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Abstract This paper analyzes crack nucleation from
a wedge disclination dipole in the presence of a remote
stress, accounting for the shift of the rotation axes
within the dipole arm of the disclinations. A Zener–
Griffith crack is assumed and an energy method is
employed for the analysis. A single energy equation
determines the equilibrium crack lengths and the crack
head opening. Uniaxial and biaxial dipoles are com-
pared: in the former the disclinations share a common
rotation axis while in the latter the axes are separate.
The results show that stable and unstable cracks can
nucleate from the positive disclination of the dipole,
but some of them are energetically unfavorable. A uni-
axial dipole is stable against crack nucleation when
the axis is located away from the positive disclination.
Biaxial dipoles aremore stablewhen the rotation axis of
each disclination approaches the defect line of the other
disclination. If the negative disclinations of a uniaxial
dipole and a biaxial dipole have the same axis shift, the
critical nucleation stress of the biaxial dipole is larger
if its positive disclination shift is more than that of the
uniaxial dipole. Stable crack lengths generally increase,
while the crack head openings decrease, with the axis
shift of the positive disclination. The crack head open-
ing to crack length ratio is of the order of 0.001–0.01,
and can be higher if an applied stress is present.
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1 Introduction

A disclination is a rotational defect, which may be
wedge or twist in character. A wedge disclination has
its line parallel to the Frank vector of rotation, whereas
a twist disclination has its line perpendicular to the vec-
tor, in analogy to screw and edge dislocations, respec-
tively. Conceptually, a positive wedge disclination can
be created by removing a wedge of material from a
circular cylinder, mending the cut faces and allowing
the cylinder to relax (Romanov and Vladimirov 1992).
Similarly, a negative wedge disclination can be visual-
ized in terms of inserting a wedge into a cylinder. On
its own, a disclination has a logarithmic stress singu-
larity at the defect line and at long range. For this rea-
son, disclinations usually exist in dipole or quadrupole
configurations containing both positive and negative
defects, with a screened stress at long range. Single
disclinations may also exist in objects with boundaries
that screen their stress field, such as a nanowire. More-
over, disclinations can be represented by dislocation
walls. A negative wedge disclination can be created by
the insertion of a wedge as mentioned above, or equiv-
alently by a succession of edge dislocations with small
Burgers vectors.

Disclination dipoles have been used to describe and
model rotational plastic deformation and microstruc-
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tures, and as basic building units of grain boundaries,
in polycrystalline materials. Romanov and Vladimirov
(1992) and subsequently Seefeldt (2001) reviewed the
connection between disclination dipoles and rotational
microstructures such as misorientation bands and frag-
mentation. Li (1972) and Nazarov et al. (2000) devel-
oped the concept of disclination dipoles as building
blocks of high angle grain boundaries. More recently,
Suhanov et al. (2015) analysed disclination dipoles and
quadrupoles in nanocrystalline metals. Direct experi-
mental evidence of disclination dipoles at the atomic
level has been reported by Murayama et al. (2002)
in nanocrystalline iron which has undergone severe
plastic deformation by mechanical milling. In a recent
paper, Cordier et al. (2014) reported the presence of
disclination dipoles in deformed olivine aggregates by
electron backscattering diffraction, and interpreted the
dipoles as the carriers of grain boundary migration.

Disclinations carry stress singularities at their lines.
They may relax by mechanisms such as the emis-
sion of dislocations, crack nucleation, and amorphiza-
tion of their cores. Rybin and Zhukovskii (1978)
analyzed crack nucleation from a wedge disclination
with the strength of ∼ 1.72◦ at a triple junction of
grains, and calculated the nucleated crack length to be
∼ 0.07 µm, for grain size of the order of 100 µm.
Gutkin and Ovid’ko (1994) compared crack nucleation
from a triple junction containing a single disclination
to one containing several split disclinations lying on
the periphery of an amorphized core. They found that
increasing the size of the amorphization reduces the
probability of crack nucleation from the triple junc-
tion. Wu and Zhou (1996) studied the characteristics
of cracks nucleated from a negative wedge disclina-
tion in a cylinder. They found that two types of cracks
are possible: unstable submicron-size cracks and sta-
ble, longer micron-size cracks. Subsequently, Wu et al.
(2007) and Zhou et al. (2007) investigated the nucle-
ation problem by atomistic simulations. They deter-
mined the disclination strength at the triple junction
of three tilt boundaries of various misorientations, and
found that the disclination can relax by the emission
of dislocations and the formation of branched microc-
racks with branches on the grain boundaries. A num-
ber of other works related to disclinations include the
interaction of a wedge disclination dipole with a circu-
lar inclusion (Liu et al. 2006), disclinated Zener crack
with cohesive end zones (Wu 2001), and nucleation
of a Zener crack from a wedge disclination dipole in

the presence of a circular inhomogeneity (Wang et al.
2009).

The early work of Wu and Zhou (1996), however,
does not investigate crack nucleation in the strict sense.
Specifically, the “nucleated” crack lengths are pre-
dicted from the intersections of the curve of the mode
I stress intensity factor KI, calculated as a function of
the crack length l, with a horizontal line representing
the constant critical value. If the derivative dKI/dl > 0
at the critical length, the crack is unstable, whereas if
it is less than zero the crack is stable. The previous
work assumes that the crack can be nucleated from
the disclination. However, nucleation of a crack is not
always energetically favorable, even though it has an
equilibrium length. This is demonstrated by the results
in this paper.

Secondly, the crack nucleation kinetics of disclina-
tions has not been previously studied in detail, mainly
because of the immense computational effort associ-
ated with the continuous dislocation modeling of the
crack. Each stress intensity factor calculation requires
the solution of an integral equation to determine the
dislocation density distribution of the crack. There is
a lack of a single, and simple, expression to determine
the crack length that can vary over six orders of magni-
tude. It is also computationally demanding to calculate
the energy of the cracked solid repetitively (as a func-
tion of crack length), if an energy method of analysis
is to be pursued.

