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Abstract Peridynamics is a nonlocal formulation of
solid mechanics capable of unguided modelling of
crack initiation, propagation and fracture. Peridynam-
ics is based upon integral equations, thereby avoiding
spatial derivatives, which are not defined at disconti-
nuities, such as crack surfaces. Rice’s J-contour inte-
gral is a firmly established expression in classic contin-
uum solid mechanics, used as a fracture characterizing
parameter for both linear and nonlinear elastic mate-
rials. A corresponding nonlocal J-integral has previ-
ously been derived for peridynamic modelling, which s
based on the calculation of a set of displacement deriva-
tives and force interactions associated with the contour
of the integral. In this paper, we present an alterna-
tive calculation of the classical linear elastic J-integral
for use in peridynamics, by writing Rice’s J-integral
as a function entirely of displacement derivatives. The
accuracy of the proposed J-integral on displacement
formulation is investigated by applying it to the exact
analytical displacement solution of an infinite specimen
with a central crack and comparing the exact analytical
expression of its J-integral K 12 / E . Further comparison
with a well-known peridynamic crack problem shows
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very good agreement. The suggested method is com-
putationally efficient and further allows testing of the
accuracy of a peridynamic model as such.
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methods - Fracture - Crack tip - Exact analytical

1 Introduction

The J-integral is an expression for calculating the strain
energy release rate in a cracked body, or the energy
available at the tip of a crack to form new crack surfaces
as the crack extends (Rice 1968). The J-integral has
ever since been extensively used to study crack prop-
agation conditions in both linear and nonlinear elastic
materials, perhaps foremost concerning ductile materi-
als. It is since long a firmly established and an essential
supplemental tool to classic continuum solid mechan-
ics.

The peridynamic theory is a nonlocal formulation of
solid mechanics, introduced for handling crack initia-
tion, extension and final failure of a body, without the
need of supplementary methods (Silling 2000; Silling
and Askari 2005). Peridynamics is based upon integral
equations, thereby avoiding spatial derivatives, which
are not defined at discontinuities, such as crack sur-
faces.

A peridynamic nonlocal J-integral has been derived
by Silling and Lehoucq (2010) for state-based peridy-
namics, based on an energy balance approach. Later,
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Hu et al. (2012) presented a bond-based peridynamic
J-integral, using an infinitesimal virtual crack exten-
sion method. The expression derived by Hu et al. is a
special case of the more general expression by Silling
and Lehoucq. The peridynamic J-integral formulation
requires computation of a set of displacement deriva-
tives and force interactions over inner and outer regions
associated with the contour integral. The width of these
regions depends on the degree of nonlocality of the
peridynamic model.

Breitenfeld et al. (2014) used the classical J-integral
in a study of the accuracy of 2D peridynamic crack tip
stress and displacement fields. The J-integral compu-
tation scheme is however not described in detail.

In this paper, we present a calculation of the clas-
sical linear elastic J-integral for use in peridynam-
ics, by writing Rice’s J-integral as a function entirely
of displacement derivatives. In peridynamic problem
formulation, displacements are generally the principal
unknowns to be determined, from which other quan-
tities subsequently can be obtained. The J-integral on
displacement formulation can thus be directly obtained
from the displacement field of a peridynamic model.
This formulation requires less computation time. It
depends only on the adjacent neighboring material
points of the integration path and is therefore more effi-
cient. At the same time, it also provides a method to test
the accuracy of a peridynamic model as such.

The peridynamic theory is briefly introduced in the
next section. In the section thereafter, we derive the
J-integral on displacement formulation. The accuracy
of the method is investigated by comparison with the
exact analytical solution for an infinite specimen with a
central crack. The results are discussed and conclusions
are given in the last sections.

