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Abstract Criteria for predicting initiation of cracks in
brittle materials like ceramics are based on two param-
eters: the material fracture toughness and the tensile
strength. Standardized experiments exist to estimate
the former. However, the tensile strength is often taken
from experiments (mainly uniaxial bending) on speci-
mens with various geometries and surface finish, usu-
ally tested under ambient conditions at a given loading
rate. The reported strength is commonly the Weibull
characteristic strength, which scatters due to the criti-
cal defect size distribution on the tested specimen. In
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this work, we propose a definition of the “inherent”
or “intrinsic” tensile strength to be used in numerical
models, making a distinction between extrinsic defects
due to manufacturing and intrinsic ones relying on the
microstructure. Our approach is based on the Finite
Fracture Mechanics theory and the Coupled Criterion
applied to small surface flaws and its influence on the
measured (extrinsic) strength. Numerical results are
compared with experiments on alumina reported in
the literature. In addition, a model for the Petch law
(strength vs. grain size) in polycrystalline materials is
proposed using the Coupled Criterion, which predicts
an initial crack length of increasing numbers of grains
as the grain size decreases.

Keywords Ceramics ·Crack initiation · Finite fracture
mechanics · Coupled criterion · Tensile strength

1 Introduction

The coupled criterion (CC) (Weissgraeber et al. 2016)
and the cohesive zone models (CZMs) (Elices et al.
2002) are the most commonmethods for predicting the
crack nucleation in brittle materials. Recent examples
include also the phase field methods (PFMs) (Tanné
et al. 2018). They require usually two fracture param-
eters: the material strength and the material fracture
toughness. Note that in CZMs the material toughness
is sometimes replaced with the critical opening, but
together with the peak stress, it is strictly equivalent to
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the data of the two previously mentioned parameters.
In PFMs the two parameters are the material tough-
ness and the regularization length, but again, even if
the equivalence is not as straightforward as for CZMs,
it is strictly equivalent to the data of the two previously
mentioned parameters (Tanné et al. 2018).

A number of tests are identified and standardized to
measure fracture toughness in brittle materials. In par-
ticular, uniaxial flexure of prismatic specimens having
a defined starting defect (e.g. notch, indent) is widely
used for ceramic materials. The commonly used meth-
ods are Single Edge Notch Beam (Damani et al. 1996),
Surface Crack in Flexure (ISO 18756 2008), and Sin-
gle Edge V-Notched Beam (ISO 23146 2008). Other
alternative methods have been recently developed to
measure the toughness of brittle components with var-
ious geometries, for instance, the Notched Ball test
(Strobl et al. 2017), and the Notched-Ball-on-Three-
Balls test (Danzer et al. 2007; Strobl et al. 2014).
The Double Cleavage Drilled Compression test on a
drilled specimen can also be mentioned (He et al.
1995). In contrast to toughness measurements, deter-
mination of the tensile strength in brittle materials
is more challenging, especially in ceramics. In fact,
strength measurements commonly refer to the “extrin-
sic” strength of the ceramic material, which is related
to the critical defect causing fracture of the testing
specimen. Typical defects are surface flaws (e.g. sur-
face pores, pull-outs, grinding grooves, scratches, con-
tact cracks), and volume flaws (e.g. internal pores,
agglomerates, aggregates, second phases) introduced
during processing, manufacturing, handling, and/or in
service (Bermejo and Danzer 2014). Besides the size
of such flaws, their shape and location within the spec-
imen affect the measured strength. For instance, for
commonly loading situations, surface flaws are more
severe than volume flaws (Danzer 2014). In addi-
tion, the type of test (i.e. tensile, uniaxial or biaxial
bending) is known to give different results. This is
related to the so-called “strength size effect”, which
is the most prominent consequence of the stochas-
tic character of strength in many brittle materials, as
interpreted by Weibull theory (Weibull 1951). This
approach provides the probability of failure of a spec-
imen under a given tensile load: the larger the speci-
men, the greater the probability of encountering a crit-
ical flaw and thus the greater the probability of failure.
Furthermore, the testing conditions (i.e. loading rate,
relative humidity in the environment) can also influ-

ence the strength (and toughness) measurements. The
presence of humidity in the environment can trigger
the “sub-critical” propagation of existing defects, and
thus lower the extrinsic strength of the tested specimen
(Freiman 2013; Bermejo et al. 2013; Krautgasser et al.
2016).

