ,

CL = c2
(

GQ3

μ(1−ν)

)1/6
t2/3 ≡ �HF (t),

CMP = c3

(
G3Qμ

(1−ν)3�2HF

)1/4

+ S ≡ pINJ (t),

(18)

where CMOD stands for the Crack Mouth Opening
Displacement, CL is the Crack Length, and CMP is the
Crack Mouth Pressure. In the above relations, ci ’s are
the model parameters, S is the in-situ stresses in direc-
tion normal to the fracture interface, ν is the Poisson’s
ratio, and G is the shear modulus. The KGD problem
has been a classic benchmark in hydraulic fracturing
research, which has beenwidely studied by using either
themonolithic (Schrefler et al. 2006; Barani et al. 2011;
Khoei et al. 2014) or the partitioned (Boone and Ingraf-
fea 1990; Khoei et al. 2014, 2015; Nguyen et al. 2017)
schemes. The material parameters employed here for
the numerical analysis are: Young modulus of elas-
ticity, E = 15.96 GPa; Poisson’s ratio, ν = 0.2;
dynamic viscosity, μ = 1 × 10−3 Pa.s; injection rate,
QINJ = 10−4 m2/s; vapour pressure, pv ≈ 0MPa;
ultimate tensile strength, σult = 1 MPa; and Frac-
ture toughness, G f ≈ 0 J/m2. Notably, the cohesive
fracture energy is assumed to be negligible so that the
iterations are purely correlated with the nonlinearities
induced by the partitioned coupling schemes. Using the
more precise theoretical solution suggested by Spence
andSharp (1985), themodel parameters are: c1 = 2.14,
c2 = 1.97 and c3 = 0.65. Unless specified otherwise,
a FE mesh consisting of 2420 quadrilateral elements
with 2448 nodal points is used for the numerical anal-
ysis. A schematic representation of the KGD problem
is depicted in Fig. 2.

4.1 Partitioned solution strategies

In order to investigate the convergence rate of the
partitioned schemes, three different solution strategies
are considered here. Moreover, to examine the sensi-
tivity of each solution algorithm to time increment,
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Fig. 2 Hydro-fracture
growth in semi-infinite
domain (the KGD problem);
the problem definition,
geometry and boundary
conditions

0yu

80m
10m

0x yu u

160m

all simulations are performed by using time incre-
ments of 
t = 0.05 and 0.2 s. Note that the rela-
tive error of η∗ = 10−6 is set as the convergence
criterion for all the solutions here. In the first solu-
tion set, the proposed framework is employed in con-
junction with the both modification factors of γ and
α, where α = 0.0, 0.25, 0.5, 0.75, 1.0, (1.0 − i/ imax)

and i/ imax, with imax = 100. Note that in latter two
cases (i.e., (1.0 − i/ imax) and i/ imax) α alters linearly
from 1 to 0 or vice versa within the iterations. More-
over, the case of α = 0.0 exercises no update to the
hydro-fracture profile throughout the iterations, while
in the case of α = 1.0 the current deformation field is
used explicitly. In the second solution set merely the
weight factor α is applied in resemblance to the first
solution set, yet the modifications due to the scaling
parameter γ are disregarded (i.e., γ = 1). Finally, in
the third solution set the existing staggered schemes
in the literature–particularly the recent algorithm pro-
posed by Khoei et al. (2015)–are examined in which
the modification factor β = 0, 0.25, 0.5, 0.75 and 1.0
is utilized. It is noteworthy that the extreme case of
β = 0 leads to no update in the injection pressure,
while β = 1.0 yields the classic approach originally
suggested by Boone and Ingraffea (1990).

In Fig. 3a–c, the variations of the CL, CMOD and
CMP with respect to time are shown for the first solu-
tion set with 
t = 0.05s, and are compared to the ana-
lytical solutions by Spence and Sharp (1985). As can
be seen, the proposed solution accords with the analyti-
cal solution in cases of α = 0.25, (1− i/ imax), i/ imax.
In the rest of the cases substantial fluctuations occur
which are eventually even further intensified with the
evolution of the hydro-fracture in time. In Fig. 4a,

the required number of the iterations for convergence
is reported throughout all time steps of the solution.
Note that wherever the number of iterations is reached
at imax = 100, the algorithm has failed in conver-
gence to the preassigned criterion (i.e., η∗ = 10−6). In
Table 1, the average number of iterations ī , the variance
σ 2 and the total number of iterations itotal is reported
for all chosen weight factors. The case of α = 0,
despite showing the best convergence rate, suggests
very inaccurate results. Indeed, the best result pertains
to α = i/ imax for involving the smallest average, the
least total number of iterations, and more importantly
the lowest variance. Thus, it can be concluded that the
weight factor α = i/ imax suggests the most robust,
stable and reliable solution.