2 Bond-based peridynamic theory

The peridynamic equation of motion of the material
point at position X at time ¢ is given as

ii(x, 1) = f 1) —u(x,1),x —x)dVy
p(X)u(x, 1) /H (u(x ) u(x,t),x x)

X

+b(x, 1) Vx e Q (1)

where 2 is the domain of the body, u is the displace-
ment vector field, p is the mass density and b is a pre-
scribed body force field. f is the pairwise force func-
tion (a vector) per unit volume squared, denoting the
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force the material point at X’ exerts on the material
point at x. This interaction between pairs of material
points is called bond, or spring in case of a linear elastic
material. The integral is defined over a region Hy, of
radius &, called the horizon, Fig. 1. The horizon can be
seen as a sphere, disk or range, for 3D-, 2D- and 1D-
models, respectively. A suitable horizon size is cho-
sen and the material body discretized in accordance
with problem geometry, loading and desired accuracy
of the results. Convergence studies may be performed
to justify the selection of horizon and discretization.
The relative grid density factor m = §/Ax, where Ax
is the uniform grid spacing, should in a plane square
lattice arrangement have a ratio of at least 3 (Silling
and Askari 2005; Madenci and Oterkus 2014) and in
many cases 4 or higher (Ha and Bobaru 2010; Henke
and Shanbhag 2014; Dipasquale et al. 2016), to provide
grid independent crack growth patterns.

A material is called microelastic if the pairwise force
between material points is derivable from a micropo-
tential w (Silling 2000):

. ) = 205
an
where § = x’ — x is the relative position of two mate-
rial points in the reference configuration, and n =
u (X’ , t) —u (x, t) = u'—uis the corresponding relative
displacement in the deformed configuration. A linear
microelastic material results in the micropotential

2
o, £) = C(IIEIIiS |1€1] 3)

where s is the relative elongation of a bond:
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Differentiation of (3) according to (2) gives
0 , 0
£, &) = "2 oy 21E
n on
§+n

= 5
||§+n||C(IIEII)S Q)]

where (§+17)/||& +n|| = e, is aunit vector along a line
through the two points of abond in the deformed config-
uration. As we assume that a material point x does not
interact with material points outside its horizon, f = 0
for ||&]] > §. The particular kernel of the integrand
in Eq. (1), here the ratio c(||€]])/]|&]|, is common in
mechanical problems. Other kernels are possible and
the selection influences the nonlocality, convergence,
and thus the discretization applied (Chen et al. 2016).
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Fig.1 Deformation in
bond-based peridynamics

The elastic stiffness of a bond is determined by the
micromodulus function c(||€]|), which is found by cal-
ibrating the peridynamic strain energy density against
the classical strain energy density, for a homogeneous
body under (a) isotropic (dilatational) deformation and
(b) pure shear (distortional) deformation. The micropo-
tential w is the energy in a single bond with dimension
‘energy per unit volume squared’. The strain energy
density of a single point is therefore

1
w3 [ omsav ©
Hx

The factor 1/2 appears as the points in a bond shares
the bond energy between them equally. For a 2D body

5 2w S
W:%/wwgmwzcja//g@w
Hx 0 0
_ nc1s2t83 )
6

where ¢ is the thickness of the body, and c¢; comes
from assuming a constant micromodulus c(||€||) = ¢.
Isotropic deformation and plane stress give the classical
strain energy density Wy = 1/20;j¢;; = Ee?/(1 —v).
Setting W = W, yields the corresponding micromod-
ulus:
6F

c(ll&l) =c1 = m

The isotropic and pure shear deformations must
result in the same ¢, which in 2D plane stress restricts
Poisson’s ratio to 1/3, and to 1/4 in 2D plane strain and
3D models (Silling 2000; Gerstle et al. 2005). This is
because the forces within a bond depend only on the
two material points of a bond (and no other points). This
restriction was overcome in state-based peridynamics

®)

by letting each bond depend on the collective defor-
mation within the horizon (Silling et al. 2007). The
forces do not necessarily have to be pairwise equal in
magnitude and opposite to each other as in bond-based
peridynamics. However, an advantage of bond-based
peridynamics is that it is less computationally expen-
sive.

Equation (8) is derived under the assumption of a
constant micromodulus for plane stress in 2D (in which
case v = 1/3), and it holds also for plane strain (v = 1/4)
(Gerstle et al. 2005). Other types of micromoduli (trian-
gular, conical, higher degree polynominal) are derived
in a similar fashion and are available for 1D (Bobaru
et al. 2009), 2D (Ha and Bobaru 2010) and 3D (Silling
and Askari 2005).