An interesting observation in strength measure-
ments is that when diminishing the size of the crit-
ical flaw, the increase in tensile strength reaches an
upper limit (Danzer et al. 2007). This is explained by
the lower level of small natural or inherent (intrinsic)
flaws, whereby the grain size is commonly admitted
as a first approximation of the critical intrinsic defect
length (i.e. the smallest defect size in the material).
This upper limit has been identified in many polycrys-
talline ceramics, but not in glasses (see Usami et al.
1986), which supports the hypothesis that the strength
limit, what we define as the intrinsic strength (Taylor
(2007) uses the denomination inherent strength), may
be related to the grain size of the material.

The aim of this paper is to demonstrate that this
(upper limit) strength value must be selected, when
applying the CC or any CZM, in order to be able to
retrieve the curves exhibiting the tensile stress at fail-
ure versus the flaw size. It will be shown that dimin-
ishing the grain diameter, i.e. the intrinsic flaw size,
leads to an increase of the intrinsic tensile strength and
to an upper limit that leads to the Petch law for poly-
crystalline materials (Carniglia 1965; Carniglia 1971;
Chantikul et al. 1990; Zimmermann et al. 1998; Harper
2001). The analysis will focus on surface flaws and is
outlined as follows.Afirst section briefly recalls theCC
concept with two possible approaches, i.e. full Finite
Element calculations and matched asymptotic expan-
sions, applied to a small surface flaw. In another sec-
tion, this criterion is applied to surface flaws of vari-
ous shapes and sizes and then is compared to experi-
ments (Usami et al. 1986). This analysis allows defin-
ing the intrinsic tensile strength for a given ceramic
taking into account its grain size. The final section is
devoted to the Petch law for polycrystalline ceramics,
i.e. a similar analysis but for decreasing grain sizes. The
effect of internal (microscopic) stresses resulting from
the random distribution of the anisotropy orientation of
the grains on the final plateau of the law will also be
assessed.
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2 The coupled criterion applied to a surface flaw

The analysis is conducted through a 2D plane strain
approach for simplicity; 3D approaches to CC are still
embryonic and involve significant technical difficulties
(Leguillon 2014; Doitrand and Leguillon 2018).

2.1 The coupled criterion (CC)

The CC allows predicting crack nucleation in brittle
materials at stress concentration locations. It is basedon
the fulfilment of two conditions: (i) a stress condition,
where the tensile stress all along the pre-supposed crack
pathmust be larger than the tensile strength of themate-
rial, and (ii) an energy condition, where the change in
potential energybetween the uncracked and the cracked
states must be larger than the energy required to prop-
agate the crack. The CC may be expressed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(r) ≥ σc for 0 ≤ r ≤ l ⇔ σ(l) ≥ σc

W P(0) − W P(l) ≥ Gcl

⇒ G inc(l) = W P(0) − W P(l)

l
≥ Gc

(1)

where σ(r) is the tensile stress prior to fracture along
the pre-supposed crack path at a distance r of the
stress concentration location, σc is the material intrin-
sic tensile strength (as will be defined later on),W P(0)
and W P(l) are the potential energy for the uncracked
and cracked states, respectively, and Gc is the frac-
ture energy under plane strain assumption, which is
related to the fracture toughness (see Eq. 20 later on).
The incremental energy release rate G inc depends on
the crack length l, which is unknown up to now. Note
that the first equivalence holds true because σ(r) is a
decreasing function of r in the vicinity of a stress con-
centration location.

It can be derived from (1) (Leguillon 2002; Leguil-
lon and Martin 2004) that the crack nucleation is an
unstable mechanism: the crack jumps a length l, which
is entirely determined by the two inequalities in (1),
thus providing simultaneously an upper and a lower
bound for admissible crack lengths to bemade compat-
ible. The length l varies from some few tens of microns
to one or two hundred microns in ceramics, from some
hundreds microns to some few millimeters in brittle
polymers, and from some tens of centimeters to few
meters in rocks (Leguillon 2013).

