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Abstract The paper presents an extension of authors’
previous model for a 3D hydraulic fracture with New-
tonian fluid, which aims to account for the Herschel–
Bulkley fluid rheology and to study the associated
effects. This fluid rheology model is the most suitable
for description of modern complex fracturing fluids, in
particular, for description of foamed fluids that have
been successfully utilized recently as fracturing flu-
ids in tight and ultra-tight unconventional formations
with high clay contents. Another advantage of using
Herschel–Bulkley rheological law in the hydraulic
fracture model consists in its generality as its particular
cases allow describing the behavior of the majority of
non-Newtonian fluids employed in hydraulic fractur-
ing. Except the Herschel–Bulkley fluid flow model the
considered model of hydraulic fracturing includes the
model of the rock stress state. It is based on the elas-
tic equilibrium equations that are solved by the dual
boundary element method. Also the hydraulic fractur-
ing model contains the new mixed mode propagation
criterion, which states that the fracture should propa-
gate in the direction in which mode II and mode III
stress intensity factors both vanish. Since it is not pos-
sible tomake bothmodes zero simultaneously the crite-
rion proposes a functional that depends on both modes
and is minimized along the fracture front in order
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to obtain the direction of propagation. Solution for
Herschel–Bulkley fluid flow in a channel is presented
in detail, and the numerical algorithm is described. The
developed model has been verified against some refer-
ence solutions and sensitivity of fracture geometry to
rheological fluid parameters has been studied to some
extent.

Keywords 3D model of hydraulic fracture propaga-
tion · Herschel–Bulkley fluid flow in fracture · Dual
boundary element method · 3D mixed mode crack
front deflection criterion

1 Introduction

Thehydraulic fracturing process for classical reservoirs
and developed cracks has been investigated by many
researches. For classical models, such as radial and
KGD, along with numerical models, analytical solu-
tions describing crack propagation are also obtained.
Theydescribe fracture propagation causedbydominant
influence of one of the physical processes or parame-
ters (Detournay 2016): hydraulic fluid viscosity (vis-
cosity dominated regime M), rock fracture toughness
(toughness dominated regime K ) (Savitski andDetour-
nay 2002; Detournay 2004), fluid leak-off in the sur-
rounding rock (leak-off regimes M̃ , K̃ ) (Adachi and
Detournay 2008; Bunger et al. 2005) or overburden
stress in the fluid lag region (fluid lag regime O) (Gara-
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gash and Detournay 2000; Garagash 2006; Bunger and
Detournay 2007).

At the same time, the development of unconven-
tional reservoirs causes the development of new frac-
turing fluids and additives to them (flocks, fibers, etc.),
which significantly change their rheology. Growing
interest in tight and ultra-tight unconventional forma-
tions with high clay contents had resulted in develop-
ing special fluid systems with large fractions of gas and
small water fractions or so called foamed fluids (Barati
and Liang 2014). Most foamed fluids reportedly show
Herschel–Bulkley (HB) rheological behaviours (Her-
schel and Bulkley 1926). This rheological model has
been successfully used to model the flow of other types
of fracturing fluids within porous media as well (Barati
et al. 2009). The advantage of Herschel–Bulkley rhe-
ological law is that as its particular cases it includes
simpler rheological models: fromNewtonian and pseu-
doplastic fluids to the ones governed by the Bingham
law. The latter two rheological models are often used
in hydraulic fracturing simulators, in particular, while
modeling proppant transport and settling.

Investigation of fractures propagating caused by
non-Newtonian fluids injection is much more com-
plicated than Newtonian. Nevertheless, for power law
fluid, a few analytical solutions were proposed for the
case of plane fracture (Adachi and Detournay 2002;
Dontsov and Kresse 2018) and penny shaped fracture
(Linkov 2015). It should be noted that the case of Bing-
hamfluid has been studiedmuch less. The present paper
is intended to fill this gap by investigating the effect of
non-Newtonian fluid rheology parameters on the frac-
ture propagation at the initial stage. The research is
based on numerical modeling of the fracture propa-
gation in three-dimensional formulation. There is no

enough experience of the solution of three-dimensional
problems of fracture propagation caused by injection
of fluid with Herschel–Bulkley rheology.

To describe the penny-shaped fracture behavior in
transient regimes the solutions for regimes K–K̃ and
K–M have been proposed in Detournay (2016) and
Bunger et al. (2005), respectively and in Dontsov
(2016) the solutions for the whole parametric K–M–
M̃–K̃ space has been proposed. The parametric spaces
for penny-shaped fracture is shown in Fig. 1. Solu-
tions map are presented for the case of impermeable
rock and with fluid lag taken into account [O–M–K
triangle space (Bunger and Detournay 2007)] and for
the developed fracture in permeable rock K–M–M̃–
K̃ (Dontsov and Kresse 2018). the definition and the
values of the parameters are described in Bunger and
Detournay (2007) and Dontsov and Kresse (2018). As
can be seen in the figure, analytical or numerical analyt-
ical solutions are proposed for all regimes in the para-
metric space of a developed penny-shaper fracture.

For plane KGD fracture solutions have been pro-
posed for the M–M̃ transition regime (Adachi and
Detournay 2008) and for M–K regime (Garagash and
Detournay 2000). However, for the initial stage of
penny-shaped fracture propagation, during the transi-
tion from the regime with dominant fluid lag to the
viscous regime (O–M regime), no analytical solution
has been proposed.On the one hand, the duration of this
regime is limited to a few seconds (Bunger and Detour-
nay 2007), and in impermeable rock, the penny-shaped
fracture propagates most of the time in the regime with
the dominant viscosity (Savitski and Detournay 2002).
On the other hand, at the initial stage, the fracture tra-
jectory is formed. And the fracture trajectory affects
the entire fracturing process (Aud and Wright 1994;

Fig. 1 The parametric
spaces for penny-shaped
fracture: early time solution
with fluid lag in
impermeable rock O–M–K
(Bunger and Detournay
2007) (left) and developed
fracture with leak-off
M–K–M̃–K̃ (Dontsov and
Kresse 2018) (right)
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Cleary et al. 1993). For example if the fracture is curved
thenwidth is decreased in thewellbore vicinity (Cherny
et al. 2009). It generates a near-wellbore pressure loss
and creates a risk of wellbore screenout due to proppant
bridging (Economides and Nolte 2000).