3 The J-integral as a function of displacement
derivatives

The J-integral of a plane homogeneous body is defined
as (Rice 1968)

a.
J=/(W@—nl%0 ©)
r dx

where x = x; and y = x; are 2D Cartesian coordi-
nates with origin at the crack tip. The body contains
a straight through crack parallel to the x-axis. J is a
contour integral evaluated counterclockwise along an
arbitrary path I' enclosing the crack tip. 7; = ojjn; is
(the components of) the traction vector along I', with
the outward unit normal vector 7 ; and o;; stress. u; is a
displacement vector and ds is an element of arc length
along I'. The strain energy density is

€
WZ/O O','jdéij (10)
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where ¢;; is strain. For a linear elastic material, assumed
in this work, Eq. (10) reduces to

1
W = zaijeij (11)

Hooke’s law provides the following plane stress ver-
sus strain relationships in 2D:

E
o1l = m(fll + vex) (12a)
02 = 5 (€22 4 verr) (12b)
1—v
E
o1z =021 = T € (12c¢)

The strain—displacements relationships are

1
€j = E(”i,j +uj;) (13)

Substitution of Eq. (13) in Eq. (12a—c) provides the
stress—displacements derivative relationships

E duy n duy (14a)
o111 = _— V— a
=12 ax1 9x2
E dun ouy
- w2 2 14b
=2 (8x2+v8x1) (14b)
E oup n ouy
op=0 =———+—=
RPERT 00+ 0\ | an
E 1—v [0u; ouy
_ & Tv(da % l4¢
1—v2 2 <8x2+8x1) (14¢)

Substitution of Eq. (14) in Eq. (11) yields W as a
function of displacement derivatives:

W= E oup 2+ ouy 2
T 2(1—v2) [ \ax 9x2
duy ou 1—v [0u duy \ 2
+2v—1—2+—(—1+—2> ]

0x1 0x2 2 0x7 0x]
(15)

where E and v are Young’s modulus and Poisson’s
ratio, respectively.
The second term in Eq. (9) is expanded to
ou; ( n ) ouy
oijhj— = (o11n1 + o12n2) —
ij jaxl 1111 1212 x|

duy
+ (02111 + 02212) — (16)
0x1

By taking the integration contour as a square around
the crack tip, Fig. 2, Eq. (16) can be separated into three
parts; (a) right hand side, (b) top and (c) left hand side
contours:
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Fig. 2 Geometry of (the upper half of) the test specimen. a is
half the crack length, /-I11 are right, top and left J-integral
contour paths, respectively, and the contour corners are denoted
pand g

(1.0) ou; ouy n ouy (172)
n=(1,0):0inj— =011— + 01— a
A 3X] 1 8x1 2 3X]
0, 1) oui M1 422 (17
n=1(0,1)0inj— =0o1p— + 03—
Y 0x1 12 dx1 22 dx1
ou; ouy oun
=(=1,0):0/in;— = —01] — — il
n=( ):0ijn; o1 o11 ox1 021 ox1
(17¢)
Substitution of Eq. (14) in Eq. (17) yields
oup 2 ouy duy
W= (3)61) +U3xl 3)62
1—v | duydus  [0ur\*
—_— — 18
+ 2 |:8xz 0x1 +<8x1> (182)
1 —voup duy 1+vouy duy Jup duy
w = —_— u— D —
T 9x axa 2 axy ax; | dx1 0
(18b)
Wy = —wy (18¢c)

where wy, wyy and wy; are calculated on the right, top
and left sides of the contour, respectively. The factor
E /(1 —v?) is left out for the time being, to be invoked
later.

Due to symmetry, the J-integral (Eq. 9) can then be
calculated as twice the sum of the three contour parts:

31/!['
- Wdy —O’,‘jnja ds

— 12_EU2. > (Wi dy — w; ds) (19)
i=II1II1

The factor 2 on the right hand side in Eq. (19)

accounts for the J-integral contour starting from the

lower fracture surface, going around the crack tip coun-

terclockwise and ending on the upper fracture sur-

face. Equation (19) will be compared, in what follows,

J
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with the exact analytical solution of ‘the central crack’
problem and applied to a corresponding peridynamics
model. We also note that Eq. (19) can be applied to any
other method solving for displacements.