2.2 The Finite Element (FE) approach to the CC

In order to implement the CC two functions have to be
determined: the tensile stress σ(r) on the pre-supposed
crack path and the potential energyW P(r) of the struc-
ture containing a crack with length r . To this aim the
structure under consideration is meshed with double
nodes along a line that contains the pre-supposed crack
path (note that the exact crack length is yet unknown).
A first FE calculation is carried out with all double
nodes being merged. The solution provides both the
function σ(r) prior to fracture and W P(0). Then the
double nodes are released one by one providing the
function W P(r) for r > 0. Note that the mesh topol-
ogy is independent of the crack length, thus reducing
the computational errors on the calculation of G inc(r).
If the mesh size is fine enough along the crack path
(which is highly recommended), the energy release rate
G (Griffith 1921) can also be computed. Let {r j } for
j = 1, N be the set of abscissa (the distances to the
initiation point) of the double nodes, with r1 = 0 and
rN > l, then:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G inc(r1) = 0;

G inc(r j ) = W P(0) − W P(r j )

r j
for j > 1

G(r j ) = W P(r j ) − W P(r j+1)

r j+1 − r j

(2)

2.3 The CC applied to a surface flaw

As already mentioned in Sect. 1, the strength of ceram-
ics is sensitive to the presence of flaws which act as
crack initiators. We focus in this analysis on small sur-
face flaws, and take the example of a shallow V-notch
with a depth d and an opening of 90◦ at the surface of
a specimen (Fig. 1).

The energy and stress conditions defined in (1) can
be written as:

⎧
⎪⎪⎨

⎪⎪⎩

G inc(d, l) = A(d, l)
d

E
T 2 ≥ Gc

σ(d, x2) = s(d, x2)T ≥ σc

for 0 ≤ x2 ≤ l ⇔ s(d, l)T ≥ σc

(3)

where T is the tension applied to the specimen, E is
the Young’s modulus of the material and A(d, l) and
s(d, l) are dimensionless scaling coefficients.

123



92 D. Leguillon et al.

Fig. 1 Specimen with a
small surface flaw (V-notch)
and a short crack

In the case of a V-notch, A is an increasing function
of l whereas s is a decreasing function. Then, according
to theCC, the two inequalities in (3) determine a unique
crack increment at initiation lc, as solution to:

A(d, lc)

s(d, lc)
= 1

d

EGc

σ 2
c

(4)

This relationship introduces a characteristic length Lc,
also called Irwin’s length (Irwin 1958), given by:

Lc = EGc

σ 2
c

(5)

The applied load at initiation can be written as:

Tc(d) = σc

s(d, lc)
=

√
EGc

d A(d, lc)

⇒ Tc(d)

σc
= 1√

A(d, lc)

√
Lc

d
(6)

thus, highlighting the role of the characteristic length
Lc.

2.4 The matched asymptotic expansions approach

This method is perfectly suitable to take into account a
small geometric perturbation in a structure and offers
a mathematical framework to the problem. It has been
initially employed using l as a small parameter (Leguil-
lon 2002), the size being verified afterward. In the
present case, considering small surface flaws, it is the
flaw depth d that will be selected as a small parameter

(Leguillon et al. 2007; Cornetti et al. 2010) (Fig. 1).
In addition, it is assumed that the crack length l is
smaller or of the same order of magnitude than the
flaw depth d; this assumption will be also checked
afterward. Otherwise, if l � d while remaining small,
the usual approach can be employed, using asymptotic
expansions with respect to l. The asymptotic procedure
was developed by Cornetti et al. (2010) and is briefly
recalled here.

The solution to the cracked state Ud(x1, x2, l) is
expressed as the solution to the unperturbed case
U 0(x1, x2) (i.e. without flaw d → 0 and thus l → 0)
plus a small correction

Ud(x1, x2, l) = U 0(x1, x2) + · · · (7)

This is the so-called outer expansion, a single term is
enough to our purpose. It is valid out of a small region
containing the flaw and the crack. At this stage, the
remainder [the dots in (7)] is not known, it can only
be determined after having made two matchings: one
toward the inner expansion, as shown below, and then
back to the outer expansion (Leguillon 2011). In the
present case, it can be shown that the small correction
behaves as O(d2).

