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Abstract The potential theory method is utilized
to derive the steady-state, general solution for three-
dimensional (3D) transversely isotropic, hygrother-
mopiezoelectric media in the present paper. Two dis-
placement functions are introduced to simplify the gov-
erning equations. Employing the differential operator
theory and superposition principle, all physical quanti-
ties can be expressed in terms of two functions, one sat-
isfies a quasi-harmonic equation and the other satisfies
a tenth-order partial differential equation. The obtained
general solutions are in a very simple form and conve-
nient to use in boundary value problems. As one exam-
ple, the 3D fundamental solutions are presented for a
steady point moisture source combined with a steady
point heat source in the interior of an infinite, trans-
versely isotropic, hygrothermopiezoelectric body. As
another example, a flat crack embedded in an infinite,
hygrothermopiezoelectric medium is investigated sub-
jected to symmetric mechanical, electric, moisture and
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temperature loads on the crack faces. Specifically, for
a penny-shaped crack under uniform combined loads,
complete and exact solutions are given in terms of ele-
mentary functions, which serve as a benchmark for dif-
ferent kinds of numerical codes and approximate solu-
tions.

Keywords Hygrothermopiezoelectricity - General
solution - Potential theory method - Flat crack -
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1 Introduction

As a smart material, hygrothermopiezoelectric mate-
rial can couple mechanical, electric and hygrothermal
characteristics and has been widely used in transporta-
tion, aerospace and automotive industries (Varadan
etal. 2006). The multi-physical behaviors of hygrother-
mopiezoelectric material can be influenced by complex
environment including mechanical, electrical, mois-
ture and temperature fields, and these fields can affect
each other (Smittakorn and Heyliger 2000). Further-
more, it is reported that the combined effect of mois-
ture and temperature, the so-called hygrothermal effect,
has a significant influence on the structural behavior
of hygrothermopiezoelectric composites (Whitney and
Ashton 1971; Sih et al. 1986; Hyer 1998).

Due to the significant importance in engineering
application, a lot of literature was published analyz-
ing the behavior of hygrothermopiezoelectric media
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in multi-field environments, analytically and numeri-
cally. In terms of the analytical solution, Smittakorn
and Heyliger (2001) studied both steady-state and
transient behavior of laminated hygrothermopiezo-
electric plate under the coupled multi-field environ-
ment and presented the fundamental equations of lin-
ear hygrothermopiezoelectricity in a differential form.
Wang et al. (2005) presented an analytical method
to analyze the histories and distribution of dynamic
interlaminar stresses in rectangular laminated plates
with layered piezoelectric actuators and simply sup-
ported edges in hygrothermal environments. Altay and
Dokmeci (2007) reviewed the variational principles
for fundamental equations of hygrothermopiezoelec-
tric materials. Akbarzadeh and Chen (2013) presented
an analytical solution for hygrothermal stresses in
1D functionally graded, piezoelectric media. Zenkour
(2014) obtained an analytical solution for hygrother-
mal responses in inhomogeneous piezoelectric hol-
low cylinders under mechanical and electric loadings.
Altay and Dokmeci (2014) listed the fundamental equa-
tions for hygrothermopiezoelectricity in both differ-
ential and variational forms, and proposed the gen-
eralized, variational principle for the interaction of
two different hygrothermopiezoelectric materials. Dini
and Abolbashari (2016) presented the general theoret-
ical analysis of a thick-walled cylinder made of func-
tionally graded, piezoelectric materials subjected to
a non-axisymmetric hygro-thermo-electro-mechanical
loading.

In terms of numerical simulation, Yi et al. (1999)
developed a finite element algorithm to efficiently deal
with the problems in the design of smart structures.
Yang et al. (2006) studied the coupling effect of mois-
ture and temperature on the transient hygrothermal
stresses of an infinite long, circular cylinder. Raja et al.
(2004a,b, ¢) utilized a finite element method involving
coupled piezoelectric field with hygrothermal strain.

The first order shear deformation theory was imple-
mented in a nine-noded Lagrangian plate or shell ele-
ment to study the dynamic behavior of smart composite
thin plates and shells. Mahato and Maiti (2010) investi-
gated the flutter control of smart composite plates under
subsonic airflow in an hygrothermal environment and
presented numerical examples of isotropic and lam-
inated composite plates with and without hygrother-
mal effect based on finite element model. Chiba and
Sugano (2011) numerically analyzed the transient heat
and moisture diffusion in a multi-layer plate and the
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resulting hygrothermal stresses. Saadatfar and Aghaie-
Khafri (2015) presented a numerical solution for defor-
mation of a functionally graded hollow cylindrical
shell with the inner and the outer surface imperfectly
bonded functionally graded piezoelectric layers sub-
jected to hygrothermo-electro-mechanical loads. Dai
et al. (2017) numerically obtained the distributions of
the temperature, moisture, displacement and stress of
a functionally graded, piezoelectric circular disk under
a coupled hygrothermal field.