Thirdly, a wedge disclination dipole has important
characteristicswhich have not been investigated in rela-
tion to crack nucleation. Besides the dipole strength ω

and its arm length 2a (distance between the positive and
negative disclinations), the rotation axis of each discli-
nation of the dipole in general does not coincide with
the defect line (deWit 1973; Romanov and Vladimirov
1992). The separation distance between the disclina-
tion line and its rotation axis is denoted by t , or t1
(first disclination) and t2 (second disclination). Alge-
braically, t is positive (negative) if the rotation axis lies
to the right (left) of the defect line.As explained in these
references, the separation between defect axis and line
results in an edge dislocation with Burgers vector ω× t
at the defect line, where ω and t represent the disclina-
tion strength and displacement of the defect line from
the rotation axis, respectively. Figure 1 illustrates such
a dipole with the shifts t1 and t2. It is a biaxial dipole
if the disclinations have different rotation axes. If they
share a common axis, such that t1− t2 = 2a, the dipole
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Fig. 1 aAwedge disclination dipole subjected to a remote stress
σ , where the shifted axes of the negative and positive disclina-
tions are located in the dipole arm interior (t1 > 0, t2 < 0). b A
crack of length 2l nucleated from the positive disclination, with
the coordinate system x − y attached to the crack center. The

added edge dislocations result from the shift of the rotation axes
of the disclinations. Also, ω denotes each disclination strength,
2a the dipole arm length, r0 the disclination core radius, and b1,
b2 the Burgers vector magnitudes

is uniaxial. Hence, a wedge disclination dipole with
shifted rotation axes is represented by the two wedge
disclinations with coincident edge dislocations.

Disclination dipoles with shifted rotation axes can
practically represent dislocation walls with complex
configurations. In the case of a two-axis dipole with
no rotation axis shift, the negative disclination is repre-
sented by a semi-infinite wall terminating at the discli-
nation position, while the positive disclination by dis-
locations of opposite sign terminating at its location.
The annihilation of dislocations of opposite signs out-
side the dipole arm leaves a wall of dislocations in the
dipole arm region. Thus, the two-axis dipole with no
rotation axis shift represents a finite wall of disloca-
tions. On the other hand, a disclination dipole with
shifted axes of rotation can be represented by finite
dislocation walls, each capped by a dislocation with
sign opposite to those in the corresponding wall. A
uniaxial dipole is formed when the two shifted axes
coincide. Complicated dislocation wall configurations
can thus be modeled by disclination dipoles with var-
iously shifted rotation axes. In essence, a disclination
dipole with shifted rotation axes can be viewed as a
disclination-dislocation defect. Pertsev et al. (1981)
described the structure and motion of kink bands in
oriented polymers and fiber composites by means of
disclination-dislocation defects. Basically, two biax-

ial dipoles (a quadrupole) transform into two uniaxial
dipoles by shifting their rotation axes. This introduces
edge dislocations at the defect locations. The discli-
nations model the macromolecular bending while the
dislocations describe the intermolecular slip. Romanov
and Vladimirov (1992) also explained the generation
of a misorientation band by the transformation of a
uniaxial dipole into a biaxial dipole and the separation
and escape of the associated edge dislocations. Further-
more, a terminated twist boundary with a misorienta-
tion has been modeled by a chain of twist disclinations
with shifted rotation axes, as reviewed in Romanov and
Vladimirov (1992). Screened disclinations in general
can be used to describe processes of plastic deforma-
tion through the motion of wedge disclination dipoles
(Romanov 1993).

In the previous works on crack nucleation, it is
assumed that there are no shifts of the rotation axes,
t1 = t2 = 0. A recent example is Wu (2018), who
showed that short stable cracks and long unstable
cracks are characteristic of such biaxial dipoles with no
axis shift, and that a significant number of these crack
length solutions are energetically unfavorable. Shift of
the rotation axes has been shown by Krasavin (2007)
to affect the residual resistivity of metals, which varies
with the dipole arm length raised to the power of − 3
for biaxial dipoles and a different power of− 2 for uni-
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axial dipoles. It is conjectured that the axial shifts will
also influence crack nucleation.

This paper addresses the issue of crack nucleation
from uniaxial and biaxial wedge disclination dipoles
by means of an energy analysis, generalizing the ear-
lier work (Wu 2018). A remotely applied stress is also
considered. Interaction energies are accounted for. The
nucleated crack is assumed to be a composite Zener–
Griffith crack, which has been investigated by Weert-
man (1996). A Zener crack is characterized by a crack
head opening bT and length 2l, while aGriffith crack by
the remote stressσ and its length2l. This crackprofile is
a physical approximation which reduces the computa-
tional effort required if the continuous dislocationmod-
eling approach is used. As shown in the next section, a
single algebraic expression representing the derivative
of the energy of the cracked solid can be solved numer-
ically to determine the equilibrium lengths bT and 2l,
and the corresponding energy equation can be used to
compare the energy state before crack nucleation to the
energy of the cracked solid.

The physical modelling and the mathematical for-
mulation are laid out in Sect. 2. The parametric investi-
gation, which focuses on the disclination axis shifts, is
presented in Sect. 3. The results are further discussed
in Sect. 4. Conclusions are given in Sect. 5.

2 Zener–Griffith crack and energy approach

2.1 Physical modeling and formulation

Figure 1 illustrates the physical problem of a wedge
disclination dipole consisting of a positive disclination
and a negative disclination, each of strength or power
ω and separated by a dipole arm of length 2a. It is also
subjected to the remotely applied stress σ . In Fig. 1a,
the negative and positive disclinations are on the left
and right sides of the dipole, and their shifted axes are
located at t1 and t2 respectively. If the shifted axes are
located within the dipole arm, then t1 > 0 and t2 <

0. This is a biaxial dipole if the shifted axes do not
coincide. If t1 − t2 = 2a, the axes coincide and the
dipole is uniaxial. If t1 < 0 and t2 > 0 both axes are
outside the dipole arm. Figure 1b is a redrawnversion of
Fig. 1a, showing the x − y coordinate system centered
at the Zener–Griffith crack, with the crack head and
tip located at –l and l, respectively. In addition, it is
assumed that each disclination, with a coincident edge

dislocation, has a core of radius r0. The positive and
negative disclinations are located at x = −l − r0 and
x = −l − 2a − r0, respectively.

The energy of the uncracked disclinated solid under
an applied stress is the sum of Eω and Eσ , where Eω is
the energy of the disclination dipole and Eσ the elas-
tic strain energy due to the applied stress. The energy
E of the cracked disclinated solid consists of the crack
surface energy Es, the energy respectively of the discli-
nation Eω, the Zener crack EZ, the Griffith crack EG,
as well as the interaction energy Eint. The energy terms
Es, EZ and EG can be written as:

Es = 4γ l, EZ = D

2
b2T ln

2R

l
,

EG = Eσ − σ 2l2

4D
, (1)

where γ is the surface energy per unit area, D =
μ/2π(1− ν), R the structural size, and the parameters
μ, ν in D denote the usual shear modulus and Pois-
son’s ratio. The elementary stress, energy and displace-
ment formulas can be obtained in Weertman (1996)
for the Zener and Griffith cracks and in Romanov and
Vladimirov (1992) for the disclination dipoles. The
explicit forms for Eω and Eσ are not needed since it is
the derivative of the energy expression and the change
in energy state that are relevant for determining the
equilibrium lengths and whether the crack nucleation
is favourable. The energy of the cracked solid can be
written as:

E = 4γ l+ Eω + D

2
b2T ln

2R

l
+ Eσ − σ 2l2

4D
+ Eint. (2)

The energy difference is then given by E − Eω − Eσ :

�E = 4γ l + D

2
b2T ln

2R

l
− σ 2l2

4D
+ Eint. (3)

To derive an expression for the interaction energy,
imagine that the Zener crack is created first, in the pres-
ence of the disclination dipole and the remote stress.
This yields the interaction energy Eint1:

Eint1 = −
∫ +l

−R
(σω + σ)�uZdx . (4)
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In Eq. (4), the normal stress on the line y = 0 due to
the disclination dipole is given by:

σω = Dω

[(
t1

x + l + 2a + r0
− t2

x + l + r0

)

−1

2
ln

(
1 + 2a

x + l + r0

)2
]

, (5)

where t1 > 0 and t2 < 0 if the rotation axes are in the
dipole arm interior. The denominators x + l + 2a + r0
and x + l + r0 simply reflect the locations of the discli-
nations/dislocations with respect to the Zener crack.
The crack opening displacement of the Zener crack is
given by:

�uZ =
⎧⎨
⎩
bT, x < −l
bT
π

(
π
2 − sin−1 x

l

)
, −l < x < l

0, x > l
. (6)

Substituting Eqs. (5) and (6) into Eq. (4) and, because
of the three regions in Eq. (6), splitting the integral
over these regions and neglecting the integration over
the small core regions yields:

Eint1 = −
∫ −l−2r0−2a

−R
−

∫ −l−2r0

−l−2a
−

∫ +l

−l
σω�uZdx

−
∫ −l−2r0−2a

−R
−

∫ −l−2r0

−l−2a
−

∫ +l

−l
σ�uZdx,

(7)

where the first three integrals can be written as
− DωbT I , and:

I =
∫ −l−2r0−2a

−R

[
−1

2
ln

(
1 + 2a

x + l + r0

)2

+
(

t1
x + l + 2a + r0

− t2
x + l + r0

) ]
· 1dx

+
∫ −l−2r0

−l−2a

[
−1

2
ln

(
1 + 2a

x + l + r0

)2

+
(

t1
x + l + 2a + r0

− t2
x + l + r0

) ]
· 1dx

+
∫ +l

−l

[
−1

2
ln

(
1 + 2a

x + l + r0

)2

+
(

t1
x + l + 2a + r0

− t2
x + l + r0

) ]

·
(
1

2
− 1

π
sin−1 x

l

)
dx . (8)

These integrals can be worked out exactly, except for
the last one with the arcsine function in the integrand.
Specifically:

I = I1 + I2 + I3 + I4 + I5 + I6, (9)

where

I1 = −2a ln
2a + r0

R − l − 2a − r0

− (R − l − r0) ln
R − 2a − l − r0

R − l − r0

+ r0 ln
r0

2a + r0
, (10)

I2 = − a ln

(
1 + 2l

2a + r0

)

− l ln

(
1 + 2a

2a + r0

)

− r0
2
ln

[
r0

2l + r0

(
1 + 2l

2a + r0

)]
, (11)

I3 = 1

2π

∫ +l

−l
ln

(
1 + 2a

x + l + r0

)2
sin−1

( x
l

)
dx,

(12)

I4 = t1 ln
2a − r0

R − l − 2a − r0

+ t2 ln

(
2a − r0
2a + r0

R − l − r0
r0

)
, (13)

I5 = t1
2
ln

(
1 + 2l

2a + r0

)
− t2

2
ln

(
1 + 2l

r0

)
, (14)

I6 = − 1

π

∫ +l

−l

(
t1

x + l + 2a + r0
− t2

x + l + r0

)

× sin−1 x

l
dx . (15)

The integrals I3 and I6 are evaluated numerically. The exact
forms of the other integrals have been verified by numerical
integration. It can also be seen that I has the dimension of
length. Furthermore, the last three integrals in Eq. (7) can be
reduced to a simple exact form:

−
∫ −l−2r0−2a

−R
−

∫ −l−2r0

−l−2a
−

∫ +l

−l
σ�uZdx

= −σbT(R − 4r0). (16)

In summary, the interaction energy of Eq. (7) can be written
as:

Eint1 = −DωbT I − σbT(R − 4r0), (17)

where I is given by Eqs. (9)–(15).
After the Zener crack has been created, the Griffith crack

is now created in the presence of the disclination dipole stress
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and the stress of the Zener crack. The corresponding interac-
tion energy is:

Eint2 = −
∫ +l

−R
(σω + σZ)�uGdx, (18)

where the Zener stress on the line of the crack is

σZ =

⎧⎪⎨
⎪⎩

− DbT√
x2−l2

, x < −l

0, |x | < l
DbT√
x2−l2

, x > l

, (19)

and the Griffith crack opening displacement is

�uG =
{

2(1−ν)
μ σ

√
l2 − x2, |x | < l

0, |x | > l
. (20)

Since �uG is non-zero only where σZ is zero, the product of
the Zener stress and the Griffith crack opening displacement
is zero over the entire region. The integral of Eq. (18) then
reduces to:

Eint2 = −
∫ +l

−R
σω�uGdx = −

∫ +l

−l
σω�uGdx, (21)

where the integration range has also been reduced to (−l, l)
because �uG is zero outside this range. Upon substitution
from Eqs. (5) and (20), Eq. (21) becomes:

Eint2 = −
∫ +l

−l
Dω

[ (
t1

x + l + 2a + r0
− t2

x + l + r0

)

−1

2
ln

(
1 + 2a

x + l + r0

)2
]

·2(1 − ν)

μ
σ
√
l2 − x2dx . (22)

Factoring out ωσ yields the following result:

Eint2 = − ωσ J, (23)

where J has the dimension of the square of length:

J = J1 + J2, (24)

with

J1 = t1
(
l + 2a + r0 − √

(2l + 2a + r0)(2a + r0)
)

− t2
(
l + r0 − √

(2l + r0)r0
)

, (25)

and

J2 = − 1

2π

∫ l

−l
ln

(
1 + 2a

x + l + r0

)2√
l2 − x2dx . (26)

The interaction energy is the sum of Eqs. (17) and (23):

Eint = Eint1 + Eint2
= −DωbT I − σbT(R − 4r0) − ωσ J, (27)

where the productsωbT, σbT andωσ indicate the interaction
terms.