The inner expansion is obtained by zooming in the
domain by 1/d and considering again the limit as
d → 0. The new domain �in is spanned by the space
variables yi = xi/d. It is unbounded and contains a
flaw with depth unity and a crack with length λ = l/d
(the geometry is similar to Fig. 1-bottom, but with 1
instead of d, λ instead of l, and the outer boundary
being thrown at infinity). The inner expansion takes
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the form:

Ud(x1, x2, l) = Ud(dy1, dy2, dλ)

= F0(d)V 0(y1, y2, λ)

+ F1(d)V 1(y1, y2, λ) + · · · (8)

where F1(d)/F0(d) → 0 as d → 0 andwhere the extra
terms (the dots) are negligible. In order to carry out the
matching between these two expansions (7) and (8)
(Van Dyke 1964), i.e. (7) when approaching the origin
must match with (8) at infinity, a detailed behavior of
(7) near the origin, and thus ofU0 at the leading order,
is required:

U 0(x1, x2) = Trt(θ) + · · · (9)

here T is the applied tension to the specimen and t(θ) is
the angular function corresponding to the uniaxial ten-
sion parallel to x1 (such that σ11 = 1, σ12 = σ22 = 0).
It is worth pointing out that in this case there is no
flaw, thus the boundary is smooth. The Cartesian coor-
dinates x1, x2 and the polar coordinates r, θ are used
indistinctively in (9) without risk of confusion. Due
to (9), the matching conditions allow identifying the
various terms of (8) (Leguillon and Sanchez-Palencia
1987):

V 0(y1, y2, λ) = 0 ; F1(d) = Td ;
V 1(y1, y2, λ) ≈ ρt(θ) with ρ =

√

y21 + y22 = r/d

Ud(x1, x2, l) = Ud(dy1, dy2, dλ)

= TdV 1(y1, y2, λ) + · · · (10)

The symbol ≈ means “behaves like at infinity”. Using
a superposition principle:

V 1(y1, y2, λ) = ρt(θ) + V̂
1
(y1, y2, λ) (11)

allows showing that V̂
1
and thus V 1 are solutions to

well-posed problems (even if V 1 has not a finite energy
in�in). These functions are independent of the applied
load, of the global geometry of the specimen and partic-
ularly of the flaw depth d; they can be computed once
and for all.

According toLeguillon et al. (2007), the incremental
energy release rate can be expressed in terms of the path
independent integral � as:

�(W 1,W 2)

= 1

2

∫

�

(σ (W 1) · n · W 2 − σ(W 2) · n · W 1) ds

(12)

where W 1 and W 2 are any two functions fulfilling the
equilibrium equations, σ(W j ) is the stress tensor asso-

ciatedwithW j throughHooke’s law [see (13)],� is any
integration path encompassing the flaw and the crack,
starting and finishing on the traction free face, and n is
its normal vector pointing toward the origin. It can be
calculated either in the outer or in the inner domain, tak-
ing into account the change of variables and especially
the definition of the “inner” stress field σ̃ as:

σ(W j ) = C : ∇xW
j = 1

d
C : ∇yW

j = 1

d
σ̃ (W j )

(13)

where C is the elastic tensor and ∇x and ∇y are the
gradient operators with respect to the x j ’s and the y j ’s.

The function G inc(l) = G inc(λd) takes the follow-
ing form,which can be included in the energy condition
in (1):

G inc(λd) = T 2 d

E

B(λ) − B(0)

λ
≥ Gc

with B(λ) = E�(V 1(y1, y2, λ), ρt(θ)) (14)

Note that in (14), according to (12), V 1 can be replaced

with V̂
1
. The scaling coefficients B(λ) are dimension-

less and it can be shown that the above inequality is
the exact counterpart of the first inequality in (3). The
dimensionless function (B(λ) − B(0))/λ is depicted in
Fig. 2; it is a strictly increasing function of λ. Since this
function is the result of a difference between two terms,
both calculated by the path integral (14) after having
solved a FE analysis, this introduces inaccuracies and
the curve is not as smooth as it could be expected. Note
that, releasing double nodes to vary the crack length
allows using a unique mesh topology, thus reducing a
major source of numerical errors. Anyhow, Eq. (16)
(below) can be solved without difficulty.

The stress condition in (1), using expressions derived
from the inner expansion, can be written (taking only
into account the tensile component σ ) as:

σ(Ud(0, l, 0)) = T σ̃ (V 1(0, λ, 0)) ≥ σc (15)
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Fig. 2 Dimensionless
function B(λ)−B(0)

λ
involved

in (14) versus the
dimensionless crack length
λ.
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Fig. 3 Dimensionless
function σ̃ (V 1(0, y2, 0))
involved in (15) versus the
dimensionless distance to
the origin y2
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Relationship (15) is the counterpart of the second
inequality in (3). The dimensionless function σ̃ (V 1

(0, y2, 0)) is depicted in Fig. 3; it is a decreasing func-
tion of y2 (keep in mind that this function is calculated
prior to crack nucleation).