General solutions or Green’s functions can be
employed as the fundamental building blocks to con-
struct the solution for many complicated boundary
value problems such as cracks, inclusions, disloca-
tions, punch and indentation in hygrothermopiezo-
electric media. For example, Dang et al. (2018) used
the general solution for hygrothermoelastic media to
study crack problems, and Wu et al. (2013) solved
the indentation problem of one-dimensional hexagonal
quasicrystals based on the corresponding general solu-
tion. However, to the best of the authors’ knowledge, no
general solutions have been reported in the literature for
hygrothermopiezoelectricity. Therefore, it is critical to
get the general solutions for hygrothermopiezoelectric-
ity and lay the foundation for further studies of cracks,
defects, inclusions and other boundary value problems
in hygrothermopiezoelectric media. Chen (1993) used
the complex variable function technique to derive the
2D Green’s functions for bimaterials. Ding et al. (1996)
used it to get the general solution for piezoelectric mate-
rial; Michelitsch and Levin (2000) used the potential
method to obtain the Green’s function for displace-
ments of the 2D infinite medium with orthotropic sym-
metry in terms of elementary functions; and Hou et al.
(2009a, b) obtained the general solutions for magneto-
electrotermoelastic and piezothermoelastic materials,
respectively. Considering the effect of moisture, Zhao
etal. (2018a) used the potential theory method to obtain
the general solution for three-dimensional hygrother-
moelastic media in terms of potential functions. Com-
pared with other methods, the potential theory method
exhibits superior advantages in giving the complete
form of general solution for coupled fields, particularly
suitable for 2D or 3D multi-field materials. This gen-
eral solution can be flexibly applied in different kinds of
problems such as crack, punch, inclusion, etc. For a spe-
cific problem, one can construct the potential functions
in a certain harmonic form by virtue of the trial-and-
error method. After substituting them into the bound-
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ary conditions, one can obtain the coefficients of the
harmonic functions, thus the whole fields can be deter-
mined. Motivated by this, the present paper intends to
utilize the potential function method proposed by Fab-
rikant (1989, 1991) to derive the complete general solu-
tion for the three-dimensional, transversely isotropic,
hygrothermopiezoelectric material. The paper is orga-
nized as follows: In Sect. 2, the constitutive equations as
well as the governing equations are listed in the Carte-
sian coordinate system. The differential operator the-
ory and superposition principle are used to construct
the complete general solution in Sect. 3. As an appli-
cation of the general solutions, the fundamental solu-
tion for a steady point moisture source combined with
a steady point heat source in the interior of an infi-
nite, hygrothermopiezoelectric body is derived in Sect.
4. To show the wide application of the fundamental
solution, a flat crack in an arbitrary shape subjected to
combined mechanical, electric, moisture and tempera-
ture loads is investigated in Sect. 5 via the generalized,
potential theory method, and the exact solution for a
penny-shaped crack under uniform loads is presented
in terms of elementary functions. As last, conclusions
and perspectives are presented in Sect. 6.

2 Basic equations

The linear theory for a transversely isotropic, hygrother-
mopiezoelectric medium can be referred to Smittakorn
and Heyliger (2000), Akbarzadeh and Chen (2013),
and Altay and Dokmeci (2008, 2014). In the Cartesian
coordinates (x,y,z), the plane xoy is supposed to be
parallel to the plane of isotropy such that the materials
constants will remain the same in any direction within
the plane, while the z-axis coincides with the axis of
polarization direction. The 3D, constitutive equations
for the transversely isotropic, hygrothermopiezoelec-
tric medium can then be expressed as follows:
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where u, v, and w are the elastic displacements, and
o;j are the stresses; D; are the electric displacements,
and ¢ is the electric potential; m and 6 are changes of
moisture concentration and temperature, respectively;
m = 0 and 6 = 0 correspond to the free stress state; g;
and h; are the respective moisture flux and heat flux;
Cij» €ij» €ij, Bij, vi» &ij, and x; are the elastic, piezo-
electric, dielectric, thermal stress, pyroelectric, hygro-
scopic stress, and hygroelectric coefficients, respec-
tively; and «;;, and A;; are the respective conduction
coefficients of moisture content and heat. Note that
C12 = C11 — 2¢C66.

In addition, the thermal stress and hygroscopic stress
coefficients are related with the elastic coefficient, ther-
mal expansion coefficient ockT[, and moisture expansion
coefficient ,B,S as follows:

&j = cijuB- )
The moisture flux and heat flux follow the Fickian
equation and Fourier law, respectively:

T
Bij = Cijki®,
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In the absence of body forces and free charges,
the mechanical and electrical equilibrium equations in
Cartesian coordinate system (x,y,z) are given as:

8& doxy 00y

=0,
ax ay 0z
doyx % doy; —0
ax ay 0z '
dozx  0oyy Bﬁ —0
ox ay 0z ’
9Dy 9Dy  9D: 4

ox ay 9z

The governing equations are defined point-wisely
in the solid volume 2 for the initial-boundary-value
problem. Appropriate boundary and initial conditions
should be specified to guarantee the uniqueness and
existence of solutions to the problem. The boundary
conditions of the mechanical, electrical, moisture and
temperature fields are specified on the bounding surface
[y of the solid body at time # > 0 as follows:

(u,v,w) = (ulx,y,z,t), v(x,y,z,t), w(x, y,z, 1)),
on F(“ v)

(9., m,0) = (@(x,y,2,1),m(x, y,2,1),0(x, y,2,1)),
on #m®

oijn; = fj(x, y,2,t), on l—-éu,v,w)

(Din;, gini, hin) = (Dy(x, y,2,1), Gu(x, y, 2, 1),
ha(x,y,z,1)), on F(wme) ®))

where the superscripts denote specified values of the
functions. I'Y and I"§ are parts of the boundary for vari-
able «, and they two constitute the entire solid boundary
['o (namely 'Y +T'§ = I'y). Specifically, the boundary
condition on I'y are the essential boundary conditions,
which are the Dirichlet conditions, while the boundary
condition on I'; are the natural boundary conditions,
which are the Neumann conditions. In the present study,
the special case of steady-state problem is considered.

Inserting Eq. (1) into the equilibrium equations in
Eq. (4), one can easily get the equations for transversely
isotropic, hygrothermopiezoelectricity in terms of the
mechanical displacement, electric potential, tempera-
ture increment and moisture increment as follows (in
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the absence of body forces and free charges):
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where A is the Laplace operator.