The energy of the cracked solid in Eq. (2) can be rewritten
as:

E = 4γ l + Eω + D

2
b2T ln

2R

l
+ Eσ − σ 2l2

4D
− DωbT I − σbT(R − 4r0) − ωσ J, (28)

and the energy difference between the cracked and uncracked
states is then, by Eq. (3):

�E = 4γ l + D

2
b2T ln

2R

l
− σ 2l2

4D
− DωbT I − σbT(R − 4r0) − ωσ J. (29)

Differentiating Eq. (28) with respect to bT and setting it to
zero yields an expression for determining the equilibrium
crack head opening. This results in:

bT = DωI + σ(R − 4r0)

D ln(2R/ l)
. (30)

Similarly, differentiating Eq. (28) with respect to l yields an
expression for determining the equilibrium crack length:

E ′ = ∂E/∂l = 4γ − D

2

b2T
l

+ D

2

b2T
R

− σ 2l

2D
− DωbT I

′ − σbT − ωσ J ′, (31)
where, as noted by Weertman (1996), ∂R/∂l = 1 since the
crack advances only at the right tip, and the crack center,
from which R is defined, moves in step with the crack incre-
ment. The symbols I ′ = ∂ I/∂l and J ′ = ∂ J/∂l. Equa-
tion (30) is substituted into Eq. (31), which then contains just
one unknown l.

2.2 Solution of energy derivative equation in
normalized form

It is convenient to represent the energy derivative equation
and the energy difference equation in non-dimensional form.
This is achieved by normalizing all length variables by R,
stresses by D, the energy derivative byDR, and the energy by
DR2. The normalized variables are denoted by an overhead
bar. Specifically:

ā = a/R, r̄0 = r0/R, b̄T = bT/R,

Ī = I/R, J̄ = J/R2 Ī ′ = ∂ Ī/∂ l̄

= ∂(I/R)/∂(l/R) = I ′

J̄ ′ = ∂ J̄/∂ l̄ = ∂(J/R2)/∂(l/R) = 1/R

·∂ J/∂l = J ′/R
γ̄ = γ /DR, Ē = E/DR2

Ē ′ = ∂ Ē/∂ l̄ = ∂(E/DR2)/∂(l/R) = E ′/DR. (32)
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Equations (30), (31) and (29) then reduce to:

b̄T = ω Ī + σ̄ (1 − 4r̄0)

ln(2/l̄)
, (33)

Ē ′ = 4γ̄ − 1

2

b̄2T
l̄

+ 1

2
b̄2T − σ̄ 2l̄

2

− ωb̄T Ī ′ − σ̄ b̄T − ωσ̄ J̄ ′, (34)

�Ē = 4γ̄ l̄ + 1

2
b̄2T ln

2

l̄
− σ̄ 2l̄2

4

− ωb̄T Ī − σ̄ b̄T(1 − 4r̄0) − ωσ̄ J̄ . (35)

Substituting Eq. (33) into Eq. (34) yields a single nonlinear
algebraic equation for the energy derivative. Setting Ē ′ to
zero allows the determination of l̄:

Ē ′ = 4γ̄ − 1

2

(
1

l̄
− 1

)(
ω Ī + σ̄ (1 − 4r̄0)

ln(2/l̄)

)2

− σ̄ 2l̄

2
− (

ω Ī ′ + σ̄
) ω Ī + σ̄ (1 − 4r̄0)

ln(2/l̄)
− ωσ̄ J̄ ′ = 0.

(36)

The crack head opening is then determined from Eq. (33).
With the equilibrium l̄ and b̄T determined, the energy differ-
ence between the cracked and uncracked states is calculated
using Eq. (35). If �Ē < 0, the crack nucleation is favorable
because the cracked state has a lower energy state. If�Ē > 0,
it is unfavorable.

3 Numerical results

To investigate the dependence of crack nucleation on the axis
shifts, the following values for the loading, geometrical and
material parameters are used. The disclination strength is typ-
ically of the order of a few degrees (Romanov andVladimirov
1992) and strengths of up to ∼ 10◦ are considered in this
paper. The remotely applied stress range is kept small, up
to ∼ 10 MPa, in order to study the effect of adding a small
stress to the disclinated solid. For the geometrical parameters,
2a = 20µm, R = 1000µm, and ro = 2 Å. The dipole arm
length in general scales with the structural size, and the core
radius ro is assumed to be of the order of the Burgers vector
magnitude. Thematerial parameters selected are those of alu-
minium, with the surface energy γ = 1 J/m2, μ = 26GPa,
ν = 0.347, yielding D = 6.337GPa. The dependence of
crack nucleation on the geometrical and material parameters
has been investigated in the previous paper (Wu 2018) for a
biaxial dipole with no axis shift, i.e., t1 = t2 = 0. Attention
is focused on axis shifts within the interior of the dipole arm
in this paper, i.e., t1 > 0, t2 < 0, and the geometrical and
material parameters are kept at the stated values.

(a)

(b)

Fig. 2 Contour plots of the stress σ̄ = σyy/Dω in a square
region −100 < x/a < 100 and −100 < y/a < 100 due to a
biaxial dipole with no axis shifts t1 = t2 = 0, and b a uniaxial
dipole with t1 = a, t2 = − a. The positive and negative discli-
nation lines are located at (a, 0) and (− a, 0), respectively. Note
the four orders of magnitude difference between the stresses in
a, b

3.1 Stress field of uniaxial and biaxial dipoles

A study of the stress field around a dipole is first conducted,
as it contributes to the understanding of crack nucleation. In
Figs. 2 and 3, let the origin of the x − y coordinate system be
attached to the center of the dipole; in all other figures, the
origin is at the center of the crack as shown in Fig. 1b.

Figure 2 plots the contours of the normal stress σ̄ =
σyy/Dω in a square region of size − 100 < x/a < 100
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(a)

(b)

Fig. 3 Variation of the normal stress σ̄ = σyy/Dω at x/a =
±1.2 with t2/a for a t1/a = 1, b t1/a = −1. A crack will likely
nucleate from the positive disclination when the shifted axes
are within the dipole interior, whereas the nucleation is more
likely from the negative disclination when the axes are outside
the dipole

containing a wedge disclination dipole of strength ω, where
the positive and negative disclinations are located at (a, 0)
and (− a, 0), respectively. The upper figure shows the stress
contours around a biaxial dipole with no axis shifts, i.e.,
t1 = t2 = 0, whereas the lower figure shows the contours for
a symmetrical uniaxial dipole with t1 = −t2 = a. One can
immediately observe that the symmetrical uniaxial dipole is
strongly screened, with stress magnitude four orders smaller
than that of a biaxial dipole. It is conjectured that a symmetri-
cal uniaxial dipole will less likely nucleate a crack compared
to a biaxial dipole. Based on the location of the tensile stress
region, Fig. 2a also suggests that crack nucleation tends to
occur from the negative disclination of the biaxial dipole with
no axis shift, while it tends to occur from the positive discli-
nation of the symmetrical uniaxial dipole shown in Fig. 2b.