To describe the initial stage in Shokin et al. (2015)
and Cherny et al. (2016), a new fully three-dimensional
numerical model of fracture propagation caused by
Newtonian fluid pumping is constructed and justified.
A feature of this model is a direct account of the well-
bore influence on the development of the fracture and
the pressure variation along the fracture surface. In the
current paper this three-dimensionalmodel is improved
by the model of non-Newtonian fluid with Herschel–
Bulkley rheology. It allows to describe the propagation
of three-dimensional curvilinear fractures and to study
the effect of the rheology parameters on the wellbore
pressure, the fracture trajectory and the fracture width.

Implementation and application of the Herschel–
Bulkley model are complicated due to its nonlinearity.
It would be good to know if the Newtonian model can
be used to describe the fracture propagation caused by
the injection of a non-Newtonian fluid. This question
is investigated for various regimes of fracture propaga-
tion. For the case of a developed fracture, the analyt-
ical solutions (Adachi and Detournay 2002; Dontsov
and Kresse 2018; Linkov 2015), obtained for power
law fluid, explicitly contain the power law index, so
in general case this replacement is impossible without
loss of accuracy. The present work is aimed at studying
the initial regime (O–M) of fracture propagation, when
the fracture trajectory is formed. Therefore, this ques-
tion was investigated under the assumption that time
is small. The possibility of using Newtonian rheology
for modeling the propagation of fracture caused by the
injection of complex fluid is considered in Sect. 3 using
dimensionless analysis, and in Sect. 4 using numeri-
cal modeling. The numerical simulation is performed
within the framework of three-dimensional formula-
tion, taking into account the effect of the wellbore, the
anisotropy of in-situ stresses and the lag of the fluid
from the fracture front.

2 Model description

In the model which is described in the current paper we
use the geometrical concept presented in Fig. 2. There
is a penny-shaped initial fracture of radius R in a plane

inclined to axis Oz at an angle α. The initial crack
adjoins a wellbore of radius Rw and is perpendicular
to this wellbore. The surrounding medium is loaded at
the infinity by compressing principal stresses σ∞

x , σ∞
y ,

σ∞
z , that have negative values. The principal compo-

nents σ∞
x , σ∞

y and σ∞
z of stress tensor σ∞ are applied

in the directions of axis x , y and z respectively and
are revealed as the in-situ stress. The wellbore and the
initial fracture are loaded from the inside by Herschel–
Bulkley fluid flow.

Fracturingfluid is injected into thewellbore and then
from the wellbore to the fracture through the boundary
�q under the pressure that is sufficient to cause the rock
breakdown at the fracture edge followed by the fracture
propagation. The fluid front � p lags the fracture front
� f . In the general case the wellbore is not aligned with
the directions of principal in-situ stresses compressing
the rock at infinity. Therefore, the propagating fracture
will deviate from its initial plane turning toward the
so-called preferred fracture plane (PFP), which is per-
pendicular to the minimum principal in-situ stress as
shown in Fig. 2. This figure corresponds to the case
when σ∞

z < σ∞
x and σ∞

z < σ∞
y and, therefore, the

PFP is perpendicular to z axis.
To model the process of hydraulic fracture propaga-

tion one needs to consider its three inseparable parts:
changes of the stress-strained state of the rock, the
fluid flow inside the fracture and the processes of crack
growth and crack front deflection.

2.1 Determination of rock stress-strained state

The stress-strain state of an isotropic homogeneous
medium near the cavity and the fracture at each step of
fracture propagation is described by the elastic equilib-
rium equations. The equations are solved in an infinite
domain.At the infinity the stress tensorσ∞ with princi-
pal components σ∞

x , σ∞
y , σ∞

z applied in the directions
of axis x , y, z respectively and the condition of zero
displacements are set up. The principal components
are revealed as an in-situ stress. On the cavity and the
fracture surface the tractions

ti = −pni − σ∞
i j n j (1)

are set up. In (1) σ∞
i j are the components of tensor σ∞,

ni are the components of the surface outer unit normal,
p is the pressure in the cavity or the fracture. In the
region of the fracture between the fluid front and the
fracture front the pore pressure is applied.
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Fig. 2 The transversal
fracture propagation from
the inclined wellbore
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For the solutionof elasticity sub-problem theBound-
ary Element Method (BEM) is used in the most papers
that concern 3D initiation and evolution of hydraulic
fractures. The conventional BEM was used for it in
Cherny et al. (2016). To overcome the difficulty con-
cerning the singular system of algebraic equations on
the crack surfaces the real fracture is replaced by a fic-
titious notch of the finite width. The artificial width
parameter is chosen in a way to minimize the error
caused by such modification. The collocation nodes of
the opposite sides of the notch are positioned far enough
to make the algebraic equations well-conditioned and
close enough to keep the errors of the calculation of
crack width and stress intensity factors (SIFs) minimal.

However the most suitable method for the solution
of the elasticity problem in 3D model of fracture prop-
agation from the arbitrary cavity is the Dual Boundary
ElementMethod (DBEM) (Hong andChen 1988; Chen
and Hong 1999). Mi and Aliabadi (1992, 1994) have
developed the DBEM for solving the 3D problems of
elasticity.