3 General solution

Introducing two displacement functions G and W, the
components of displacement, # and v, are expressed as

follows
v G v G
u=">-2_°2 =20 27 (7
dy ax ax ady

with which, Eqgs. (3) and (6) can be transformed to

2
<c66A + am%) Wy =0, (8a)
Z
G 0
w 0
Mo t=1Jo!, (8b)
m 0
0 0
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where M is the following differential operator matrix

r 2
—(cnnA+ C44387) (c13+caa) g (e31+e15) 4 —&11 —Bu
2 2
—(cn +C44)Ai VAN 633337 elsA + e33§)7 _‘5333% _,333%
— a2 a2 . . . P . .
M=\ _(ess +e3)Ag e1sA+ 633;7 - (811A + 833%) X1 (% + %) + X2 ¥ (% + %) +yie (a)
1
0 0 0 K11A +K33837 0
0 0 0 0 MiA + Az

of which the determinant can be calculated as

3% a4 32 3
|M|=< 86+boA84+C0A ﬁ-l-dA)

92 92
X <K11A + K338_Z2> (MlA + K338—Z2) .

(9b)
Therefore, the completely coupled, partial differen-
tial equations are now transformed into partially cou-
pled, partial differential equations. The above deriva-
tion procedure is analogous to Li et al. (2010) and
Chen et al. (2004), where the equations of moisture
concentration and heat conduction are combined with
the other three equations governing the displacement
and electric potential. It can be observed that the dis-
placement function Wy can be solved from Eq. (8a)
independently. While Eq. (8b) is a set of homogeneous
differential equations of G, w, ¢, m and 6. Unlike the
traditional treatment that the heat conduction equation
is solved independently (Ashida et al. 1993), the equa-
tions for moisture concentration and heat conduction
are combined with the other three differential equations
in the present paper. Hence, the general solution can be
obtained routinely by virtue of the operator theory as

G=A)F, w=ApF, ¢=A;F,

m = Ai4F, 0= A;sF, (10)
where A;; are the algebraic cofactors of the matrix M,
and F satisfies

IM|F =0, (11)
Combining Egs. (10) and (11) with Eq. (8a), we have

82

A Yy =0,

< +az(2)) 0
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A+ A+ F =

( 8z4)< 3Z5>

0, (12)

where z; = siz, S0 = /Co6/Ca4, 54 = k11/K33, 55 =
VA11/A33, and sj (j = 1,2, 3) are the characteristic
roots with positive real part of the following algebraic
equation

13)

in which ag, by, co and dy are given in “Appendix A”.

It can be easily seen that if we take i = 1, 2, 3in Eq.
(10), one can get two sets of general solutions withm =
0 and 6 = 0, which are actually the solution to the pure
piezoelectricity; the solution for i = 4 corresponds to
the general solution X; with & = 0, which should be
identical to that for hygropiezoelasticity; the solution
for i = 5 corresponds to the general solution X; with
m = 0, which is identical to the thermopiezoelasticity.

Due to the linearity of hygrothermopiezoelectric
theory, superposing X; and X leads to

= (A +As)F, w=(Ap+ As)F,
o= (A3 +As3) F, m=AuF, 0=AssF,

a0s6 — bos4 + cos2 —dop =0,

(14)
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[ 7 3 /9 9 9° By virtue of the generalized Almansi theorem (Ding
p=|aa—=+bs—<|—+—])ta—=A . .
977 az6 \ox ' dy 975 etal. 1996), F can be expressed by five quasi-harmonic
- functions
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and the displacements in the x- and y-directions are
obtained as well
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where the involved coefficients are given in “Appendix
A’
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where F; satisfy

2
(A—i—a )F_O (j=1,2,3,4,5). (17)
dz2 K

In this paper, the distinct eigenvalues for Case 1 is
discussed briefly. When equal eigenvalues appear, the
derivation is similar to Case 1. It is also noted that the
general solution for Case 1 is the most complicated,
whilst the solutions for other cases can be treated as a
simplified version of Case 1. For Case 1, the general
solution in Eq. (15) can be rewritten with the Almansi
theorem as:

1

o 9 +a 9°F;
20\ ox ay ) aydz) |’

i=1 i ay
5 7 6
F, 0 0\ 0°F;
= +nil\l—+—)—= |,
o= 3 m i (fr ) 5
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dzy 075
where

mui = (a1 —ci + fi —hy)s?,

mai = (b1 —di +g1) 57,

mii = (@ —cy+ fr—ha) s/,

mai = (b —da + g2 — j2) 7, (19)
m1 = (a3 —c3 + f3— h3) s/,
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n32i = (b3 —d3 + g3 — ja)sl-(’,
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It is easy to conclude that the new functions, ¥;, are
also quasi-harmonic:

82
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8z§

Inserting Eq. (21) into Eq. (1), one can get the
expressions for the components of stress, electric dis-
placement, moisture flux, and heat flux in terms of func-
tions ; in the Cartesian coordinate system (x, y, z)
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The general solution in the cylindrical coordi-
nate system can be readily obtained through trans-
formation of coordinates. The harmonic functions, ¥;
i =0,1,2,3,4,5), are the so-called potential func-
tions. Once the potential functions are determined,
the mechanical, electric, moisture and temperature
fields can be readily obtained. The domain of defini-
tion for the general solution is suitable for the whole
three-dimensional space of hygrothermopiezoelectric
medium, and one can apply it to obtain the solution at
any point in the medium.
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Fig. 1 An infinite hygrothermopiezoelectric body subjected to
a point moisture source, M, and a point heat source, H, in the
origin

4 Fundamental solution for a point moisture
source and heat source in the infinite body

Consider an infinite, transversely isotropic, hygrother-
mopiezoelectric body whose isotropic plane is perpen-
dicular to the z-axis. A point moisture source M and a
heat source H are applied at the origin of the cylindrical
coordinate (r, ¢, z) or Cartesian coordinate (x, y, ),
as shown in Fig. 1. The hygro-thermo-electro-elastic
fields are derived with the aid of the obtained general
solution.