Figure 3 plots the stress σ̄ at the positions (x/a =
±1.2, y = 0) versus t2/a. Specifically, Fig. 3a shows the
results for the case of t1/a = 1, i.e., the axis of the negative
disclination is shifted to the center of the dipole arm. It can
be seen that the stress is mostly tensile at x/a = 1.2, y = 0,
i.e., just right of the positive disclination when t2/a < 0,
whereas it is completely negative at x/a = −1.2, y = 0, i.e.,

just left of the negative disclination. This suggests that a crack
will more likely initiate from the positive disclination when
t1/a > 0, t2/a < 0, i.e., the shifted axes are within the inte-
rior of the dipole. In contrast, Fig. 3b plots σ̄ versus t2/a
for t1/a = −1, i.e., the axis of the negative disclination is
outside the dipole arm. In this case, the stress is tensile at
x/a = −1.2, y = 0 for all values of t2/a, suggesting that a
crack will more likely nucleate from the negative disclina-
tion when both axes are outside the dipole arm region. In
this paper, the focus is on the case where the shifted axes
are within the dipole arm t1/a > 0, t2/a < 0, so that crack
nucleation from the positive disclination is investigated.

3.2 Curves of the energy derivative

Two examples of the derivative Ē ′ = ∂ Ē/∂ l̄ used to deter-
mine the equilibrium crack lengths are illustrated in Fig. 4.
In Fig. 4a, Ē ′ is plotted against l̄ for t̄1 = ā, σ̄ = 0, and
t̄2 = − 0.65ā, − 0.6958ā, − 0.72ā. At t̄2 = − 0.65ā, the Ē ′
curve crosses the l̄ axis twice over the range 0 < l̄ < 0.01,
thus predicting a shorter unstable crack (Ē ′′ < 0) and a
longer stable crack (Ē ′′ > 0). As t̄2 increases negatively to
− 0.6958ā, the curve touches the l̄ axis at one point. This
is a stable solution (Ē ′′ = 0, Ē ′′′ > 0). If t̄2 increases
further to − 0.72ā, no equilibrium solutions can be found
within this range of l̄. Hence, a larger negative value of t̄2
results in a dipole more resistant to crack nucleation. The
value t̄2 = − 0.6958ā may be interpreted as a critical axis
shift above which the disclination dipole is stable or resistant
against crack nucleation.

The lower figure illustrates another possible profile of the
Ē ′ versus l̄ curve. In Fig. 4b, the curves are plotted for t̄1 = ā,
t̄2 = − 0.65ā and three values of the remote stress σ̄ =
4.8, 5.38, 5.8 × 10−3 over the range 0.02 < l̄ < 0.5. The
curves are the upside-down version of the curves of Fig. 4a.
At the stress of 4.8, there are two solutions: a shorter stable
crack and a longer unstable crack. At σ̄ = 5.38 × 10−3,
the curve touches the l̄ axis at one point, which is also an
unstable solution (Ē ′′ = 0, Ē ′′′ < 0). At σ̄ = 5.8 × 10−3,
no equilibrium solutions can be found over the range.

Having presented the various possible characteristics of
the Ē ′ curve, the parametric study of the dependence of crack
nucleation on the axis shifts is presented below. In addition,
the energy change �Ē between the equilibrium state (with
crack) and the initial state (no crack) is also calculated to
determine if the crack nucleation is favourable or otherwise.
Exceptions are made in Figs. 8 and 10, where this calculation
is omitted in order to avoid excessive computations.

3.3 Parametric investigation

In Sects. 3.3.1–3.3.3 below, no remote stress is applied and
the crack is purely Zener. Composite Zener–Griffith cracks
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(a)

(b)

Fig. 4 Plot of the energy derivative versus crack length for ω =
1◦. a t̄1 = ā, σ̄ = 0 and t̄2 is varied, b t̄1 = ā, t̄2 = − 0.65ā
and σ̄ is varied. In a, there are two solutions for t̄2 = − 0.65ā (a
shorter unstable solution and a longer stable solution), a single
stable solution for t̄2 = − 0.6958ā and no solution for t̄2 <

− 0.6958ā. In b, there are two solutions at σ̄ = 4.8 × 10−3 (a
shorter stable solution and a longer unstable solution), a single
unstable solution at σ̄ = 5.38 × 10−3 and no solution for σ̄ >

5.38 × 10−3

are considered in Sects. 3.3.4–3.3.5, when both the disclina-
tion loading and the remote stress are present in the solid.
The primary objective of these sections is to investigate the
dependence of crack nucleation on the axis shifts of the discli-
nations within the dipole arm region.

3.3.1 Equilibrium length of cracks nucleated from a
uniaxial dipole

As shown in Fig. 2, a symmetrical uniaxial dipole has a
strongly screened stress field, with stress magnitude four
orders of magnitude smaller than that of a biaxial dipole.
Considering ω = 1◦ and 5◦ for a uniaxial dipole with σ̄ = 0,
the stable and unstable crack lengths l̄s and l̄u are plotted
against the axis shift t̄2/ā in Fig. 5a. Note that the relation
t̄1 − t̄2 = 2ā holds for a uniaxial dipole. Three possible solu-
tions are predicted: stable and energetically favorable cracks
(full line), stable and energetically unfavorable cracks (dot-

(a)

(b)

Fig. 5 Variation of a the stable and unstable crack lengths l̄s, l̄u ,
b the crack head opening b̄T with the axis shift t̄2/ā of the positive
disclination for a uniaxial dipole with t̄1 − t̄2 = 2ā, σ̄ = 0. The
two values of the disclination strength are ω = 1◦, 5◦

ted line), and unstable and energetically unfavorable cracks
(dashed line). In addition, Fig. 5b plots the corresponding
crack head opening b̄T against t̄2/ā for ω = 1◦ and 5◦. The
crack length curves resemble upward-pointing loops, while
the crack head opening curves resemble downward-pointing
loops.

An observation of Fig. 5 is that the equilibrium solutions
only exist for a limited range of t̄2/ā. For ω = 1◦ and 5◦,
solutions exist for− 0.35 < t̄2/ā < 0 and− 0.5 < t̄2/ā < 0,
respectively. Unstable cracks are shorter than the stable ones.
Both stable and unstable crack lengths generally increase as
t̄2/ā becomes more negative. Note, however, that the stable
lengths decrease abruptly just before they merge with the
unstable ones. This descending branch of the stable solutions
consists of both energetically favorable and unfavorable solu-
tions. The stable/unfavorable solutions merge with the unsta-
ble/unfavourable solutions. The merging point corresponds
to the touching of the valley of the Ē ′ curve with the l̄ axis
shown in Fig. 4a. This critical point itself represents a stable
solution, as explained previously.Moreover, if in Fig. 5a t̄2/ā
increases negatively beyond − 0.35 for the ω = 1◦ curve, or
beyond− 0.5 for theω = 5◦ curve, the valley would be lifted
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out of the length axis in the corresponding Ē ′ versus l̄ curve
and no solutions can be found. Hence, for the range of t̄2/ā
with no solutions, the disclination dipole with shifted axes
are stable against crack nucleation, including the symmetri-
cal uniaxial dipole where t̄1/ā = 1, t̄2/ā = −1.