4 Exact analytical solution of the central cracked
specimen

Exact analytical solutions of stresses and displacements
for an infinite plate with a straight crack, under uniform,
uniaxial remote stress perpendicular to the crack, have
been derived by Unger et al. (1983). In-plane (or Mode
I) stresses and displacements can be expressed in terms
of the real and imaginary parts of the complex potential
of Westergaard (1939) Z;:
Ol

Zi(2) = T
where o is the remotely applied tensile stress, a is
half the crack length, and z = x + iy is a complex
coordinate. Unger et al. derived the expressions for
stresses and displacements under plane strain condi-
tions by making use of the complex identity of Aifantis
and Gerberich (1978):

1/2

c+V32+d?

d = + crveTan
] ()

(20)

1/2
+isen(d) (L ;2+dz> } Q1)
The real and imaginary parts of Eq. (20) can then
be found, from which in turn closed form stress and
displacement expressions can be derived. We have in
an analogue manner derived the stresses and displace-
ments under plane stress conditions

or _ 0 [XVC+ Yf—yA\/B—i—ZXY«/f
oy V2 B + B3

(22a)
0o .. ANC —2XY~D
Oxy = EY B3
u_ ool a/C — (Y2J/C — XY/D)/B
Bv/D — (Y2/D + XY+/C)/B
(22¢)
where X, Y and A-C are dimensionless variables, «

and B are constants for plane stress and plane strain,
respectively. The dimensionless variables are given as

X =x/a, (23a)

(22b)

V2E

Y =vy/a (23b)
A=X>-Y>—1, (23¢)
B =+ A2 44X2y2 (23d)
C=A+B, (23e)
D=B-A (23f)
o and B are given by:

o=t (24a)

2

gk er : (24b)
o O

x and y in Eq. (23) are the spatial coordinates. The
geometry of the material test specimen is shown in
Fig. 2. The dimensions are chosen to 10 cm by 5 cm in
size, with a half crack length a of 5 cm, in order to facil-
itate comparison with previous results, e.g. Hu et al.
(2012). With Eq. (22) the stresses and displacements
can be calculated at any point in the infinite plate. The
displacements can be used as input for calculating the J-
integral on displacement formulation, and the displace-
ments or stresses can be used as input to peridynamic
modelling, or more precisely, as boundary conditions
for finite models of the infinite geometry problem.
The J-integral of a central crack in an infinite plate
in Mode I loading is given by
_ ki _ (oyma)
E E
The relative difference of the J-integral on displace-

ment formulation, Eq. (19), can then be calculated as
J = Jo)/ Jo.

Jo (25)

5 Numerical implementation of the classical
J-integral based on displacements

The strains in Eqs (15) and (18) can be approximated
by applying the central difference scheme on the dis-
placement field. For a material point i, the strains are
given as follows:

ur Bul(xi,xé) u|(x’iJrAx‘xé)fm(xifo,xé)

N T e (262)
oup Bul(x’i,xé) u|(xi,x£+Ax)—u|(x’i,xé—Ax)
[T o

dur _ 8u2(xi,x£) ~ uz(x’i+Ax,x§)—u2(x’i—Ax,x£)
3)6] Bx’i 2Ax

(26¢)
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oun _ 8u2(xi,x£) ~ uz(x’ll,x£+Ax)7u2(xi,xéfo)

Ry (26d)

3_)52 - Bxé

The material domain is discretized uniformly to
allow for a mid-point integration scheme (one-point
Gaussian quadrature) for the domain integral (Silling
and Askari 2005). Furthermore, we can approximate
the integrals in Eq. (19) with the trapezoidal rule as

follows:

N 2EAx

J A 22T
1 —12

DD (Winy —wy) 27)

i=111111i=1

W; and w; are given by Eqgs. (15) and (18). n; is the
number of material points along the contours /—-111.
ny appears due to the identity dy = njds (n; is the
x-axis component of the outward unit normal vector
of the contour) which makes the contribution of Wy,
vanish.