In Kuranakov et al. (2016) the authors proposed a
modification of the DBEM, which implies solving the
traction boundary integral equation relative to the dis-

placement discontinuities at one of the fracture sides for
the specified tractions, which gives the fracture width.
Similar to the originalDBEM, the displacement bound-
ary integral equation should be solved on the regular
boundary as well. However, no equations for the other
fracture side are needed for the final hydraulic frac-
ture model. The proposed modification significantly
reduces the amount of computations, since the numeri-
cal approximation of the only fracture side is required.
The modified 3D DBEM is employed in the current
paper for the determination of the rock stress-strained
state.

The detailed review of the other methods for solu-
tion of the elasticity problem in 3D model of fracture
propagation is presented in Cherny et al. (2016).

2.2 Crack growth model

As in Cherny et al. (2016) the basis of the crack growth
model consists in the fundamental postulate of linear
elastic fracture mechanics: the behaviour of cracks is
determined solely by the value of SIFs. In the present
paper the displacement extrapolation method for eval-
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3D model of transversal fracture propagation 19

uating SIFs is employed (Aliabadi 2002; Cherny et al.
2016).

The maximum energy release rate criterion is used
to describe the magnitude of the crack front advance at
each crack front vertex (Nuismer 1975; Cherny et al.
2016). In accordance with this criterion the fracture
propagates when the energy release rate in the direc-
tion of crack propagation θ∗ reaches the critical energy
release rate of the material

(1 − ν)
(
K 2

I (θ
∗, t + �t) + K 2

II(θ
∗, t + �t)

)

+ K 2
III(θ

∗, t + �t) = (1 − ν)K 2
I c, (2)

where t is the time moment before the crack front
advance, �t is time increment for the transition to the
next crack front position, θ∗ is the kinking angle.

For realistic determination of the crack front deflec-
tion in arbitrary 3D problems of real structures in
Cooke and Pollard (1996), Pereira (2010) and Cherny
et al. (2016) the three-dimensional mixed-mode crite-
ria are applied. In Cherny et al. (2016) the new crack
front kinking and twistingmodel for three-dimensional
mixed mode case is suggested. To define the kinking
and twisting angles it uses conditions

KII(θ(l)) = 0, KIII(ψ(l)) = 0, (3)

where the kinking angle θ and the twisting angle ψ

define the direction of crack front propagation at each
front point l. In Cherny et al. (2016) the dependence
of the twisting angle on the derivative of kinking angle
with respect to the coordinate l along the crack front is
obtained. The third mode is written as a function of the
kinking angle

KIII(ψ(l)) = K III(θ(l)). (4)

It allows to rewrite the conditions (3) only for this angle
θ

KII(θ(l)) = 0, K III(θ(l)) = 0. (5)

It is impossible to fulfill the second condition in (5)
at each point of the crack front separately from the
adjacent points because the K III depends on the kinking
angle θ derivative with respect to the l. Therefore, we
have combined both modes KII and KIII with weight β
into a single function and have considered this function
as the integral along the whole crack front at new time
step t + �t

F(t + �t, θ(l)) =
∫

Crack front

(1 − β)K 2
II(t + �t, θ(l))

+βK
2
III(t + �t, θ(l))dl. (6)

The crack front deflection in a 3D mixed mode cri-
terion is determined by the distribution of θ∗(l) giving
minimum F

F(t + �t, θ∗(l)) = min
θ(l)

F(t + �t, θ(l)). (7)

In Cherny et al. (2016) an original method of func-
tional (6) minimization is proposed to find the fracture
propagation direction θ∗(l) at each point l.

2.3 Herschel–Bulkley fluid flow in a fracture

The current paper employs the general concept of the
model of Newtonian fluid flow in a three-dimensional
fracture presented in Shokin et al. (2015) and Cherny
et al. (2016). In Cherny and Lapin (2016) the first
steps have been made to extend this concept to the
case of Herschel–Bulkley fluid rheology: the formula
for the apparent fluid viscosity has been proposed and
its applicability for curvilinear fracture simulation has
been demonstrated. In the given paper the justification
(see “Appendix”) and the comprehensive investigation
(see Sect. 4) of the Herschel–Bulkley fluid model and
numerical algorithm are performed. The new expres-
sion for the apparent viscosity as a function of the fluid
flux is proposed. Also sensitivity analysis carried out in
Sect. 5 shows that the statement of the paper (Cherny
and Lapin 2016) about the applicability of the Newto-
nianmodel for the Herschel–Bulkley fluid flow simula-
tion is true only for the early stage of the fracture prop-
agation. If the Newtonian model is applied for case of
low shear rate that is typical for the developed hydraulic
fractures then pressure distribution will be predicted
with high error. Only accurate Herschel–Bulkley fluid
model should be used in this case.

2.3.1 Equations for 2D HB fluid flow in 3D fracture

Two-dimensional model of the Herschel–Bulkley fluid
flow between two plates is used to calculate the fluid
pressure distribution inside the fracture. The model is
based on two equations: the continuity equation

∂W

∂t
+ ∇ · q = 0 (8)
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and the formula for fluid fluxq = (q1, q2) derived from
3D Navier–Stokes equations

q = − W 3

12ηp
∇ p. (9)

Here for simplicity the fluid flux (9) is written in the
form that is used for Newtonian fluid with variable
viscosity ηp and the operator ∇ is written in two-
dimension coordinate system used on the fracture sur-
face. In contrastwithNewtonian fluid the viscosity here
depends on flow parameters and should been written as
a function of fluid flux q or pressure p. In the current
paper the last option has been chosen

ηp(∇ p) = (2K )1/n(2n + 1)

6n
(W |∇ p|)(n−1)/n

+ (4n + 2)21/nτ0
3n(W |∇ p|)1/n . (10)

It can be seen that the expression (10) degenerates
when |∇ p| → 0, since the yield stress τ0 is divided
by this value. Indeed, the equations of fluid flow that
are written in the form (8)–(10) are satisfied only in the
regionwhere the fluidmoves (unyielded region). In this
region the shear stress produced by the pressure gradi-
ent, exceeds the yield stress τ0 (for more details see
“Appendix”). This restriction is not essential here. In
Sect. 5.3 it is shown that while the fracture propagates,
the stopping the fluid flow (the arrest state) is impossi-
ble, and so the pressure gradient |∇ p| is bounded from
zero. Therefore, the expression (10) does not degener-
ate in the model.