Comparing the results for the two disclination strengths,
the stronger dipole nucleates longer stable cracks (and shorter
unstable cracks) over a wider range of axis shifts. The loops
are larger for the stronger dipole. Stable crack lengths about
0.0003–0.0005 and 0.0005–0.0045 are found for the ω = 1◦
and 5◦ disclination dipoles, respectively. In summary, if the
unfavorable solutions are omitted, a uniaxial wedge discli-
nation dipole with the strength of a few degrees generally
nucleates a stable crack when the axis shift of the positive
disclination in the dipole arm region is smaller than ∼ 0.5a,
and is resistant against crack nucleation when the axis shift
is larger than ∼ 0.5a.

The corresponding crack head openings b̄T shown in
Fig. 5b are roughly one to two orders of magnitude smaller
than the crack lengths. The nucleated crack is thus very long
compared to the opening at its head. Interestingly, b̄T for the
stable cracks decreases in magnitude as t̄2/ā becomes more
negative, unlike l̄s for the most part. This implies that the
aspect ratio b̄T/l̄s of the stable cracks decreases further as the
axis shift of the positive disclination increases. The stronger
dipole also nucleates a stable crack with a larger b̄T, although
the opposite holds for the unstable/unfavorable crack.

3.3.2 Equilibrium length of cracks nucleated from a
biaxial dipole

A natural question to ask is whether the results of Fig. 5
would changemarginally or significantly if the dipole is biax-
ial. Figure 6 plots the equilibrium l̄s, l̄u and b̄T against t̄2/ā
for t̄1/ā = 0.25, ω = 1◦, 5◦ and σ̄ = 0. Noting the dif-
ferent vertical scales of Figs. 5 and 6, the cracks nucleated
from biaxial dipoles are about one order of magnitude longer
than those nucleated from uniaxial dipoles. The crack head
openings associated with the biaxial dipoles are about half
an order of magnitude larger than those associated with the
uniaxial dipoles. In addition, the range of t̄2/ā where crack
nucleation can occur increases significantly when the dipole
is biaxial. Forω = 1◦ and 5◦, the range is− 1.15 < t̄2/ā < 0
and − 1.38 < t̄2/ā < 0, respectively. As in Fig. 5, the
existence of stable/favorable, stable/unfavorable and unsta-
ble/unfavorable solutions also exist for the biaxial dipole. The
variation of these equilibrium lengths with t̄2/ā is similar for
both uniaxial and biaxial dipoles.

In Fig. 6, t̄1/ā = 0.25, while t̄2/ā is varied. If t̄1/ā = 1
instead, and t̄2/ā is varied as before, the solution loops shrink
in size, as shown in Fig. 7, where ω = 1◦ and σ̄ = 0. Hence,
l̄s and b̄T both decrease as t̄1/ā increases, although l̄u behaves
in the opposite manner. This result is not intuitively obvious.
Also, for the larger loop t̄1/ā = 0.25 in Fig. 7, no solutions
exist for t̄2/ā < − 1.15. For the smaller loop t̄1/ā = 1, the

(a)

(b)

Fig. 6 Variation of a the stable and unstable crack lengths l̄s,l̄u,b
the crack head opening b̄T with the axis shift t̄2/āof the positive
disclination for t̄1/ā = 0.25, σ̄ = 0. The two values of the
disclination strength are ω = 1◦, 5◦

range is t̄2/ā < − 0.7. This again shows that uniaxial dipoles
with t̄1/ā = 0.25, t̄2/ā = − 1.75 or t̄1/ā = 1, t̄2/ā =
− 1 are resistant against crack nucleation. In fact, a general
conclusion can be reached: disclination dipoles are stable
against crack nucleation if the axis shifts within the dipole
arm are large. In other words, the axis of each disclination
lies closer to the defect line of the other disclination.

3.3.3 Critical disclination strength

Figures 5, 6 and 7 show that disclination dipoles with dif-
ferent combinations of ω, t̄1/ā and t̄2/ā may or may not
nucleate a crack. A fundamental question is: for crack nucle-
ation what is the minimum disclination strength of a dipole
with axis shifts? For given axis shifts t̄1/ā = 0, 0.5 and 1,
and − 2 < t̄2/ā < 0, the minimum or critical disclination
strength ωcr to nucleate a crack (whether favorable or unfa-
vorable) is plotted in Fig. 8. To explain the meaning of ωcr,
consider Fig. 6a, where it can seen that t̄1/ā = 0.25 and
t̄2/ā = −1.15 correspond to the tip of the ω = 1◦ loop. A
weaker dipole strengthω < 1◦would result in a smaller loop,
thus implying that a dipole with the stated axis shifts would
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(a)

(b)

Fig. 7 Variation of a the stable and unstable crack lengths l̄s,
l̄u, b the crack head opening b̄T with the axis shift t̄2/ā of the
positive disclination for ω = 1◦, σ̄ = 0. The two values for the
negative disclination axis shift are t̄1/ā = 0.25, 1.

not nucleate a crack ifω < 1◦. The critical dipole strength for
t̄1/ā = 0.25 and t̄2/ā = − 1.15 is thus 1◦. Strictly speaking,
the tip of the loop corresponds to an unfavorable solution, but
it is not too far from the stable, favorable solution. To avoid
excessive computations, this small difference is neglected in
constructing Fig. 8.

The three curves of critical dipole strength shown in Fig. 8
are cut off at the value ofωcr = 10◦. Fig. 8a shows that at any
value of t̄1/ā, a smaller negative value of t̄2/ā would lead to a
lower ωcr. At the same time, for any given value of t̄2/ā, ωcr
would be lower the smaller the value of t̄1/ā. Together, this
means that the disclination dipole would tend to nucleate a
crack for small absolute values of t̄1/ā > 0 and t̄2/ā < 0. The
biaxial dipole with t̄1/ā = t̄2/ā = 0 has very small critical
strength, and crack nucleation is essentially spontaneous.