In Fig. 4b, the required number of iterations associ-
ated with the second solution set is reported. Evidently,
for all the cases the maximum permitted number of
iterations is exceeded, which indicates the failure in
convergence. In this fashion, the necessity of the elab-
oration of the scale factor γ is shown. In Fig. 4c, the
required number of iterations for the third solution set
is provided. Despite increasing the upper limit for the
permitted iterations to imax = 200, in no case is the
convergence criterion met. This implies the very poor
performance of the existing staggered algorithms in the
literature. This accords with the requirement of thou-
sands of iterations in the classic algorithms as reported
byBoone and Ingraffea (1990). It is noteworthy that the
time increment of 
t = 0.05s lies within the common
range used in the numerical simulation of the KGD
problem (e.g., see Schrefler et al. 2006; Barani et al.
2011; Khoei et al. 2014).

123



56 M. Vahab, N. Khalili

0.05st 0.2st

**
**
* *

* *
* *

* *
* *

* *
* *

* *
* * * * * * * * * *

x
x
x
x
x
x
x
x
x
x
x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Time (s)

C
L 

(m
)

0 2 4 6 8 10
0

1

2

3

4

5

*
*

*
*

*
*

*

x
x

x
x

x
x

x

+
+

+
+

+
+

5 6 72.5

3.5

*
*

*
*

*
*

*
*

*
*

*
*

*
*

x

x

x

x

x

x

x

x

x

x

x

x

x

x

+
+

+
+

+
+

+
+

+
+

+
+

+
+

Time (s)
C

L 
(m

)
0 2 4 6 8 10

0

1

2

3

4

5

*
*

*
*

*
*

*

x
x

x
x

x
x

x
x

+
+

+
+

+
+

+

5 6 72.5

3.5

*

*
**
**
**
**
****

****
****

**
**
**
*
*
*
*
**
*
***
*
*
*
**
*
*
*
*
*
**
*
**
*
**
*
**
*
**
*
**
*
*

x

x
xx
x
xx
xx
xx
xx
xxx

xxx
xxx

xxx
xxx

xxxx
xxxx

xxxx
xxx

xxxxxx
xxxxxxxx

xxx
xx
xx
xxx

+

+
++
++
++
++
+++

+++
+++

++++
++
++
++
+
+
+
+
+
+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Time (s)

C
M

O
D

 (m
m

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

*
* * *

*
*

*

* *

*

*

*

*x x x x x x x x x x x x x

+

+

+

+

+

+

+

+

+

+

+

+

+

5 6 70.22

0.32

*

*
* * * * * * * * * * * * * * * * * * * * * * * *

x

x
x x x x x x x x x x x x x x x x x x x x x x x x

+

+
+ + + + + + + + + + + + + + + + + + + + + +

+ +

Time (s)

C
M

O
D

 (m
m

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

*
*

* *
*

x
x

x x
x

+
+

+
+ +

5 6 70.22

0.32

*

*
*
**
***
***********************

*
*********************************

x

x
x
x
x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx

+

+
+
+
++++++++++++++++

+
+
+
+
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Time (s)

C
M

P 
(M

Pa
)

0 2 4 6 8 10

-2

-1.5

-1

-0.5

0

* * * * * * *
*

*
*

x x x x x x x x x x

+ + + + + + + + + +

5 6 7

-0.75

-0.25

*

*

*
*

*
* * * * * * * * * *

x

x

x

x
x

x
x x x x x x x x x

+

+

+

+
+

+
+ + + + + + + + +

Time (s)

C
M

P 
(M

Pa
)

0 2 4 6 8 10

-2

-1.5

-1

-0.5

0

*
* * *

* *

x x x x x x

+
+ + + + +

5 6 7

-0.75

-0.25

*

x

+
max

max

0.0
0.25
0.5
0.75
1.0
1.0 /

/
Spence and 
Sharp (1989)

i i
i i

(a) (d) 

(b) 

(c) 

(e) 

(f) 