The substitution of the expression for the fluxes (9)
into continuity Eq. (8) gives the following equation for
the fluid pressure distribution

∇ ·
(

W 3

12ηa
∇ p

)
= ∂W

∂t
. (11)

2.3.2 Boundary conditions for 2D HB fluid flow
equations

To solve the Eq. (11) boundary conditions should be
added on inflow and outflow boundaries. Let’s consider
the scheme of the fracture surfacewithoutwellbore that
is shown in Fig. 3. The fracturing fluid is injected from
the wellbore to the fracture through the boundary �q .
This line is the intersection of the wellbore and fracture
surfaces. The unit vector nq normal to the boundary�q

is located on the fracture surface and directed from the
wellbore to the fracture. The unit vector np normal to

the fluid front � p is located on the fracture surface and
directed outward the fluid. The following conditions
are set at the fluid front � p and at the inflow boundary
�q

p |� p= ppore, q |�q= qin · nq , (12)

where ppore is the pressure of the porous fluid, qin =
Qin/Lq is the average inflow rate that is calculated
using the given inflow rate Qin and the length Lq of
the inflow boundary�q . Taking into account Eq. (9) the
second condition (12) is rewritten in terms of pressure
as

∂p

∂n
= −12μqin

W 3 nq . (13)

At the fluid front� p an additional Stefan’s condition
is set

v f

∣∣∣
� p

= np
|q|
W

∣∣∣
� p

, (14)

where v f is the velocity of the fluid front � p that is
orthogonal to � p(t). This condition is not necessary to
solve the Eq. (11) but it is used to calculate the position
of the fluid front � p.

2.3.3 Numerical method for 2D HB fluid flow
equations

Equation (11) is solved by the finite element method
that was applied in Shokin et al. (2015) and Cherny
et al. (2016) for the case of Newtonian fluid. This
method transforms the differential problem (11)-(13)
into a system of linear algebraic equations. First of all
the Eq. (11) is rewritten in the weak formulation as
∫

Sn

∇(a∇ p)ωdS =
∫

Sn

f ωdS, (15)

whereω is a test function, a = W 3/12ηp, f = ∂W/∂t .
After that the computational domain is covered by the
finite element mesh as it is shown in Fig. 3 and inside
each element the pressure is represented as the sum
of shape functions φi (ξ1, ξ2) that are written in local
coordinate system of the element (ξ1, ξ2):

p(ξ1, ξ2) =
M∑
i=1

piφi (ξ1, ξ2), (16)

where coefficient pi is the value of the fluid pressure
at i-th (i = 1, . . . , M) node of the element, M is the
number of nodes in the element. For each element, one
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Fig. 3 Curved fracture
surface in 3D space and its
piecewise planar
representation
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can put the expression (16) into (15) and derive the
following system of equations:

Ki j pi = Q j + Fj , (17)

where

Ki j =
∫∫

Sn

a∇φi · ∇φ j |J |dξ1dξ2, Q j =
∫

∂Sn

a
∂p

∂n
φi dG,

Fj = −
∫∫

Sn

f φi |J |dξ1dξ2. (18)

Finally, the united systemof linear equations is obtained
by assembling the system for each element (17)

Kp = Q + F, (19)

where p = (p1, . . . pN ) is the vector of the fluid pres-
sure values at the all nodes of all the elements, K is a
N × N matrix, Q, F are vectors of order N . When the
system of equations (19) is solved it is simple to find
the pressure distribution at each point of the fracture
surface.

It should be noted that in the case of non-Newtonian
fracturing fluid, the coefficients of thematrixK include
the apparent viscosity ηp and, thus, depend on the solu-
tion p. Consequently, the system of equations (19) is
nonlinear. The iterative relaxation method is used for
solving it. The steps of the algorithm are the following.

1. s = 0 : The pressure from the previous n-th time
step of the fracture propagation is taken as the initial
solution p0 = pn .

2. At each iteration s the apparent viscosity ηsp is cal-
culated at each point using (10). It gives coefficients
of K(ps) and Q(ps) for (19).

3. The interim pressure p̃ is calculated by solving (19)
with K(ps), Q(ps).

4. The pressure distribution at the next (s+1)-th itera-
tion is calculated by using the relaxation procedure

ps+1 = p̃(r) + ps(1 − r), where

r(s) = rmax
||ps ||

||ps − p̃|| . (20)

5. s = s + 1. The iterations 2–4 are repeated until the
condition ||ps−p̃||

||ps || < εc is fulfilled.

The values of parameters and rmax = 0.1 , and
εc = 10−4 are taken to provide the highest speed of
convergence of this iteration process, norm || · || used
here is the uniform norm. Usually it takes about 5-10
iterations to obtain the solutionwith the given accuracy.

2.4 Coupling of the submodels

To simulate the fracture propagation it is necessary to
unite the equations, initial and boundary conditions and
criteria described in the previous sections into the one
system of nonlinear equations and solve them simulta-
neously at each step of the fracture propagation. Each
component of the system provides one or more com-
ponents of the solution that should be obtained at each
time step: fracture widthW , fluid pressure p, fluid flux
q, positions of fluid front � p and fracture front � f .
The following stages of coupling solution method for
the submodels are developed.