Conversely, a disclination dipole would be strongly resis-
tant against crack nucleation for large absolute values of the
axis shifts. If one considers a high critical strength such as
ωcr = 10◦, a question can be asked: what would be the values
of t̄1/ā and t̄2/ā that would result in this strength? This can be
answered by drawing a horizontal line atωcr = 10◦ in Fig. 8a
and determining its intersection with the various t̄1/ā curves
to yield the corresponding t̄2/ā values. Figure 8b plots the

°

(a)

(b)

Fig. 8 a Variation of the critical disclination powerωcr to nucle-
ate a crack with the dipole axis shifts t̄1/ā and t̄2/ā. b Linear
relation between the axis shifts for a critical disclination strength
ωcr = 10◦, as compared to the relation for the shifts of a uniaxial
dipole

resulting linear relation t̄1/ā−1.304t̄2/ā = 2.136. The result
that a linear relation holds between the axis shifts leading to
the same critical disclination strength is somewhat surprising.
This relation is close to the relation t̄1− t̄2 = 2ā for a uniaxial
dipole. The relation can be interpreted in the following way:
for a given value of t̄1/ā > 0 it gives the minimum abso-
lute value of t̄2/ā < 0 that would yield a critical disclination
strength of at least 10◦. For instance, if t̄1/ā = 0.5 the relation
yields t̄2/ā ≈ − 1.255, and if t̄2/ā actually equals −1.3 the
critical disclination strength will be larger than 10◦. Below
(above) the line t̄1/ā−1.304 , t̄2/ā = 2.136, the disclination
dipole has a critical strength of more (less) than 10◦.

3.3.4 Dependence of crack nucleation on stress

In this subsection, the dependence of l̄s, l̄u and the cor-
responding b̄T on the remote stress σ̄ is investigated for
a disclination dipole of strength 1◦, as shown in Fig. 9a
,b. Comparison of the results is made between a biaxial
dipole (t̄1/ā = t̄2/ā = 0) and a uniaxial dipole (t̄1/ā =
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(a)

(b)

Fig. 9 Dependence of a the stable and unstable crack lengths
l̄s,l̄u, b the crack head opening b̄T on the applied stress σ̄ for a
biaxial dipole (t̄1/ā = t̄2/ā = 0) and a uniaxial dipole (t̄1/ā =
1.75, t̄2/ā = − 0.25). Four different kinds of solutions exist. The
solid line and the dot-dashed line indicate the stable favorable and
unstable favorable solutions, respectively

1.75, t̄2/ā = −0.25). All four types of solutions are pre-
dicted: stable/favorable (solid line), stable/unfavorable (dot-
ted line), unstable/favorable (dot-dashed line), and unstable
/unfavorable (dashed). If one disregards the unfavorable solu-
tions in Fig. 9a, it can be seen that short, stable/favorable
solutions dominate the nucleation from σ̄ = 0 up to ∼
0.85 × 10−3 and ∼ 1.1 × 10−3 for the uniaxial and biax-
ial dipoles, respectively. Longer, unstable/favorable solutions
appear at higher stresses and merge with the stable/favorable
solutions at the tip of the loops. The stable/favorable cracks
increase in length with σ̄ , while the unstable/favorable cracks
decrease in length with it. The unstable/favorable cracks
appear to reflect their Griffith character. In Fig. 9b, the sta-
ble/favorable cracks also show an increase in b̄T with σ̄ , and
their increase in length with σ̄ or b̄T reflects more of their
Zener character.

Unfavorable solutions, both stable and unstable, are also
predicted. At any applied stress, one, two, or even three
solutions may exist simultaneously. For instance, at σ̄ =
0.9× 10−13 only a stable/favorable solution is predicted for

the biaxial dipole, while at σ̄ = 1.05× 10−3 three solutions
are predicted: stable/favorable, unstable/favorable and sta-
ble/unfavorable. Discarding the unfavorable solution in the
last case, two solutions are still possible. Of the two, the
shorter, stable/favorable solution may occur preferentially
over the longer, unstable/favorable solution as there is an
energy barrier between them. Overall, the nucleation kinetics
is complex. The uniaxial dipole also has very small unsta-
ble/unfavorable solutions at low stress σ̄ < 0.15 × 10−3,
beyond which there is a jump to long unstable/favorable
solutions. In contrast, the biaxial dipole does not have such
behaviour at low stress.

Figure 9b also shows that the biaxial dipole has a larger
crack head opening than the uniaxial dipole. For both dipoles,
the crack length/crack head opening ratio is about 102–103.
For comparison, Fig. 5b shows that in the absence of a remote
stress, the ratio is only about 101–102.

3.3.5 Critical nucleation stress

It has been shown in Figs. 5, 6 and 7 that crack nucleation
in the absence of remote loading does not occur when the
negative value of t̄2/ā is large. For ω = 1◦ in Fig. 5a,
crack nucleation from a uniaxial dipole does not occur when
t̄2/ā < −0.35. In Fig. 6a, nucleation from a biaxial dipole
does not occur when t̄2/ā < − 1.15 (for t̄1/ā = 0.25). For
such stable dipoles, Fig. 10 plots the minimum or critical
remote stress to enable crack nucleation. Two cases are con-
sidered: a uniaxial dipole and a biaxial dipole with t̄1/ā = 1.
The results show that the critical stress increaseswith increase
in the negative value of t̄2/ā in both cases, i.e., the rotation
axis of the positive disclination approaches the location of
the negative disclination line. At t̄2/ā = − 2, the critical
stress reaches its maximum of∼ 0.56×10−3 for the uniaxial
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Axis Shift of Positive Disclination, 2 /t a

Critical Nucleation Stress, 3
cr 10σ −×

Uniaxial dipole 1 2/ / 2t a t a− =

Biaxial dipole 1 / 1t a =

Fig. 10 Plot of the nucleation stress against the axis shift of the
positive disclination for a wedge disclination dipole of strength
1◦. The results for a uniaxial dipole and a biaxial dipole are
shown. The two curves intersect at t̄2/ā = − 1, smaller than
which the crack nucleation stress of the biaxial dipole is higher
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dipole. However, no equilibrium solutions are found for the
biaxial dipole at t̄2/ā = − 2. Spontaneous crack nucleation
(i.e., no applied stress needed) occurs when t̄2/ā > − 0.35
for the uniaxial dipole and t̄2/ā > − 0.7 for the biaxial dipole,
as also shown in Figs. 5a and 7a, respectively.

The two curves for the uniaxial and biaxial dipoles cross
at t̄2/ā = − 1. Left of this value, the critical stress for the
biaxial dipole is higher than that of the uniaxial dipole, while
the opposite is true right of this value. In general, compar-
ing a uniaxial dipole to a biaxial dipole with the same t̄1/ā
value, the biaxial dipole with an absolute t̄2/ā value larger (or
smaller) than the absolute t̄2/ā value (which equals |t̄1/ā−2|)
of the uniaxial dipole, the critical nucleation stress of the biax-
ial dipole is larger (smaller).