Considering the boundary condition, one can con-
clude that this is a non-torsional axisymmetric problem.
By virtue of the trial-and-error method, the harmonic
functions in the general solutions are assumed to take
the following specific forms

Wy =0,
gj .
v, = Z][(RJZ - 3z§)ln R}’f —3sign(z)zjR;1, (25)
(j=1,2,3,4,5),

where ¢; (j = 1,2, 3,4,5) are constants to be deter-
mined; sign(¢) is the signum function of ¢, and

R; :\/m R} = Rj +sign(2)z;. (26)

Once the constants ¢ j are determined, the general
solution can be obtained, and the problem is thus
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solved, which shows the advantage of the present
method. Substituting Eq. (25) into the general solution
(24), one can obtain the variables in Cartesian coordi-
nate as

5 5
u= Z(j%a = ij%,
j=1 j j=1 J
5
w = Zugjg“jsign(z)lnR;f,
j=I
> I
p= Zm]{jszgn(z)lnR*, m—M6§4—
j=1
1
0= M7§5R—5,
5 .
Oz = — Z [644 (/sz - Sj) + 615M4j] Cj%,
j=1 I
5 .
Oy; = —Z [644 (m2j — Sj) +615M4j] Cj%,
j=1 T
> 1
o; = Z (6‘13 + 3328 + 633,114‘/3,/) QF
j=1 J

1 1
- 533M6§4R—4 - /333M7§5R—5,

5
1
= Z (e31 +e33pajsj — e33pa;s)) SiRs
j=1 !

1 1
+ X3M6§4— + v3u7l5—,
Rs

5
D, = — Z e1s (12j —sj) — e11pa;] & %

Jj=1 J

1 1
+X1M6§4R—4 + V1M7§5R—,

5 :
Dy = =3 [ers (o = 55) = eruaf] £ o)

j=1 I

1 1
+ X1M6§4R—4 + V1M7§5R—5, (27a)

and the expressions for o and D, by adopting the
transformation of coordinates

5 .

sign(z)r

Oz :_Z[C44(/,,L2j—5j)+elsu'4j]§j R:R* ’
I

j=1

sign(z)r

615(,u2] — €11 144518 R R
I

”M“"

1 1
— —_, 27b
+ X11684 R + Y1785 2 (27b)

Considering the continuity of w, ¢, o, and D, in
plane z = 0, whose expressions in Eq. (27) contain
sign(z) we have

ZMZ](] =0,

[044 (m2j —s55) + 615,u4j] ¢ =0,

M“" T T

majgj =0,

~.
I
-

M-

[e1s (n2j — 5;) — en1paj] ¢j = 0. (28)

1

~.
Il

Substituting the expressions of w7 ; and j4; into Eq.
(28), we have
5
a—cr+ fo—hy
aj—c1+ fi—m Z >

/=1
a3 —c3+ f3—

si¢i =0,
ay—c1+ f1— Z]]

|: (@—Cz-i—fz—hz )
C44 -1
ay—c+ fi—h

5

3—C3+f3—h3}

+eis i¢j =0,
ar—c1+ fi —h Z $i¢i

[615 <112—62+f2—h2 1)
ay—ci+ fi—h

az—c3+ f3— ]
—¢& E K =0, 29
11a1 —a+fi—Mm it )

and it is easy to simplify Eq. (29) as

5
Z s;¢j = 0. (30)
j=1

When the mechanical, electrical, moisture and
thermal equilibrium for a cylinder of A < z <
hy (hi <0< hp) and 0 < r < R are considered
(Fig. 1), four additional equations can be obtained

2 R
/(; /0 [UZ (rv¢’h2)_Uz(”,d),hl)]rdrdq’)
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2 hy
+R/ / UZ!’ (R» ¢)s Z)d2d¢ =Oa
0 hy
2T R
fo fo [D; (r.¢. h2) — D. (r, ¢, h1)]rdrd¢

2 ho
+R/ / D; (R, ¢,z)dzdp =0,
0 hi

2t R T om om
_K33/ / [7 (r, ¢, hy) — E(r,(f),hl)] rdrd¢

2T h> om
—Rmf f 2 (R.9.2) dzdgp =M,

2w
—Ma/ / [ (r, ¢, hy) —
2w
I
hy

Using the useful integrals given in Hou et al. (2009a),
one can obtain the expressions of the coefficients

M H
- 4’7'[,[/L6\//<11K337 B 471'#7\/)\.]1)\337

With the obtained ¢4 and {5, one can get the other three
coefficients by inserting Eq. (32) into (28) and (30)

1 M2l K22 123 - — 2484 — 12585
St = | M4l 42 143 —aals — passs ¢ . (33)

& s s2 83 —{4—¢s5

ad (r,¢,h1)} rdrd¢
9z

— (R, ¢,z)dzdp = H. (31)

(32)

At this point, all the coefficients are determined.
Substituting the coefficients into Eq. (27), one can
obtain the complete, hygrothermopiezoeletroealstic
response induced by the point moisture source M and
heat source H. When the moisture field is omitted, the
fundamental solution can be reduced to the solution
for transversely isotropic, piezothermoelastic materi-
als, which can be validated by Hou et al. (2009b).

5 Application for a flat crack under combined
loads

The obtained general solution can be easily utilized to
investigate the mixed boundary value problems asso-
ciated with cracks or punches (Fabrikant 1989, 1991).
In this section, to show the practical application of the
general solution, a flat crack under combined loads is
studied as an example.