• Elasticity equations with boundary conditions (1)
are solved in 3D infinite domain with a cavity and
a fracture. These equations gives the distribution
of fracture width W = W (p, � f ) as function of
the fluid pressure in the fracture p and the fracture
geometry specified by the fracture front position
� f (see Fig. 2) at the current and previous steps.

• Conditions (2) and (3) for fracture front increment
and the crack front deflection give the fracture front
position � f as function of stress field.

• Equations (9)–(11) with boundary conditions (12)
and (13) are used to calculate distributions of the
fluid pressure p and the fluid flux q with known
fracture width W .
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22 S. Cherny et al.

• Stefan condition (14) gives the fluid front position
� p as function of fluid fluxes q.

The numerical algorithm for the described sys-
tem is proposed and verified in Shokin et al. (2015),
Kuranakov et al. (2016) and Cherny et al. (2016) for
the case of Newtonian fluid. At each step of the frac-
ture propagation two non-linear problems are solved
iteratively. The two iteration cycles are the following.

1. External cycle to calculate the positions of the frac-
ture � f and the fluid �p fronts.

2. Internal cycle to obtain the pressure p and widthW
distributions using the given positions of the frac-
ture � f and the fluid �p fronts at each iteration of
the cycle 1.

Due to the non-linearity of the used fluid rheology
model an additional iteration cycle is required to cal-
culate the apparent viscosity and the fluid pressure as
it described in Sect. 2.3.3. This complication of the
algorithm results in the convergence deceleration and
in the computational time increase as compared to the
Newtonian fluid case.

3 Dimensional analysis of the investigated problem

3.1 Regimes of fracture propagation

Dimensional analysis will be carried out on the one-
dimensional model of penny-shaped fracture. This
assumption simplifies the discussion in comparison
with the three-dimensional statement. Such fracture
corresponds to the formulationof theproblemdescribed
in Sect. 2, for the case of the transverse fracture that
propagates from the wellbore not inclined against with
the axis z (α = 0 in Fig. 2). At the same time, even
in the one-dimensional formulation, the dimensional
analysis gives representation of the effect of various
physical processes on the propagation of cracks, such
as energy losses on viscous friction and fracture tough-
ness, fluid lag etc.

Dimensional analysis of the early stage of the devel-
opment of a penny-shaped fracture in an impenetra-
ble rock for the case of a Newtonian fluid with fluid
lag taken into account is given in Bunger and Detour-
nay (2007) and Detournay (2016). The equations of a
penny-shaped fracture propagation arewritten in accor-
dance with the notation adopted in these works. Unlike
Bunger and Detournay (2007) and Detournay (2016),

we assume that the fluid is described by the Herschel–
Bulkley model, and the pore pressure in the rock is
zero. Then the equations and the boundary conditions
look as follows

∂W

∂t
= 1

μ′1/nr
∂

∂r

[
rW (2+1)/n

(
∂p

∂r
− τ0

W

)1/n
]

, (21)

W = 8R

πE ′
[∫ γ f

0
G

( r

R
, ζ

)
pnet (ζ )ζdζ

−
∫ 1

γ f

G
( r

R
, ζ

)
σ∞
z ζdζ

]
, (22)

27/2

πR1/2

[∫ R f

0

pnet
(R2 − r2)

rdr − σ∞
z

√
R2 − R2

f

]
=K ′

I c,

(23)

Qin · t = 2π
∫ R f

0
W (r, t)rdr, (24)

r = R f : dR f

dt
= −w2

μ′
∂p

∂r
. (25)

Here R and R f are fracture and fluid front radii,
γ f = R f /R is dimensionless radius of the fluid
front, pnet = p − σ∞

z is net pressure. In addition,
the following notations are used: E ′ = E/(1 − ν2),
K ′

I c = 4(2/π)1/2KIc (Bunger and Detournay 2007;
Detournay 2016), and μ′ = 2K ((4n+ 2)/n)n (Linkov
2015). The kernel G in (22) is given in terms of the
incomplete elliptic integral of the first kind F

G(ξ, ξ ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ξ
F

(
arcsin

√
1−ξ2

1−ξ ′2 ,
ξ ′2
ξ2

)

1
ξ ′ F

(
arcsin

√
1−ξ ′2
1−ξ2

,
ξ2

ξ ′2

)
. (26)

The difference of the system of Eqs. (21)–(26) from
the system proposed in Bunger and Detournay (2007)
and Detournay (2016) is a generalization (21) to the
case of Herschel–Bulkley fluid. The remaining equa-
tions completely the same. Therefore, we will use
the classification of propagation regimes proposed in
Bunger and Detournay (2007) and Detournay (2016).

In impermeable rock, the behavior of the penny-
shaped fracture is characterized by two timescales

to = E ′2μ′

(σ∞
z )3

, tm =
(

μ′5Q3
in E

′13

K ′18

)1/2

, (27)

These timescales can each be associated with a phys-
ical transition the fracture makes in its lifetime. The
timescale to is the measure of the time for which
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the fluid pressure in the fracture balances the over-
burden stress in the significant lag between the fluid
and fracture fronts. The timescale tm gives a measure
of how long it takes for the fracture to transit from
viscosity dominated regime to toughness dominated
one.

The triangular parametric space proposed in Bunger
and Detournay (2007), Detournay (2016) and shown in
Fig. 1 gives a useful way of visualizing this evolution.
The vertex O corresponds to the initial propagation
regime mode for t � to < tm . In this regime, a large
fluid lag is observed. Since the fluid occupies a small
part of the fracture, its viscosity has little effect on the
process of fracture propagation. Themain role is played
by the balance between the fluid pressure and the com-
pressive stresses in the area between fluid and fracture
front. The vertex M corresponds to the viscous prop-
agation regime, which is observed for to � t � tm .
Most of the energy in this regime is spent on over-
coming the viscous friction in the fluid. The vertex K
corresponds to the toughness regime, which is reached
at t � tm > to.