Discarding T from (14) and (15) leads to a relation-
ship giving the dimensionless crack length at initiation
λc [see the analogy with (4)], which is independent of
the applied load:

1

σ̃ 2(0, λc, 0)

B(λc) − B(0)

λc
= 1

d

EGc

σ 2
c

= Lc

d
(16)

Then, the actual initiation length is:

lc = λcd (17)

and the applied load at failure can be derived [to be
compared to (6), where d intervenes through λc]:

Tc = σc

σ̃ (0, λc, 0)
(18)

This approach takes advantage of a single computation
in the inner domain regardless the shape of the speci-
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Fig. 4 Tensile strength of
alumina. Comparison
between experiments
(diamonds) and predictions
using the asymptotic
approach of the CC for a
90◦ opening sharp notch
(red solid line) and a crack
like surface flaw (dashed
blue line)
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cd

men and particularly the depth of the flaw, because all
the calculations in the inner domain are independent of
the global geometry (especially the flaw depth d, which
has been dilated to unity).

Remark: It can easily be shown that:

G(l) = G inc(l) + l
dG inc(l)

dl
> G inc(l) (19)

As G inc(l) is a strictly increasing function of l (Fig. 2),
at crack nucleation G(lc) > Gc, which means that lc
is not an arrest length. The crack jumps a length lc
and then grows in an unstable manner. As a conse-
quence, the length lc cannot be observed experimen-
tally.

3 Influence of a surface flaw on the measured
strength

3.1 V-notches

Usami et al. (1986) reported an extensive experimental
campaign of strength measurements of various ceram-
ics as a function of the size and the shape of differ-
ent flaws. For illustrative purposes, we have selected
only results on alumina (Al2O3, Young’s modulus
E = 350 GPa, Poisson’s ratio ν = 0.3, toughness
KIc = 3.1 MPam1/2) to compare with the predictions
of the CC using the asymptotic approach of Sect. 2.4.
The fracture energy Gc is derived from the fracture

toughness KIc using Irwin’s relationship under plane
strain assumption:

Gc = 1 − ν2

E
K 2
Ic (20)

As shown in Fig. 4, the CC predictions, for a flaw
made of a shallow V-notch with opening angle 90◦
(Fig. 1), agree quite well with experiments. In par-
ticular, they take into account the smooth transition
between an energy driven failure load (on the right) and
a stress driven one (on the left). Obviously the intrin-
sic tensile strength σc to be retained in that case is the
left asymptotic value (∼ 200MPa); it is the value that
was actually used to make the calculations exhibited in
this section. As it will be shown in Sect. 4, the intrin-
sic tensile strength depends strongly on the grain size
(Danzer et al. 2007), which average is reported to be
around 0.02 mm by Usami et al. When the extrinsic
flaw size drops below the grain size (commonly admit-
ted as the intrinsic flaw size), it is the grain size that
becomes predominant.

The crack-like flaw curve is classically obtained
using an expression of the stress intensity factor KI

at the tip of a short surface crack (Tada et al. 2000):

KI = 1.122 T
√

πd (21)
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Fig. 5 Tensile strength of
alumina. Comparison
between experiments
(diamonds) and predictions
using the asymptotic
approach of the CC for
various V-notches opening
(from 0◦ to 120◦)

40

400

0.0005 0.005 0.05 0.5

A
pp

lie
d 

lo
ad

 a
t f

ai
lu

re
 (M

Pa
)

Flaw depth (mm)

0 deg.

90 deg.

120 deg.

Experiments by Usami

The crack growth criterion KI = KIc remains valid as
long as T < σc. For the case T ≥ σc it is the stress cri-
terion T = σc the one that governs. In this model, the
transition occurs for dc = 0.06 mm, which is slightly
larger than the average grain size reported byUsami and
likely indicates the presence of coarser grains. How-
ever, it is of course not an exact measure because it
relies strongly on the crack-like flaw assumption. Note
that there exists a controversy on the role of the average
grain size versus the larger grains (Rice 1997).

Obviously, there is not a big difference between the
90◦ V-notch and the sharp crack. A comparison with
a larger opening 120◦ is proposed in Fig. 5 without
revealing a significant difference.