The algorithm for calculating the J-integral is as fol-
lows: The 10 cm by 5 cm specimen is discretized into x-
and y-coordinates. The analytical stresses and displace-
ments are calculated for each coordinate as per Eq. (22).
The analytical stresses, or displacements, along the
boundary of the specimen are inputs to the peridynamic
model (Fig. 3). To avoid peridynamic boundary effects
along the symmetry line, i.e. along the x-axis, the peri-
dynamic model is taken as a 10 cm by 10 cm domain.
Thus, the 10 cm by 5 cm specimen half is reflected in
the x-axis. The output from the peridynamic model is
the displacement of material points. The J-integral on
displacement formulation, Eq. (27), can now be com-
puted on a contour enclosing the crack tip. We use For-
tran language for peridynamic modelling and Matlab
software for pre- and post-processing. Fortran exam-
ple codes for peridynamic modelling are provided by
Madenci and Oterkus (2014).

The peridynamic micromodulus of Eq. (8) was cal-
ibrated on the classical strain energy density at a point

;Ax Oxy, Oy
e |
& i i Ox, Oxy
| I
p—a 3
i i Ox, _axy

Fig. 3 Analytical stresses and symmetry boundary conditions
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embedded in the bulk of a material. Each material point
X interacts with its neighboring points, the family of x,
within a radius §. Therefore, material points that are
located less than a distance § from a free surface will
have a truncated horizon, resulting in a smaller domain
of integration. The effect is a softer material and larger
strains near boundaries. This skin effect will be further
discussed in the results section.

The peridynamic equation of motion is a nonlinear
integro-differential equation in time and space, but does
not contain any spatial derivatives. Instead of local con-
straints, nonlocal volume constrains are applied (Silling
and Askari 2005; Du et al. 2012), commonly introduced
within a layer Ax or § (Hu et al. 2012).

Stresses at boundaries also differ from that of the
classical continuum mechanics. Instead of introduced
as traction forces, stresses at boundaries are introduced
in peridynamics as body forces b within a layer Ax
(Madenci and Oterkus 2014) or § (Silling and Askari
2005).

In this work, we impose boundary conditions within
a layer Ax, as suggested by Hu et al. (2012). The
stresses are imposed along the boundaries at the top,
bottom and right hand side of the test specimen, and
symmetry conditions of zero horizontal displacement
are imposed on the left hand side of the specimen
(Fig. 3).

The numerical integration of material point x over its
horizon Hy includes the entire volume of each material
point X’ within the radius §. For a horizon of § = 3Ax,
the integrated area would be larger than the area of
the disc-shaped horizon. Therefore, a correction factor
is used in the peridynamic code as per Madenci and
Oterkus (2014).

6 Results and discussion

To facilitate comparison with previous results of others,
e.g. Huetal. (2012), we will use a Young’s modulus of
72 GPa and a Poisson’s ratio of 1/3 for modelling. We
will further keep the number of material points covered
by the horizon m constant at three, i.e. § = 3Ax.

For a central crack in a plate with a remote loading
of o9 = 1 MPa and a half crack length a = 0.05 m, the
J-integral Jo = 2.1817Pam, Eq. (25), is our reference
value.

By setting the remote loading oy to 1 MPa in the
exact analytical solution of the central crack problem,
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Fig. 4 Boundary stresses corresponding to remote constant
stress op in exact analytical solution

we can calculate the boundary stresses of the speci-
men shown in Fig. 3. The boundary stresses, Fig. 4, are
further used as inputs to the peridynamic model.

Resulting strain energy densities, Eq. (15), calcu-
lated with the exact analytical displacements and of
the corresponding peridynamic formulation are shown
in Fig. 5Sa—c, respectively. The results in Fig. 5a, b
are for a 250 x 250 material points model. The color
map shows close agreement between the results of W
from exact analytical displacements and from the peri-
dynamic model. Skin effects appear as brighter blue
colored semi-continuous lines along the boundaries of
Fig. 5b, c, but are too thin to be properly visualized in
Fig. 5b. Figure 5c shows a 50 x 50 points model, ren-
dering individual material points visible. The results
illustrate the deformed state with a displacements mag-
nification of 3000 times (for visualization purpose).