The evolution of a radial fracture, begins in regime
mode O and ends with K (Bunger and Detournay
2007). The transition between them and the corre-
sponding trajectory in O–M–K space (Fig. 1) is deter-
mined by the ratio to/tm . For to/tm ∼ 1 the tra-
jectory is far from the vertex M , and the fracture
passes from regime O to regime K directly. For
to/tm � 1, the trajectory passes near the vertex M ,
and the crack propagates most of the time in viscous
regime.

The three-dimensional model of fracture propaga-
tion (Cherny et al. 2016) used here is designed to cal-
culate the evolution of a fracture only in the vicinity of
the O , M and transition O–M regimes. This does not
limit the applicability of the model, since, according to
Savitski andDetournay (2002), K regime is not reached
for typical parameters of hydraulic fracturing. In addi-
tion, the fracture path is formed in the initial period of
timewhen the fracture propagates in the O ,M regimes.
Therefore, the three-dimensional model (Cherny et al.
2016) is used in Sect. 5 to investigate the influence of
fluid parameters on the fracture trajectory.

Here for simplicity, the analysis of the influence of
each Herschel–Bulkley fluid parameters τ0 and n is
carried out independently for the cases of Bingham
(τ0 > 0, n = 1) and power law (τ0 = 0, n < 1)
fluids.

3.2 Yield stress influence

For the case of a Bingham fluid, we use the dimen-
sionless analyses performed in Savitski and Detour-
nay (2002) and Detournay (2004) for the M regime.
It gives equations for dimensionless radius of the frac-
ture γ (P(t)) and the distributions of the dimensionless
width �(ρ, P(t)) and the pressure �(ρ, P(t)) along
the dimensionless radiusρ = r/R.Dimensionless vari-
ables depend only on the set of parameters of the regime
P(t) and are related to physical variables by formulas

W (r, t) = ε(t)L(t)�(ρ, P(t)), (28)

p(r, t) = ε(t)E ′�(ρ, P(t)), (29)

R(t) = L(t)γ (P) (30)

with the scaling factors

ε(t) =
(

μ′

E ′t

)1/3

, L(t) =
(
E ′Q3

int
4

μ′

)1/9

. (31)

Dimensionless analog of Eq. (21) is written as(
∂ε

∂t

t

ε
+ ∂L

∂t

t

L

)
� − ∂L

∂t

t

L
ρ

∂�

∂ρ

+∂P
∂t

t

(
∂�

∂P
− ρ

γ

∂γ

∂P
∂�

∂ρ

)

= 1

Mγ 2

∂

∂ρ

[
�3

(
∂�

∂ρ
− Mτ

γ

�

)]
. (32)

Here twodimensionless complexes or as regimeparam-
eters P(t) are introduced. They are dimensionless vis-
cosity (Savitski and Detournay 2002; Detournay 2004)

M = μ′
(
Q3

in E
′13

t2K ′18

)1/5

(33)

and dimensionless yield stress

Mτ = τ0

(
t2

μ′2E ′

)1/3

. (34)

It can be seen that Mτ (34) is a monotonically
increasing function of t . Therefore, the influence of
the yield stress at the initial moment will be insignifi-
cant, and then it will grow. Consequently, the use of the
Newtonian fluid model to describe the Bingham fluid
is possible only for Mτ � 1, that is, when

t � tτ =
(

μ′2E ′

τ 30

)1/2

. (35)

Let us estimate the values of timescales tτ in (35)
and to, tm in (27) for the typical values of the param-
eters given in Savitski and Detournay (2002): E =
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7 ÷ 40 GPa, ν = 0.15 ÷ 0.4, μ = 0.1 ÷ 0.5 Pa s,
Qin = 0.03 ÷ 0.08 m3/s and the values of the yield
stress τ0 = 100 ÷ 500 Pa. The values of the time
scales will vary in the intervals tτ = 10 ÷ 1000s,
to = 0.1 ÷ 1000s and tm � 100h. Since tτ ∼ to, for
the developed fracture that propagates in the regime M
to � t � tm , it is necessary to take yield stress into
account τ0.

To estimate the influence of the yield stress τ0 at
the stage when the fracture trajectory is formed, let us
also estimate the time of the fracture reorientation to
the preferred fracture plane tpath . According to Abass
et al. (1994) and Cherny and Lapin (2016) the fracture
becomes almost flat before it’s length reaches several
(up to 10) wellbore diameters. For the regime M the
expression (31) for L(t) and the inequality L(t) < 10 ·
2 · Rw = 2.5m give

tpath <

(
μ′L9

E ′Q3
in

)1/4

= 0.1 ÷ 0.6s. (36)

For the regime O the following expression for the char-
acteristic length (Bunger and Detournay 2007)

L(t) =
(
E ′16 μ′2 Q12

in t10

K ′18

)1/27

, (37)

should be used instead of (31). It gives the following
interval

tpath =
(

L27K ′18

E ′16μ′2Q12
in

)1/10

= 0.001 ÷ 0.5s. (38)

The above estimates show that for different values of
the parameters, the fracture trajectory is formed when
the fracture propagates in the regime O (tpath � to)
or in transient regime from the O–M (tpath ∼ to ).
On the one hand it is necessary to take the fluid lag
into account, on the other hand it is not always possible
to use the asymptotic solution obtained for the regime
O in Bunger and Detournay (2007). At the same time
when the fracture trajectory is formed then tpath � tτ .
So the influence of yield stress is insignificant and this
parameter can be neglectedwhile the fracture trajectory
is calculated.