Fig. 3 The variations of Crack length (CL), Crack Mouth Opening Displacement (CMOD), and Crack Mouth Pressure (CMP) with
time for 
t = 0.05s and 
t = 0.2s
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Table 1 Number of
iterations required for the
convergence of the proposed
method for different
selections of α parameter


t(s) α ī σ 2 itotal

0.05 0 10.61 3.255 2121

0.25 30.32 825.2 6063

0.5 51.37 1719.5 10,274

0.75 50.01 1749.6 10,002

1 54.84 1738.2 10,968

1 − i/ imax 67.86 756.41 13,572

i/ imax 23.77 38.881 4754

0.2 0 7.62 2.485 381

0.25 13.5 5.316 675

0.5 11.02 5.530 551

0.75 23.38 610.53 1169

1 49.68 1850.1 2484

1 − i/ imax 22.84 245.16 1142

i/ imax 23.46 27.723 1173

Fig. 4 Number of iterations
required for convergence of

t = 0.05s associated with:
a proposed algorithm; b α-
method; c β- method
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Fig. 5 Number of iterations
required for convergence of

t = 0.2s associated with:
a proposed algorithm; b α-
method; c β- method
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The analysis is repeated for the time increment of

t = 0.2s which is indeed very large for the current
problem. In Fig. 3d–f, the variations of CL, CMOD
and CMP with respect to time are reported for the first
solution set. Except the extreme cases of α = 0.0, 1.0
which show minor fluctuations, the rest of the cases
behave quite smoothly. Notably, the discrepancies with
respect to the analytical solution at the early stages are
due to the elaboration of too large time increments for
the analysis. In Fig. 5a, the required number of itera-
tions associated with all the time steps of the solution is
reported with the permitted number of iterations set to
imax = 100. Evidently, excluding the case of α = 1.0,
all cases have now converged successfully within the
allowable number of iterations. In Table 1, the statis-
tical values associated with this solution set are also
reported. As predicted, the case of α = 0 represent
the lowest values. Meanwhile, the case of α = i/ imax

stands to be the best solution regarding the simula-

tion precision as well as with the statistical indexes.
In Fig. 5b, the required number of iterations for the
second solution set is presented. Clearly, substantial
deterioration is observed in the convergence rate. This
verifies the critical role of the proposed scaling factor,
γ . Finally, in Fig. 5c the required number of iterations
for the third solution set is depicted. Even though the
time increment is enlarged significantly, a very poor
convergence rate is observed for all the cases. More
importantly, β = 1 generally shows the least required
number of iterations which indicates the failure of this
modification factor in improving the convergence rate.

At the end of this example, the required number of
iterations associated with the third solution set for time
increments of 
t = 0.5 and 1.0 s is demonstrated in
Fig. 6. Evidently, the required number of iterations–
now limited to imax = 500–shows a very poor perfor-
mance. Notably, the best convergence rate is observed
for β = 1, which is in fact the same as the classic solu-
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Fig. 6 Number of iterations
required for convergence of
β- method: a 
t = 0.5s; b

t = 1.0s
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tion suggested by Boone and Ingraffea (1990). Thus,
the necessity of the modification factor β is dubitable.
In this fashion, the crucial role of the proposed algo-
rithm to the partitioned solution of the hydraulic frac-
turing problem is highlighted. Lastly, based on the sim-
ulations here, the existing staggered solutions are quite
sensitive to the time increment; the required number of
iterations significantly decreases by enlarging the time
increments used for the simulation at the expense of
reduction in accuracy.

4.2 Sensitivity analysis

In this example, the sensitivity of the proposed parti-
tioned coupling scheme with respect to time increment
as well as mesh size is investigated. To this end, three
FE mesh consisting of 4643, 2420, 1545 quadrilateral
elements in conjunction with 4683, 2448, 1570 nodal
points, respectively, are applied which are referred to
as the fine, medium and coarse mesh, respectively1.
Notably, the majority of the elements are clustered in
the vicinity of the hydro-fracture evolution trajectory,
where the element sizes becomeas small as 12.5, 25 and
50 cm2 in the fine, medium and coarse mesh, respec-
tively. For each mesh refinement, a series of numeri-
cal analysis is performed using the time increments of

t = 0.025, 0.05, 0.1 and 0.2 s. The relative error of
η∗ = 10−6 is set as the convergence criterion in all
cases. The modification factors of γ and α = i/ imax

are applied to provide the best convergence rate as sug-
gested by the first example, with imax = 100.