The strain energy densities on the contour of the J-
integral is further shown in Fig. 6. Moreover, the results
of the second term of the J-integral, Eq. (18), are shown
in Fig. 7. The resolution of the underlying models is
500 x 500 material points.

Common convergence studies used in peridynamics
are 8-, m- and ém-convergence studies (Bobaru et al.
2009). The §-convergence study is performed by keep-
ing the number of material points covered by the hori-
zon constant (m), while decreasing the horizon radius
8, i.e. increases the total number of material points of
the model. In the m-convergence study, the horizon

radius is kept constant while increasing m. For ém-
convergence, § is decreased and m increased, with m
increasing faster than § decreases. In this study, we use
§-convergence for comparing the classical J-integral
(on displacement formulation) results, of the exact
analytical displacements and the corresponding peri-
dynamic formulation. This is carried out because the
skin effect diminishes as the material points resolution
increases (8 decreases). However, it should be noted
that §-convergence depends on the peridynamic kernel,
micromodulus and the discretization chosen. In certain
cases, peridynamic results do not §-converge to the cor-
responding classical solution; the m-convergence may
be required in such case (Chen et al. 2016). Neverthe-
less, 8-convergence is used in this study as it is less
computationally costly compared to dm-convergence.
Furthermore, the triangular micromodulus has shown
to improve the convergence rate compared to the con-
stant micromodulus applied in this study (Bobaru et al.
2009). See Table 1 for figures of the §-convergence
study. Recall that the dimension of the test specimen
is 10 cm by 10 cm in size when reflected in the x-axis
and that § = mAx.

The results of the calculations of the classical J-
integral (a) on displacement formulation, Eq. (27), (b)
for the exact analytical displacements and (c) for the
corresponding peridynamic formulation, are shown in
Fig. 8. The results are presented as relative difference
with respect to the reference value Jo = K % JE =
2.1817 Pa m. We use the term difference instead
of error as the convergence of nonlocal peridynamic
models to the corresponding classical solution depends
on the kernel, micromodulus and discretization, which
is beyond the scope of this study.

A calculation of the J-integral on displacement for-
mulation using the exact analytical displacements (J4)
gives a relative difference smaller than 0.1% in com-
parison to the reference value Jy, for the 50 x 50 dis-
cretization scheme. The difference may be attributed
to numerical errors and the approximation of strains,
Eq. (26). However, approximating strains with the cen-
tral difference scheme applied to the displacement field
generally results in small errors.

The J-integral on displacement formulation applied
to the bond-based peridynamic model approaches Jy as
the horizon is taken towards zero under §-convergence.
A horizon radius § of 0.6 mm or smaller with the rela-
tive grid spacing of m = 3, or about 500 material points
in each spatial dimension, is required for a relative
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Fig. 5 Strain energy density (W) results of a exact analytical displacements with 250% material points, b peridynamic model with 2502

material points and ¢ peridynamic model with 50> material points
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Fig. 6 Comparison of the strain energy densities on the contour of the J-integral. Analytical refers to W on exact analytical displace-

ments, and PD refers to W on peridynamic solution
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Fig. 7 Analytic and peridynamic solution of the second term of the J-integral

difference less than a percent. This relatively fine dis-
cretization required is a consequence of the skin effect,
which is present at the specimen boundaries including
the crack surfaces and the crack tip. The softer mate-
rial points within a distance é from free surfaces influ-
ence their nearby material points through weaker pair-

@ Springer

wise forces, which influence propagates throughout the
model.

There are several surface correction methods avail-
able for reducing the skin effect. Le and Bobaru (2018)
studied some known methods and benchmarked them
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Table 1 Parameters for

5-convergence study & (mm) m (no.) Ax (mm) Material points in model (no.)
6.0 3 2.0 50 x 50
3.0 3 1.0 125 x 125
1.2 3 0.4 250 x 250
0.6 3 0.2 500 x 500

—
N
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Fig. 8 Convergence of classical J-integral results (on displace-
ment formulation) of the exact analytical displacements (J4) and
the corresponding peridynamic formulation (Jpp)

using the peridynamic J-integral of Hu et al. (2012) in
conjunction with FEM calculations.