3.2 A remark on V-notches

Clearly from (10) and (11), V 1 (and V̂
1
) undergoes a

singularity at the tip of the V-notch and the Williams
expansion reads:

V 1(y1, y2) = C + κ ραu(θ) + · · · (22)

where C is an irrelevant constant, α the singular expo-
nent (Table 1) and u(θ) the associated mode (Leguillon
and Sanchez-Palencia 1987). Here κ is the dimension-

less generalized stress intensity factor (see Zghal et al.
2018 for a table of values).

Using (10), the generalized stress intensity factor k
(MPam1−α) of the actual solutionUd can be expressed
in terms of the notch depth

k = Td1−ακ (23)

Then according to Leguillon (2002), if the crack initia-
tion length is small compared to the notch depth (i.e. if
the notch depth is large enough while remaining small
compared to the specimen size) then the failure initia-
tion criterion can be written as:

k ≥ kc =
(
K 2
Ic

A∗

)1−α

σ 2α−1
c ⇒ T ≥ 1

d1−α

kc
κ

(24)

where A∗ is a scaling coefficient (Leguillon 2002) (see
also (Zghal et al. 2018) for a table of values of A*).
Therefore, when the notch depth increases, the failure
load tends towards an asymptote with slope α−1 in the

Table 1 Mode I singular exponent α versus the V-notch opening
ω

V-notch opening (◦) 0 30 90 120 160 180

α 0.5 0.502 0.545 0.616 0.819 1
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Fig. 6 Tensile strength of
alumina. Comparison
between experiments
(diamonds) and predictions
using the asymptotic
approach of the CC for a
blunted slit with varying
root radius (from 0.001 to
0.5 mm)
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log–log diagrams of Figs. 4 and 5. This property has
been exploited to extend the curves without additional
calculations, i.e without solving (16).

3.3 U-notches

A similar comparison was also conducted with simu-
lations carried out on surface flaws made of a blunted
slit (referred to as U-notches) with varying root radii
(Fig. 6). It is shown that the agreement remains good
only for small root radii. Large root radii (e.g. r >

0.1mm) prevent making calculations for shallow slits,
hence the smaller segments of curves in Fig. 6.

3.4 Semi-circular defect

Among other defect shapes Usami et al. suggest also
a semi-circular surface flaw, but again, the matching is
not as good as for sharp V-notches, as can be observed
in Fig. 7. However, it can be noted that differences only
occur when the defect size becomes large, otherwise all
geometries tend to merge.

4 A property of the intrinsic tensile strength

4.1 The Petch law

The Petch law describes the influence of the grain size
on the strength of a polycrystalline material. It was
originally developed formetalswhere the yield strength
was found to be inversely proportional to the square
root of the grain size, as dislocations pile up at the
grain boundaries, also known as the Hall–Petch law
(Hall 1951; Petch 1953). Thus it should be better here to
talk about a Petch-like law dedicated to tensile strength
rather than yield strength. As already mentioned, such
an analysis can be carried out only if extrinsic flaws
(surface flaws for instance) are smaller than the grain
size which is commonly taken as the intrinsic flaw size
(Wachtman et al. 2009). In this section we will only
consider the so-called “90-notch flaw” corresponding
to a V-notch flaw with opening 90◦.

Usami et al. (1986) reported a small increase of the
toughness as the average grain size g decreases. We
will use the following empirical approximation derived
from their data:
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Fig. 7 Tensile strength of
alumina. Comparison
between experiments
(diamonds) and predictions
using the asymptotic
approach of the CC for a
semi-circular surface flaw
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Fig. 8 Tensile strength of
alumina. Comparison
between experiments for
different reported average
grain size (stars): 0.02 mm
(red diamonds), 0.007 mm
(blue circles), 0.002 m
(green triangles) and
predictions using the
90-notch flaw (solid lines of
the same color). The gold
dashed line corresponds to
an extrapolation to the limit
case (see Table 2)
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KIc(g) = −0.25 ln(g) + 4.12 (25)

where g is expressed in µm and KIc in MPa m1/2.
Figure 8 shows a comparison between experiments

carried out by Usami et al. (1986) on alumina for dif-
ferent average grain sizes and the predictions using the
90-notchflawapproach and an extrapolation to the limit
case. This does not involve new calculations, but only
to solve (16) and (18) for newvalues ofGc (i.e. KIc) and
σc, as reported in Table 2. The intrinsic tensile strength

σc (plateau on the left of the solid lines in Fig. 8) is an
estimatemade to serve as guide to the eye. The reported
average grain sizes are represented by stars. It is impor-
tant to point out that these values correspond more or
less to the points where the curves become plateaus.