In Fig. 7, the variation with time of the CL, CMOD
and CMP is illustrated for all combinations of the mesh
sizes and time increments. Again, the analytical solu-
tion by Spence and Sharp (1985) is included in all

1 The medium mesh was formerly used in the first example.

graphs as the reference solution. Evidently, the pro-
posed solution strategy suggests promising results with
improving trend as a result of either mesh refinement or
reduced time increment. In Fig. 8, the required number
of iterations throughout the time steps of the solution
is reported for all mesh sizes and time increments. As
can be seen, in all cases the convergence criterion ismet
within the permitted number of iterations with moder-
ate fluctuations. In Table 2, the average, variance and
total number of iterations is reported. Interestingly, in
all cases the average number of required iterations is
approximately the same (i.e., ∼ 20). Meanwhile, the
variance lies within very small ranges (i.e., σ 2 ≤ 50).
Such features are quite desirable from the computa-
tional perspective for being a representative of a robust
and stable solution algorithm. Thus, in contrast to the
existing staggered schemes in which the required num-
ber of iterations is too high, uncertain, andmore impor-
tantly rapidly growing, the proposed scheme is quite
promising.

Finally, the normalized error in the opening and frac-
turing pressure profiles with time, defined as eu =
‖H − Hexact‖ / ‖Hexact‖ and ep = ‖P − Pexact‖ /

‖Pexact‖, respectively, are shown in Fig. 9. To this end,
the simulation results associated with the smallest time
increment (i.e., t = 0.025s) are set as the exact solu-
tion. Notably, the comparisons are made at the final
instant of the simulations (i.e., t = 10s). In this fash-
ion, the convergence of the proposed framework with
time is demonstrated.

5 Conclusions

In this paper, a super-convergent staggered Newton
algorithm is proposed for the study of hydraulic frac-
turing problem. The momentum balance of the bulk,
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Fig. 7 The variations of Crack length (CL), Crack Mouth Opening Displacement (CMOD), and Crack Mouth Pressure (CMP) with
time for the fine, medium, and coarse mesh

in conjunction with the flow continuity equations of
the fracturing fluid flow forms the coupled system of
the governing equations. A Newtonian viscous flow

model is applied for the hydro-fracture inflow, where
the fracture permeability is incorporated by using the
cubic law. A staggered Newton algorithm is employed
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Fig. 8 Required number of iterations for convergence of the proposed algorithm for the fine,medium and coarsemeshes; a 
t = 0.025s,
b 
t = 0.05s, c 
t = 0.1s, and d 
t = 0.2s

Table 2 Number of
iterations required for the
convergence of the
proposed method for a
combination of mesh and
time increment refinement


t(s) Mesh size ī σ 2 itotal

0.025 Fine 21.98 23.528 8792

Medium 22.20 44.339 8879

Coarse 18.78 23.841 7512

0.05 Fine 22.70 5.349 4539

Medium 23.77 38.881 4754

Coarse 22.56 29.996 4512

0.1 Fine 24.14 7.314 2414

Medium 22.38 10.440 2238

Coarse 23.48 55.101 2348

0.2 Fine 24.26 20.727 1213

Medium 23.46 27.723 1173

Coarse 25.34 15.576 1267

to carry out the hydro-mechanical coupling. An inno-
vative fixed-point algorithm is proposed which circum-
vents the difficulties encountered in the numerical con-
vergence of the partitioned solution. In this regard, an
indirect hydro-mechanical coupling scheme is intro-
duced to minimize the issues which hinder the numer-
ical convergence.

Through several sets of numerical simulation the
robustness of the proposed framework is illustrated. In
this regard, the convergence properties of the staggered
solution to thewell-knownKGDproblem are explored.
In the first example, it is shown that the proposed
framework–together with special combinations of the
modification factors–suggests a smooth, stable and reli-
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Fig. 9 Temporal
convergence in aperture and
pressure error norms for the
hydro-fracture propagation
in an impermeable domain;
the average asymptotic rate
of convergence is
approximately 1.00 in the
aperture error norm and 0.53
in the pressure error norm
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able solution with excellent convergence rate. Mean-
while, the convergence rate of the existing staggered
algorithms in the literature are examined and observed
to behave poorly. Furthermore, as a major drawback, it
is shown that by enlarging the time increment used for
the simulations a better convergence rate is delivered.
In the second example, through a comprehensive sen-
sitivity analysis, it is shown that the proposed approach
suggests a promising solution for a wide range of time
increments as well asmesh refinements. In this fashion,
the developed framework is deemed to be highly bene-
ficial regarding the computational efficiency and accu-
racy of the partitioned solution to the hydraulic fractur-
ing problem. The current framework can be extended
to the study of multizone/multistage hydraulic frac-
turing treatments through the introduction of consis-
tency constrains within the pressure field (see Haddad
and Sepehrnoori 2016; Sheng et al. 2018; Sutula et al.
2018a, b, c), which is left to future studies.
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