A relative grid density factor m = 3 has been
reported necessary for general crack growth modelling.
A smaller m typically results in crack growth along grid
rows or columns (Silling and Askari 2005). However,
the choice of the m depends on the aim of the modelling.
An m of just 1 may in certain cases be sufficient (Gers-
tle 2015), e.g. simulation of self-similar crack growth,
but such a horizon radius is a very special case of the
peridynamic theory, as nonlocality is removed. In many
cases m = 4 or higher is required to provide grid inde-
pendent crack growth patterns independent of the grid,
as mentioned in Sect. 2.

Peridynamics could be viewed as an upscaling of
molecular dynamics, as both methods are nonlocal,
accounting for the effects of long-range forces (Sele-
son et al. 2009). From this particular point of view,
500 x 500 material points for a test specimen is small
inrelation to the billions of atoms commonly simulated
in molecular dynamics. The connection between peri-
dynamics and molecular dynamics in fracture mechan-

ics has been further discussed by Madenci and Oterkus
(2014) and Tong and Li (2016).

The peridynamic nonlocal J-integral studied by Hu
et al. (2012), has also been studied by Oterkus (2015)
and Le and Bobaru (2018). The specimen dimensions
and model setup in this work are similar to the work by
Hu et al. (2012) except for that Hu et al. used nonlocal
J-integral and a triangular micromodulus. By compar-
ing the results in Fig. 8 with the results of Hu et al.,
we find that the relative difference at § = 3 mm is
in a similar range, of 5-10%. Le and Bobaru (2018)
have reduced this difference by compensating for the
skin effect through certain corrections of the skin layer
stiffness.

The J-integral on displacement formulation has sev-
eral advantages. Besides material parameters, only dis-
placement derivatives are required as input, let alone
pairwise forces. The J-integral on displacement for-
mulation can therefore be calculated directly from the
displacement fields obtained with bond-based or state-
based peridynamic models, as well, of course, with
classical continuum mechanics models. In addition,
the J-integral calculation is based only on the near-
est neighboring material points of the contour integral,
which makes the procedure computationally efficient
and simple to implement.

7 Conclusion

In this study, we have presented an alternative calcu-
lation of Rice’s contour J-integral for a linear elas-
tic material, formulated as a function of displacement
derivatives entirely, a formulation which is suitable for
direct implementation in peridynamics modeling. The
exact analytical solution of stresses and displacements
in a central cracked specimen, derived by Unger et al.
(1983) under plane strain conditions, has been extended
to include plane stress conditions, and the latter case is
used as a reference solution in this work. The J-integral
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has been calculated using the exact analytical displace-
ments and the displacements of the corresponding peri-
dynamic solution of the central cracked specimen prob-
lem (Fig. 8).

The J-integral calculation with the exact analytical
displacements resulted in a relative difference smaller
than 0.1% in comparison to the reference value Jy =
K 12 / E, for the problem considered. For the bond-based
peridynamic model, the J-integral approached Jj as the
spatial discretization was made finer. The relative dif-
ference in relation to Jy shrank to less than one per-
cent as the horizon was shrunk towards zero under
§-convergence (6 = 0.6mm and m = 3). Thus, the
J-integral and the strain energy part thereof, W, on dis-
placement formulations can be used as energy density
and stress intensity parameters in peridynamics mod-
elling. Further, as shown, the J-integral on displace-
ment formulation can as well be used for testing the
accuracy of a peridynamic model as such.

Assessing the accuracy of an approximate calcula-
tion by comparison with an exact analytical solution is
more accurate, and therefore preferable, than compar-
ison with some other approximate method, e.g. FEM,
whenever possible.

In testing accuracy, the exact analytical stress and
displacement fields of the central cracked specimen are
ideal as boundary conditions for a finite peridynamic
model. The accuracy of a model is then obtained by
comparison of the computational results with some ref-
erence value.

An obvious future study is to compare results of
computations of the J-integral on the present displace-
ment formulation with those of the peridynamic non-
local J-integral derived by Silling and Lehoucq (2010)
or the one by Hu et al. (2012).
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