The Petch law is often reported (Zimmermann et al.
1998)with two regimes based on the crack-like flaw: (i)
the first one described by the Griffith criterion and bap-
tized as Orowan regime, and (ii) a plateau referred to as
Petch regime. According to Chantikul et al. (1990) and
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Table 2 Reported average grain size and toughness from Fig. 7
in Usami et al. (1986) [see Eq. (25)] and estimate of the cor-
responding intrinsic tensile strength. The last line (italic) corre-
sponds to extrapolations according to an intrinsic tensile strength
of 700 MPa (Danzer et al. 2007)

Average grain
size g (mm)

Toughness KIc
(Mpam1/2)

Intrinsic tensile
strength σc (MPa)

0.020 3.10 200

0.007 3.34 350

0.002 3.49 530

0.001 3.64 700

Danzer et al. (2007) this plateau could appear for high-
density alumina around σc = 700 MPa, and should be
taken as the “intrinsic-intrinsic” tensile strength. It is
doubly intrinsic because this limit does not depend on
the size of either extrinsic defects or intrinsic defects
(e.g. grain size). Concurrently, a fracture toughness
value of KIc = 3.64 MPam1/2 has been reported
(25) and the average grain size g corresponding to
the plateau can be roughly estimated to be 0.001 mm
(Fig. 8). Moreover, solving (16) in this case leads to
λc � 13, which means that at nucleation the crack
jumps through 13 grains. Table 2 summarizes all these
results.

The tensile strength versus grain size relation is gen-
erally represented as a function of the inverse of the
square root of the grain size as in Fig. 9. One can point

out that the growing part is not strictly linear due to:
(i) the approximate values of the average grain sizes
and the intrinsic tensile strengths (determined by eye),
and/or (ii) the variations of KIc as a function of the
grain size [see (25)]. Results by Chantikul et al. (1990)
are superimposed. Obviously from their micrographs,
the grain size they measured corresponds to the largest
grains, thus the retained value for the average grain size
is here one half of the measured one according to the
Hillert’s rule they refer to Hillert (1965).

The reader’s attention is drawn to the notations used
in Figs. 9 and 12 that could be tiny bit puzzling if not
acquainted with. As it is common in some material
science communities, the abscissa is expressed as the
inverse square root of the grain size.

4.2 The role of residual stresses

In Fig. 9, the plateau is flat whereas many plots exhibit
a slight slope in the Petch regime (Chantikul et al.
1990; Harper 2001). An explanation might be the
presence of internal thermal residual stresses, associ-
ated with the random distribution of grains that have
direction dependent coefficients of thermal expansion
as well as elastic properties. Vedula et al. (2001)
reported that the highest principal stress could be as
large as ∼ 530MPa for a cooling temperature �T =
−1500 ◦C.

Fig. 9 Tensile strength of
alumina. The intrinsic
tensile strength (solid blue
line and stars) function of
the inverse square root of
the average grain size,
following Zimmermann
et al. (1998) nomenclature.
Results by Chantikul et al.
(1990) are superimposed
(circles)
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Fig. 10 The normalized
thermal residual stress
resulting from a random
distribution through the
grains, function of the
number of grains broken
simultaneously
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Fig. 11 Number of grains
broken simultaneously at
crack initiation, function of
the grain size
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A simple simulation has been performed to estimate
the role of residual stresses. First, the largest principal
stress is supposed to be randomly distributed in each
grain (a set of 10,000 grains was used for 10 differ-
ent random selections); it is parametrized by its largest
value in the specimen. In a next step all these values are
projected onto a single direction (that of the crack, itself
random with respect to the basis chosen to rotate the
grains). Then neighboring values (to simulate neigh-
boring grains) are gathered 2 by 2, 3 by 3 and so on.
For a grouping j by j , each family f j is character-

ized by the smaller residual stress over the family, and
the maximum is taken over all the families and finally
averaged (upper bar) over the 10 random selections as:

σ̄( j) = max
f j

(

min
i∈ f j

σ(i)

)

(26)