Assume a planar crack S is contained in an infi-
nite, transversely isotropic, hygrothermopiezoelectric
medium, and located in the plane z = 0. It is assumed
that arbitrary normal distributed mechanical force,
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z M, y, z)

No(xo, 0, 0)

Fig. 2 A flat crack, S, contained in an infinite trans-
versely isotropic hygrothermopiezoelectric medium subjected
to mechanical, electric, moisture and temperature loads in the
Cartesian coordinate system

E1(x,y), electric displacement, E;(x, y), moisture
load, E3(x,y), and temperature load, E4(x,y), are
symmetrically applied on the upper and lower crack
faces, with the same magnitude but opposite in direc-
tion, as is illustrated in Fig. 2. The problem can be
converted into a mixed, boundary value problem of the
half-space, z > 0, with the boundary conditions pre-
scribed on the plane, z = 0, as follows:

Uz::l(xa)’)» Dz:EZ(x’Y)’ m:E?)(-x’y)v

0=Es(x,y), for (x,y)es, (34a)

w=0, ¢=0, ¢g.=0,

h, =0, for (x,y) ¢S, (34b)

0,;x =0, 0;53=0, for —o00 < (x,y) <o0.
(34c)

To extend the potential theory method (Fabrikant
1989) to hygrothermopiezoelectricity, we assume that

4
Wo=0, W= hijHj@), (=123.45),
j=1
(35)
where h;; are constants to be determined, and
w(No)

Hi(x,y,z) = // ROV No) S, (36a)
N
M, y.2) = // R(/‘(/I (;30) ' (36b)

H3(X, Vs Z) = _733//5%(1\]0)
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X (zIn[R(M, No) + 2] — R(M, No)} d, mnA// _WNO s A// %Mo)
(36¢) R(N, No) R(N, No)
1 AL // qL(No)
Hy(x,y,2) = _E// h:(No) m R(N, No)
3JJs
x (zIn[R(M, No) + 2] — R(M. No)} d, it f/ N0 4o ona ), (41a)
36d ?m R(N, No)
(36d)
w (No) @ (No)
. . 1A f/ ————dS +mpnA //
where R(M, No) denotes the distance between points R (N, No) R (N, NO)
M(x, y, z) and No(xo, Y0, 0); uz(No), ¢(No), q-(No), L) /f 9: (No)
and h;(Np) denote the elastic displacement in z- K33 R (N, No)
direction, electric potential, moisture flux, and heat flux Lo / / h (No) — 2B (N) (41b)
on the upper crack surface, respectively; and the inte- ?»3% R (N, No) ’
gration is taken over th.e crack face S. To meet the zero- / / 4z (No) 42 NO) e kenssaEs (V). (41¢)
shear stress condition in Eq. (34c), one can have R (N, No)
hz (No)
dS = 27h335584 (N 41d
//R(N No) Tr335584 (N), (41d)

5
D vihij =0, (j=1,2,34), (37)
i=1
in which y1; = caa(poi — si) + e1s5p4i.
According to the well-known property of a simple
layer potential, one can get

%| | 2rw(x, y,0) (x,y) €8,

9z =0 |0 (x,y) &5,

@| _ ) 27mex,y,0) (x,y) €8,

9z =00 (x,y) &S,

33H3’ | 2mq(x,y,0) /K33 (x,y) €S,

973 =0 |0 (. y) &S,

83H4| | 27h,(x,y,0)/A33 (x,y) €S, (38)
823 z=0 O (x’ y) ¢ S

Combining Egs. (36b) and (40) and the general solu-

tions, one can have
5 5
81 8
ZMZihij =—§, Zﬂztihij Z_E’
i=1 i=1
84

83
Resahaj = —2—7;, uasshsj === (39)

where §;; is the Kronecker delta. Combining Egs. (37)
and (39), one can obtain /;; from following equation

~1
hij VIl Y12 V13 Y4 YIS 0

haj 1 | B2 ma2 a3 pas pos 31

h3j ¢ = S | M4l Ha2 a3 pas s 82j (s
haj 0 0 0 pesg 0 83;

hs, 0 0 0 0 puss 84
(j=1,2,3,4). (40)

To satisfy the condition in Eq. (34a), one can arrive at
the following equations

where R(Ny, N) is the distance between two points,
No(x0, ¥0,0) and N (x, y, 0) both of which lie on the
crack S, and m;; can be obtained as follows

5 5
myj =Z)/2ihij, myj =ZV3ihij,
i=1 i=1
j=1,2,3,4, (42)
in which
— &33106 — B33 7,
V3i = €31 + e3342iSi — €33M44iSi + X3M6 + V3T

Substituting Eqgs. (41c) and (41d) into (41a) and
(41b) leads to

V2i = C13 + C33U2iSi + €33/44;S;

N _
// WO g o ET W),
R (N, No)
@ (No) —_—
= 278 (N), 43
,//R(N No) &2 (N) (43)
where
_ 1
Ei(N) =
mijmyy — ma1mi2
X [mapB1(N) —m2E2(N)
— (moma3z — m3m2)s4E3(N)
— (mamag4 — m4gmy2)ssE4(N)],
1
E2(N) =

miama] — mi1m
x [m1E1(N) —my1 E2(N)

— (my1ma3 — m13m21)s4E3(N)
— (m11ma4 — miama1)ssEa(N)]. (44)

It is observed that, the moisture and thermal loads
can affect the elastic and electric fields (see Eq. 43),
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whilst the mechanical and electric loads cannot influ-
ence the moisture or temperature field. Furthermore,
no mutual influences exist between the moisture and
temperature fields, which is due to the adoption of the
uncoupled theory.