3.3 Power law index influence

While the yield stress τ0 can be neglected in the sim-
ulation of the initial stage of the fracture propagation,

the power law index should be taken into account for
the entire period of fracture propagation. Such a con-
clusion can be made on the basis of the work (Linkov
2015), where the scaling of the penny shaped fracture
propagation equations is made for the case of power
law fluid and self similar solution is obtained for the
regime M .

In thiswork, in order to obtain a self-similar solution,
themodified formulation of hydraulic fracture problem
by employing the particle velocity is used in contrast
to the formulation (21)–(25). Therefore, the dimension-
less equations are not identical to those used in Bunger
and Detournay (2007), Savitski and Detournay (2002)
and Detournay (2004), where pressure and the fracture
width are independent variables. Let us repeat the anal-
yses provided in Linkov (2015) using the notations of
Bunger and Detournay (2007) and Detournay (2016).
Using for ε(t) the modified expression

ε(t) =
(

μ′

E ′tn

) 1
n+2

, (39)

instead of (31) the following equation is obtained
instead of (32)(

∂ε

∂t

t

ε
+ ∂L
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t

L

)
� − ∂L

∂t

t

L
ρ
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∂ρ

+∂P
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t

(
∂�

∂P
− ρ

γ

∂γ

∂P
∂�

∂ρ

)

= 1

Mγ 2

∂

∂ρ

[
�

2n+1
n

(
∂�

∂ρ

)1/n
]

. (40)

Here, in contrast with (32), the terms with power law
index n can not be allocated to a separate group with
a new dimension parameter of the regime. Therefore,
it is not possible to conclude that the influence of the
power law index is significant or not like it has been
done in Sect. 3.2 for the yield stress.

The following formula derived in Linkov (2015)
provides an opportunity to assign an apparent viscosity
μa when simulating the action of a thinning fluid con-
sistency factor K and power law index n by replacing
it with an equivalent Newtonian fluid.

μa = Cξ

θ
3

n+2
n

12

t
2−2n
n+2

E ′ 1−n
n+2

K
3

n+2 . (41)

Here θn = 2
( 4n+2

n

)n
, Cξ is the coefficient calcu-

lated in Linkov (2015). It’s value varies from 0.65 to
0.88 while n increases from 0.2 to 0.8. Note that it
is assumed in Linkov (2015) that the fluids equivalent
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when under the same pumping rate Qin they produce
fractures of the same size R for a typical reference time
t of a treatment. As can be seen from (41), the power
law index decreasing has the same effect as the viscos-
ity (or consistency factor) decreasing.

Since the equivalent viscosity of a Newtonian fluid
depends on time, it is impossible to replace the power-
law fluidmodel with the Newtonian fluidmodel in gen-
eral case. This is also confirmed by the calculations
made in 4.2. Nevertheless, we estimate the possibility
of such a replacement at the stage of fracture trajectory
formation.

The equivalent viscosity of a Newtonian fluid calcu-
lated with typical parameters of the hydraulic fractur-
ing (Savitski and Detournay 2002) and power law fluid
parameters n = 0.8, K = 1 Pa sn increases two times
while time varies in the interval 0.006s = 0.01·tpath <

t < tpath = 0.6s. If the average value of equivalent
viscosity μa = 0.1 Pa s was taken when simulating the
action of a thinning fluid by replacing it with an equiva-
lentNewtonian fluid the error in viscosity settingwould
be less than 40 %.

It is shown in Sect. 5.1.1 that a variation of the vis-
cosity by a factor of 10 significantly changes the frac-
ture trajectory. But it can be expected that an error of
40% when specifying the viscosity during the fracture
propagation modeling in the first second of the pro-
cess will have a little effect on the fracture trajectory.
A similar conclusion is made in Cherny and Lapin
(2016), where it is shown that the fractures trajecto-
ries caused by power fluid injection and the injection
of the Newtonian fluid with equivalent viscosity prac-
tically coincide. Thus, a model of a Newtonian fluid
with a correctly chosen viscosity can be used to cal-
culate the fracture trajectory at the initial propagation
stage in place of the Herschel–Bulkley model. It can
be expected that this simplification provides just small
error.

4 Verification of Herschel–Bulkley fluid flow
solution algorithm

The algorithm for solving the equations of HB fluid
flow has been verified against the results obtained in
the frameworks of the plane radial flows in channels
of constant and variable width and the penny-shaped
fracture propagation.
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 M

Pa

0 0.2 0.4 0.6 0.8 10
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15

Fig. 4 Pressure distribution along the radial coordinate for radial
flow of HB fluid in the channel of constant width at constant
pumping rate: solid line—exact solution; circle—2D model

4.1 Radial flow of HB fluid in the channel of constant
width at constant pumping rate

Let us consider a radial flow between two parallel
disks located at the distance of W = 0.001 m from
each other. The radius of the cylindrical inlet section
is equal to Rin = 0.1 m and the radius of the cylin-
drical outlet section is equal to Rout = 1 m. At the
outlet boundary, constant pressure Pout = 0 is main-
tained. Herschel–Bulkley fluid with the rheological
parameters K = 100 Pa sn , n = 0.5, τ0 = 900 Pa
is injected through the inflow boundary with the rate of
Qin = 0.5 × 10−6 m3/s.

Figure 4 shows the pressure distribution along the
radial coordinate calculated by the proposed 2D model
of HB fluid flow on a mesh with Nr=20 elements in the
radial coordinate and Nc=12 elements in the circumfer-
ential direction. The pressure distribution obtained by
the analytical formula given in Kauzlarich and Green-
wood (1972) is shown in Fig. 4 as well. One can see
that the difference between the solutions is very small
(less than 1.2%). It should be noted that further mesh
refinement does not lead to any noticeable change of
the numerical solution.