4 Discussion

The results in this paper reveal the complexity of the kinetics
of crack nucleation from a wedge disclination dipole with
axis shifts. In the following, some general results and trends
are highlighted. Modeling and computational issues are also
discussed.

Crack nucleation is not merely a function of the dipole
strength and the dipole arm as shown by Wu (2018), but also
a strong function of the shifts of the rotation axes of the pos-
itive and negative disclinations. Generally speaking, a clear
distinction in nucleation kinetics can bemade between uniax-
ial and biaxial dipoles. In the absence of an applied stress, the
uniaxial dipoles are resistant against crack nucleation, except
when there is a large positive shift of the negative disclination
axis (and a corresponding small negative shift of the positive
disclination).

For the biaxial dipoles, crack nucleation also depends on
the specific shifts of the axes of rotation. For small or no
shifts, a biaxial dipole may spontaneously nucleate a stable
crack provided the disclination strength is sufficiently large.
Generally speaking, it is resistant against crack nucleation
if both axis shifts are large. A linear relation exists between
the axis shifts which represents a critical disclination strength
for crack nucleation. Above the line represented by this linear
relation, biaxial dipoleswith strength above that critical value
will nucleate a crack, whereas below the line biaxial dipoles
with strength below the critical value are resistant against
crack nucleation.

An applied stress assists and enables crack nucleation
from disclination dipoles. In the case of uniaxial dipoles, the
critical applied stress to nucleate a crack increases if the com-
mon rotation axis lies closer to the negative disclination. For
biaxial dipoles, the critical stress increases as the rotation axis
of each disclination lies closer to the other disclination.

Multiple equilibrium solutions are possible for the crack
length and crack head opening. These include stable and
unstable solutions, either of which may be energetically
favorable or unfavorable. Ignoring the unfavorable solutions,

wedge disclination dipoles generally nucleate stable cracks
with large crack length/crack head opening ratios. In the pres-
ence of a remote stress, longer unstable cracks compete with
the shorter stable cracks for nucleation.

Experimentally, cracks nucleated in triple junctions of
plastically deformed polycrystalline metals are of the order
of 0.05–0.1 µm (Lyles and Wilsdorf 1975), and early calcu-
lations based on the disclination model suggest crack length
to grain size ratio of 0.1–0.001 (Rybin and Zhukovskii 1978;
Gutkin and Ovid’ko 1994). The predictions of the current
work are in overall agreement with these data. Atomistic cal-
culations by Wu et al. (2007) for a crack nucleated from a
nanowire containing a disclination of large strength of the
order of 20◦ suggest ratios of the order of 0.1–0.8. These
longer crack lengths are closer to the predictions of Wu
and Zhou (1996) for long stable cracks in a small cylinder.
The rather wide range of crack length to grains size ratios
may originate from the fact that several disclination param-
eters play a significant role in crack nucleation, including
the strength, multipole configuration, and as demonstrated
in this paper, the shifts in the rotation axes of the disclina-
tions. Direct measurements of the crack head openings have
apparently not been attempted, possibly due to the difficulty
of resolving submicron or nanometer sizes.

Although care has been taken in the current work to deter-
mine the likely nucleation site, i.e., at the positive disclination
if the axes are within the dipole arm region, the general situ-
ation is more complicated. As has already been pointed out,
nucleation from the negative disclination is more likely if
both rotation axes are outside the dipole arm interior. More-
over, nucleation may occur from either disclination into the
dipole arm interior. There is thus the possibility of a more
complex crack configuration. Wu et al. (2007) have stud-
ied disclination relaxation by the embedded atom method.
The results show that branched cracks can nucleate from a
triple junction disclination in a nanowire, with the branches
extending on the three grain boundaries meeting at the triple
junction. Also, other mechanisms of relaxation of the discli-
nation dipole may also be viable, for example dislocation
emissions and disclination core amorphization, as reviewed
earlier (Gutkin and Ovid’ko 1994).

Finally, the results here are made computationally pos-
sible by the physical assumption of a Zener–Griffith crack,
neglecting the specific crack profile that can be estimated via a
continuous dislocation modeling of the crack. Hence, instead
of solving an integral equation to determine the dislocation
density function, a single algebraic energy derivative equa-
tion containing the crack length can be solved directly. This
is not a trivial issue because the crack length may vary over
six orders of magnitude from the nanometer to the millime-
ter scale. Solutions over these many orders of magnitude can
be easily missed. In the actual execution, the range of solu-
tions is divided into six or more intervals, i.e, 10−6–10−5,
10−5–10−4, etc., and solutions are sought in each of them.
This is supplemented by directly observing the zeroes of the
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energy derivative curve. For example, two zeroes are found
in the same subdivided interval when the stable and unstable
solutions are about to merge. One of these solutions, due to
their close proximity, may be missed.

5 Conclusions

Crack nucleation kinetics of a wedge disclination dipole is
investigated in this paper, focusing on the effect of the shifts
of the rotation axes of the positive and negative disclinations
of the dipole. The nucleated crack is modeled as a composite
Zener–Griffith crack, and the energymethod is used to predict
the crack head opening and the crack length. The formulation
leads to a nonlinear algebraic equation for determining the
equilibrium lengths, and the nucleation is considered ener-
getically favourable if the difference between the final and
original energy states is negative. For rotation axes within the
dipole arm interior, the following results have been obtained.

Both stable and unstable cracks can nucleate from the pos-
itive disclination, but some of them are energetically unfavor-
able. For favourable nucleation, stable crack length to struc-
tural size ratio is typically of the order of 0.001–0.01, and can
be as high as 0.1 in the presence of a remote stress. The crack
head opening is one to two orders of magnitude smaller than
the crack length, and can be even smaller if an applied stress
is present.

Typically, uniaxial dipoles are stable and resistant against
crack nucleation if the positive axis shift of the negative discli-
nation ismore than 1.5 times the half dipole arm length. Biax-
ial dipoles are stable if the axis shifts are both large, i.e., a
large positive shift of the negative disclination and a large
negative shift of the positive disclination. A linear relation
connecting the axis shifts associated with a critical disclina-
tion strength is found, such that biaxial dipoles with strength
smaller than the critical value and with axis shifts below the
line representing the linear relation are stable against crack
nucleation. Furthermore, an applied stress can enable crack
nucleation from a dipole. For a uniaxial dipole, the nucleation
stress increases with the negative value of the shift of the pos-
itive disclination. For a biaxial dipole, it increases with the
value of either of the two axis shifts. For a uniaxial and a
biaxial dipole with the same negative disclination shift, the
critical nucleation stress of the biaxial dipole is larger if its
positive disclination shift is larger than that of the uniaxial
dipole.
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