In addition, Eqgs. (41c) and (41d) share a similar
form as those of crack problems in elasticity (Fabrikant
1989), while the integro-differential equations in Eq.
(43) are similar to that of contact problems in elasticity
(Fabrikant 1989). Due to this similarity, we can directly
adopt the results given by (Fabrikant 1989, 1991) to
construct the solutions to the governing equations in
some particular cases. For cracks with irregular geome-
tries and that are subjected to arbitrary loads, the bound-
ary element method may be utilized for numerical sim-
ulation, and the detailed application can be found in
Zhao et al. (2018b).

Specifically, when the crack is penny-shaped under
uniform mechanical, electric, moisture as well as tem-
perature loads, the exact, closed-form solution can be
obtained. Consider the crack S = {(x = rcos¢,
y=rsing,0) :r =/x2+y2 <a,0< ¢ <2m}
i.e. for a penny-shaped crack of radiusa with its center
located at the origin of the cylindrical coordinate sys-
tem (r, ¢, z). The uniform mechanical load, E?, electric
displacement, Eg, moisture load, Eg and heat load, Eg,
are applied on the crack faces. In this case, it is possible
to obtain a complete solution in elementary functions
due to an analogy with the corresponding problem in
Fabrikant (1991), the exact solutions for Egs. (41) and
(43) can be obtained as:

_28)a2 - p?
w(p, $) = — .
280\/a? = p?

p(p, ) = —

=0

K3384 =
a:(p.¢) = —,
T a2 _ ,02

A33S5 Eg
J—p2
Because of the axisymmetry of the problem, the right
hand terms of Eq. (45) are independent of the angular
coordinate ¢. Inserting Egs. (45) into (36) yields

h:(p, ¢) = (45)

Hy(r,¢,2) = E_(l) [(2{12 +2722 —r?)sin~! <lg)
2

2 2
_2a =3 l%_az]’

a
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Ha(r.$.2) = &3 [(202 +27% - r2> sin~! (£>

a
0 2, 2 1 14
H3(r,¢,z) = —2s483 | |a” + 2" — — |sin” " | —
2 I

2
2a% =30 PR
2
a

+2azln (lz +/13 - a2>] ,
~0 2 2 r2 .1 a
H4(I", ¢7 Z) = —2S5L"44 a”+z"— — | sin —
2 I
2 2
_um
P 2
+2az1n (lz + /12 - a2)} , (46)

h=h(ra,z)

= %[J(r +a)?+22 =V —a)?+ 22,
lh=1(r,a,z)

= %[\/(r+a)2+z2+\/(r—a)2+z2]. (47)

At this stage, the whole hygrothermopiezoelectric
field can be obtained by simply differentiating H;. The
complete expressions are given as

2 5
u+iv = 2rei¢z EOZhjk
k=1 =1

2 _ 2
[ a a 12./ a
x | sin )
2j 12j
i 4
£i?

5
4 =0 h
p Sk+18g jk
k j=1

=3
> i
x | \Jl5; —a? a—5 ) -az

where
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. a
x | zjsin =) - az—lf.
Iy J

k=3 j=1
2 5
— =0
b =4 EY
k=1 j=1
2 _ 2
-1(“) a/lzj a
X | Sin el e
, 2 2
12] 12j _llj

4 5

a

—4 Sk 1EO 4 il sin™! [ —
= ]:

2j

oy — 0y + 2ioyy
2 5 l /12
: hjilij 13
= —8cgpac®'? Z Eg Z i
k=1 j=I ( )

o 4 5
29 —~0
+4C66_r2 ZSkHDkZhjk

k=3 =1

X (a\/lgj —a? +zj\/a2 — 13 - 2az‘,~),
2 5 s 2_ ]2
— V1jljky/a 1
O +ioy, = 4a’re'? Z o E v

k=1 j=1 l%j (l%j_lzj>
i 4 5
e =0 iy ( 2_ 12 _ )
+4 " ZSkHukZVU jk (/@ ij—a)
k=3 j=1
. 22:_ 5 ysihjkJa? =13

>
+
>
=

|
~
Q
~
Q»—-

<

=0
“kZ 2 (12 2
k=1 =1 ‘f25\*2j = ‘1j
v oo
+4—Zsk+IEka51hjk <M—a>,
k=3 j=1
m = —ug Sin_1 <i) £
lp4
2
6 = ~E)sin"! (i> , “%)
T lrs
wherein

vai = 2[c11 — ce6 + C1342i8i + €31 /045
—&11pne — Bripql,

vsi = e15 (2 — §i) — E1114i + X14654 + V114755,
1
hi =5 |:\/(r+a)2+zl-2—\/(r—a)2+zi2:|,
1
hi =5 |:\/(r+a)2+zi2+\/(r —a)2+zl.2:|. (49)

Making use of the following properties (Li et al.
2010)

l1|z=0 =11(r,a,0) = min(a, r),
12|Z:0 = I(r, a,0) = max(a, r), (50)

one can obtain from Eq. (48) that
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250 gn=1(2) — d -
=5 [sm (r) Ny + mzz«/rZ—a2
0. (. ¢, 0) = [(miimay — maym12) s4EY + (miamas — miamaz) s8], (r.¢) & S,
&9, (r.¢) €S,
250 gn—1(2) — d - “
=1 I:sm (r) N/ miVr2—a?
D. (r,$,0) = [(m11ma3 — mizmay) s4BY + (myymas — miamoy) ssBY], (r, @) € S,
g9, noes
259 (). e ¢S
E5 sin r
m (r’ ’ O) — 7:‘ 3 r/> ’ )
¢ &9, (r.¢) €S,
289sin" (2), (n¢) ¢ S
&, sin r
9 (r’ 7 O) _ l 4 rl° ’ ’ (51)
¢ C‘g’ (rs ¢) € S’

It can be easily proven that the boundary conditions
at the crack surface are satisfied. It is also interesting
to note that the normal stress, o, and electric displace-
ment, D, on the z = 0 plane outside the crack domain
are both the sum of two terms which are the respective
singular and non-singular parts at the crack tip.