If only one grain is broken, it promotes the failure of
the grain where the largest residual stress lies. If two
grains are broken simultaneously, of all pairs of grains,
the one where the smaller of the two residual stresses is
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Fig. 12 Tensile strength of
alumina. The
intrinsic-intrinsic tensile
strength (Petch regime) as a
function of the inverse
square root of the average
grain size for different
values of the largest residual
principal stress: 0 MPa
(red), 100 MPa (blue), 300
MPa (green) and 500 MPa
(gold)

0

250

500

750

1000

0 10 20 30 40 50 60

In
tri

ns
ic

 te
ns

ile
 st

re
ng

th
 (M

Pa
)

Average grain size (mm-1/2)

Orowan regime
Max. residual stress 0 MPa
Max. residual stress 100 MPa
Max. residual stress 300 MPa
Max. residual stress 500 MPa

Petch regime

Orowan regime

the largest has to be searched for. Failure of this pairwill
be promoted by the residual stresses. And so on with
3 grains and j grains. Finally, as it is a random dis-
tribution of residual stresses, it is averaged over 10 of
trials. As a consequence σ̄( j) is the (normalized) resid-
ual stress to take into account if j neighboring grains
are broken simultaneously, being the most favourable
value for fracture of j grains.Note that σ̄(1) is the largest
value reached by the residual stresses, it differs from 1
due to the projection. This is illustrated in Fig. 10.

It has been mentioned in the previous section that
for g = 0.001 mm, the crack jumps 13 grains at
nucleation. It is worth mentioning that σ̄(13) � 0, as
a consequence, the thermal residual stresses have no
influence on the transition point between Orowan and
Petch regimes. Solving (16) for decreasing values of
the grain size g, and taking into account the corre-
sponding fracture properties reported in Table 2, we
obtain the number of grains broken simultaneously
at crack initiation as a function of the grain size, as
shown in Fig. 11. Combining Figs. 10 and 11, i.e. tak-
ing into account the thermal residual stresses within
the grains in the Petch regime, leads to Fig. 12, rep-
resenting the intrinsic tensile strength versus average
grain size for different values of maximum residual
principal stresses. Note that the Orowan regime part
has been smoothed compared to Fig. 9. The slope is
often reported as KIc, but keep in mind that this param-
eter slightly varies with the grain size according to (25).

Otherwise, it is almost unchanged because crack initi-
ation is mainly driven by the energy condition in the
Orowan regime.

There may obviously be other causes that create this
slope. For instance, Wachtman et al. (2009) mentioned
for example that “finer grains have lower concentra-
tions of impurities along the grain boundaries and,
therefore, may be stronger”, but such considerations
are beyond the scope of this work.

5 Conclusion

The main goal of the present analysis was to provide a
satisfying definition of the tensile strength of a ceramic
to be used in numerical models for prediction of crack
initiation. Based on experiments by Usami et al. (1986)
on alumina, it has been shown that the appropriate value
to be considered corresponds to the plateau observed
when the size of the extrinsic flaws (defects due toman-
ufacturing or deliberately created for experimental pur-
pose) becomes smaller than the average grain size. This
is the only way for the numerical models, we focused
herein on the CC but it is known that CZM’s give sim-
ilar result (Cornetti et al. 2016; Martin et al. 2016),
to recover the experiments measuring the strength as
a function of the flaw size. Of course, more classi-
cally, it works for larger geometric perturbation, such
as V-notches made for experimental purpose which act
like major flaws. This value, so-called intrinsic ten-
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sile strength, depends on the grain size. It is totally
deterministic as opposed to the extrinsic strength that
is governed byWeibull’s statistics. This conclusion has
an important consequence for future works: if tests on
V-notched or U-notched specimens make it possible,
using the CC, to determine a tensile strength, then the
value thus obtained will be the intrinsic strength. This
approach avoids all discussion on stochastic aspects.

Furthermore, it has been observed, in experiments
by Danzer et al. (2007), that these plateaus have also a
limit as the grain size decreases, the so-called intrinsic-
intrinsic tensile strength. Then using theCC, it has been
possible to recover a Petch-like law for brittle polycrys-
talline materials. In the limit case, baptized as Petch
regime, the CC predicts that an increasing numbers
of grains will simultaneously be broken at the stage
of crack initiation as the grain size decreases. As a
consequence, the microscopic internal stresses due the
anisotropy of the grainsmay also influence the intrinsic
strength of the material in this regime.
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