Defining the following stress and electric displace-
ment intensity factors:

K; = lim /27 (r — a)az’z_o,
r—a -
Kp = lim 27 (r — a)DZ|Z_0, (52)
r—a T
one can obtain their expressions from Eq. (51) as
2
K =—--8%/ma
T
4 =0
+— [(mumzz — ma1mi2) 5483
m22

=0
+ (miomogq — myamy;) 85 n4] Jra,

2
Kp = —Eg«/rm
b4

4 ~0
- [(m11m23 —mi3ma1) S483
mi

+ (my1mog — mamay) 85 Eg] VTa.
(53)

It can be concluded from Eq. (53) that the stress
and electric displacement intensity factors are inde-
pendent of the material constants, and only related to
the load of the corresponding fields. When the mois-
ture and temperature loads are removed, they reduce
to the expressions for the piezoelectric materials (Chen
and Shioya 2000). In addition, the above analysis can
be readily extended to study the problem of when the
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uniform mechanical, electric, moisture as well as tem-
perature loads are applied at infinity with impermeable
conditions at the crack faces. In this case, the complete
solution includes two parts. One part is the solution
presented in this section, and the other is a uniform
one that can be easily expressed according to Chen and
Shioya (2000).

6 Conclusions and perspectives

With the aid of differential operator theory, superpo-
sition principle, and the generalized Almansi theo-
rem, two displacement functions were introduced to
simplify the fundamental equations of transversely
isotropic, hygrothermopiezoelectric material, and the
general solution in terms of six quasi-harmonic func-
tions was derived. Some of its applications in fracture
were presented. No particular solutions associated with
the moisture and temperature fields appear in the gen-
eral solution, making it possible to extend the potential
theory method to hygrothermopiezoelectricity.

The general solution or Green’s function for
hygrothermopiezoelectricity was provided for the first
time in the present work. The obtained general solu-
tion is expressed in terms of harmonic functions, which
makes it conveniently applicable for mixed, bound-
ary value problems such as crack and punch problems
in hygrothermopiezoelectricity. It should be pointed
out that the hygrothermopiezoelectric field was only
presented for the materials with distinct characteris-
tic roots. The potential theory method can also be
employed for other hygrothermopiezoelectric materi-
als if appropriate potential functions are determined.
Nevertheless, as pointed out by Fabrikant (1989), the
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corresponding solutions in the case of multiple roots
can be derived directly from the solutions with the
aid of the L’Hospital rule. The application of the gen-
eral solution was illustrated through a crack prob-
lem in hygrothermoelectroelasticity. Specifically, for
the problem of a penny-shaped crack under uniformly
distributed loads, the exact, 3D hygro-thermo-electro-
elastic field in the entire space was expressed in terms
of elementary functions. The stress and electric dis-
placement intensity factors were obtained in a concise
form.
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Appendix A: Coefficients

ap = 644653 + ¢33¢44€33,
bo = c13 (case33 — e15e33 — €31€33)
—c11 (615633 + e31€33 — 6’%3 +c13€33 + 044833)
+c33 (6%5 + 2e15e31 + €3, + caaern + c11€33)
—2cq4e3133,
co = C44€%1 —C13 (6%5 + e15e31 +C44811)
—c11 [efs + e1s (e31 — 2e33)
+ (c13 — ¢33 + caa) €11 — caa€33],
do = 0446%5 + crica4811, (A1)
a1 = —e33 (Brikss + Azsénn)
+ (c13 + caa) €33 (B33K33 + A33633)
+ ¢33 [K33 (e1573 + €313 — Br1£33)
+ 433 (e15x3 + €31 x3 — §11€33)]
+e33[(e15 + e31) (B33k33 + A33633)
— (c13 + caa) (y333 + A33x3) | -
b1 = [c33 (e15 +e31) — e33 (€13 + caq)]
X (y1k33 + A33X1)
c1 = c13[€33 (B3zki1 + A11833)
+ 33 (B3311 — €15¥3)
+ 133 (611833 — e15x3)]
+c33[en (A33éin — Brikss)
+ 11 (e15y3 + €31y — B11€33)
+ A1 (e15x3 + e31x3 — €33611)]
+ caa [e33 (Ba3k11 + A11633)
+x33 (e31y3 + B3zen — Briess)

+ 233 (e31x3 + €11633 — €33611)]
+e33[(ers + e31) (Bazkn + A11633)
—2e15 (Brikas + A33611)
— (c13 + caa) (y3k11 + A1 x3)]
+ei1s (e15 + €31) (B33k3z + A33633)
— €35 (Buikin + Aniénn),
di = [c33 (e15 + e31) — c13e33 — caqe3s]
x (y1k11 + A1 x1)
+ (case31 — c1zers) (yikss + Az x1),
fi = (efs + cizenn + eisesr + casent) (Bazkin + A11£33)
— (c33811 + 2e15€33 + c44€33) (Brikir + A11€11)
- (6%5 + case11) (Brikss + A3zénn)
+ (case31 — c1zers) (y3k11 + A1 x3)
81 = — (c1ze15 — cage31) (ViK1 + A1 x),
hy = — (efs + casen1) (Buikin + Anén), (A2)

ay = ca4 (633 B33K33 — €3373k33 + €33A33833 — €33A33X3) ,
by = —cases3 (Y133 + A33x1)
2 = c11 [y3K33 (e15 + 31 — €33) + €33k33 (B33 — Bi1)
—e33A33 (11 + £33) + A33x3 (€31 — e33)]
+ (e15 + e31) [k33 (e15833 + €31 833 — e33B11)
+ 233 (e15833 + 31633 — e33611)]
+ caq [K11 (—€3313 + €33B11 + c11¥3)
+x33 (e31y3 + B33€11 — B11€33)
+ 211 (633833 — e33%3)
+ 233 (e31x3 +e11833 — €33611)],
dy = cy1 (e15 + e31 — e33) (Y1k33 + A33 1)
+ ¢33 [1 (e31kas — e3ak1r) + x1 (e31A33 — exshin)],
fr = cn [(knys + Aix3) (ers + e — e33)
+x11833 (B33 — Bi1) + (633 — &11) A11€33
+x33 (e11833 — e1sv3 — Brien)
+ 233 (611833 —e1sx3 — §11en)]
+caq [111 (e3173 + €11833 — £33B11)
—e11 (Brikir + A3zé11)
+ i1 (ez1x3 + €11633 — €33611)]
+ (e15 + e31) [k11 (e31B33 + e15833 — e33B11)
+ 11 (e31833 + e15833 — e33611)
—ei15 (Brikss + A33611)],
82 = [caaesr + c11 (e15 + e31 — e33)] (vikin + A1 x1)
—cries (yiks3 +A33x1)
hy = — (6%5 + case11 + ersesr) (Buikin + Aii€nn)
—crieis (y3ki1 + x3A11)
—cnén (Buki — B3k — Aniész + Anéin)
Jj2 = —cuieis (viki + xiii), (A3)
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a3z = ca4 (33833433 + €33Y3k33 + €33433633 + €33A333) ,
b3 = c33ca4 (yiK33 + A33X1)
c3 = —ci1 [e33 (Biikss — B3zkaz + A33éi1 — A33633)
+c13 (v333 + A33%3) ]
+ ¢33 [K33 (e15B11 + €31B11 + c1173)
+ 233 (e1s&11 + e31&11 + cr1x3)]
+ ca4 [v3 (c3sk11 — c11k33 — €13K33)
—e31 (B33k33 + A33833)
+e33 (B3zk1r — Brikss — Azzénn + A11ézs)
+ X3 (€33A11 — €11A33 — €13A33)]
—c13 (e15 + e31) (B33k33 + A33833)
dz = — (c13¢44 + cr1¢13 + c11¢44) (Y1633 + X33 X1)
+ ¢33 [11 (caarit + cr1x33)
+ X1 (caar11 + c11A33)],
f3 = —c3 (e15 + e31) (B3zxir + A11633)
+ ¢33 [k11 (e15B11 + €31B11 + c1173)
+ A11 (e15&11 + e31611 + c11x3)]
— ca4 [k11 (€33B11 + €31B33 + c1313)
+ 11 (e33611 + 31833 + c13x3)
—e31 (Brik3z + A33611)]
—c11 [e13y3K11 + caq (Y3K11 — V3K33)
+e15 (Br1k3s — B3skaz + A3zéir — A33€33)
+e33 (Brikn — Bazxri+Anéin — Ai1é33)
+ x3 (c13A11 + caahi1 — caadr33)],
83 = —ci3caa (Yik11 + A1 x1)
+c11 [y (e33k11 — caakin + caak33)
+ X1 (€331 — cagA1 + c44A33)
—c13 (ki + Axn]
h3 = caaesr (Briknn + A1)
+ciicaa (311 + x3h11)
—cieis (B3zkir — Bukin —Anén +Ané33),

J3 = cucaa (ikn + xir) . (A4)
a4 = C44433 (e%"; + C33£33> )
by = A33 |:c33 (e%s + 2ej5e31 + (3%] + 011533)

—ci3e33 (e1s + e31)
—C11 (615633 + e31e33 — e§3 + C13833)}
+ 44 [e§3x11 — 2e31€33A33
—(c11 +c13) €33A33
+c33 (633411 +811)»33)],
cq = caqe3) (e31A33 — 2e33h11)

2
—ci1 [)»11 (615633 + e3jess —e33 +ci3e33 + 044833>

2
+A33 (6’15 + ej5e31 — 2ey5e33 + 13611 + Ca4€11 — 644833)}
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+c33 [)»11 <6%5 + 2ei5e31 + e§1 + ca4€11 + 611833>
+L'11811)»33]

—c13 [)»11 (e15€33 + e31€33 + ca4€33)
+A33 (6%5 + e1se3 + 644611)] ,

2 2
dy = A [644631 —c13 (615 +eise3n + 044611)}
+ci1 lers (2e33 —e31) An
+ (33 — €13 — c44) €11h11 + caq€33M1)

+cuerira +els (k33 — )»11)] ,
fa = cnin (6125 +C44811), (AS)
as = C44k33 (6”253 + 033633) s

2 2
bs = k33 [033 <815 + 2ej5e31 + €3, +Cl|€33>
—ci3e33 (e1s + e31)

2
—C11 (815633 +e31e33 —e33 + L‘13833>]

+ caq [6§3K11 — 2e31€33K33
— (c11 +¢c13) €33K33
+ ¢33 (e33K11 +811K33)] ,
cs = caqe3) (e31k33 — 2e33K11) — €11

X [Kn (615633 + e3jes3 — e%} +ci3€33 + 644833>
+ k33 (eﬁ + e15e31 — 2ey5e33 + c13611 + caa€1 — 044833)]
+c33 [Ku (€f5 + 2e15e31 + €2) + casern + 611833)
+611811K33]
—c13 [Ku (e15€33 + e31e33 + C44€33)
+ k33 (6125 + e1s5e31 + L'44811)} s

2 2
ds = k11 [044831 —C13 (615 +eis5e31 + 044811)}
+crilers(2ess — e3kin
+ (¢33 — €13 — caa)e11k11 + Ca4€33K11

2
+caae11433 + €5 (k33 — k1)1,

f5 = cukn (6%5 +C446‘11). (A6)
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