4.2 Radial flow of Bingham fluid in the channel of
constant width at constant pumping pressure

A radial flow between two parallel disks is consid-
ered. The distance between the disks is equal to W =
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Fig. 5 Injection rate versus the fluid front radius for radial flow
of Bingham fluid in the channel of constant width at constant
injection pressure at different values of fluid yield stress τ0: 1—
τ0 = 0 Pa; 2—τ0 = 50 Pa; 3—τ0 = 100 Pa

0.001 m and the radius of the cylindrical inlet bound-
ary is Rin = 0.1 m. Bingham fluid is injected through
the inflow boundary under constant pressure pin =
1 MPa. The consistency factor of the fluid is equal to
K = 0.3 Pa s and its yield stress varies in the range
from τ0 = 0–100 Pa. The area occupied by the fluid
represents a circle with its outer boundary denoted as
Rout. Zero pressure condition is set at the fluid front:
Pout = 0.

With the extension of the area occupied by the fluid,
the flow friction related to the fluid yield stress rises
and, consequently, the fluid injection rate Q decreases.
The outer fluid boundary propagates until the inlet pres-
sure is enough to overcome the flow resistance. Then
the flow stops and the fluid becomes arrested. Figure 5
shows the dependence of the fluid injection rate on the
fluid front radius calculated by the proposed 2D model
of HB fluid flow for different values of fluid yield stress
τ0. The intersection of each curve with the horizontal
axis in Fig. 5 gives the corresponding maximum dis-
tance that can be reached by the fluid. As expected,
the increase of the fluid yield stress leads to the reduc-
tion of the maximum area occupied by the fluid. For
comparison, the curve corresponding to Newtonian
fluid (curve 1) is presented in Fig. 5. It approaches
the horizontal axis asymptotically but never crosses
it.

4.3 Penny-shaped fracture propagation driven by HB
fluid flow

Two cases of penny-shaped fracture propagation have
been examined. In the first case, Newtonian fluid with
the viscosity of μ = 1000 Pa s is injected into the frac-
ture with the rate of Qin = 32× 10−6 m3/s and, in the
second one, Herschel–Bulkley fluid with the rheologi-
cal parameters K = 1000 Pa sn , n = 0.5, τ0 = 400 Pa
is pumped with the same fluid rate. The wellbore is
vertical (α = 0) and its radius is equal to Rw = 0.5 m.
The radius of an initial fracture is Rin = 1 m. The
rock with the mechanical properties E = 20 GPa,
ν = 0.2, KIc = 3 MPa

√
m is compressed at infin-

ity by the following stresses: σ∞
x = σ∞

y = 4 MPa,
σ∞
z = 3 MPa. The computations were performed with

the 3Dhydraulic fracturemodel presented in the current
paper and with the 1D model of penny-shaped fracture
propagation described in Esipov et al. (2014). A mesh
with Nc = 32 elements in the circumferential direction
was used for the 3Dmodel. For the 1Dmodel, the mesh
was extremely fine.

The results of the wellbore pressure and the fracture
radius calculations are shown in Figs. 6 and 7 corre-
spondingly. One can see that the error magnitude of
the fracture radius computation with the 3D hydraulic
fracture model is quite small and is approximately the
same for both the Herschel–Bulkley fluid and the New-
tonian one. The error of the wellbore pressure determi-
nation with the 3D model is insignificant for both con-
sidered fluids. Figure 8 demonstrates that mesh refine-
ment leads to the convergence of the 3D model numer-
ical solution to the solution of the 1D model obtained
with high accuracy.

5 Results

As mentioned above, the model developed in the
given paper has an advantage over the other existing
three-dimensional models because it directly takes into
account both the influence of borehole and the effect of
variable loading along the fracture sides related to the
flow of the fluid with a complex rheology. This makes
it attractive for modeling the early stage of hydraulic
fracture propagation and, in particular, for the study of
the near wellbore fracture tortuosity. Let us start the
review of the results obtained with the present model
from the study of the sensitivity of the fracture behavior
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Fig. 6 Wellbore pressure versus time for penny-shaped fracture propagation driven by Newtonian (left) and HB fluids (right): solid
line—1D model; circle—2D model, Nc =32
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Fig. 7 Fracture radius versus time for penny-shaped fracture propagation driven by Newtonian (left) and HB fluids (right): solid
line—1D model; circle—2D model, Nc =32

in the near wellbore zone to the variations of the input
problem parameters and, first of all, to the rheological
parameters of the fracturing fluid.

For this purpose, the series of computations have
been performed with the following base values of input
parameters. The wellbore of the radius Rw = 0.12 m
is rotated around the x axis by an angle α (wellbore
inclination angle) as shown in Fig. 2. The y′z′ plane
of the rotated coordinate system coincides with the yz
plane of the original coordinate system. At the well-

bore, there is a planar transversal initial fracture of the
external radius Rin = 0.25mperpendicular to thewell-
bore axis. The in-situ remote compressive stresses in
the rock are σ∞

x = σ∞
y = 16 MPa, σ∞

z = 12 MPa.
The mechanical properties of the surrounding rock are
described by the following parameters: Young’s mod-
ulus E = 20 GPa, Poisson’s ratio ν = 0.2, fracture
toughness KIc = 3 MPa

√
m. A non-Newtonian frac-

turing fluid is pumped into the wellbore at the rate of
Qin = 0.1m3/s. The fluid is characterized by the fol-
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Fig. 8 Wellbore pressure versus time for penny-shaped frac-
ture propagation driven by HB fluids for different mesh sizes:
solid line—1D model, circle—Nc = 32, square—Nc = 16;
triangle—Nc = 8

lowing rheological parameters: the consistency factor
K , the power law index n and the yield stress τ0. The
general case of non-zero values of K and τ0 and n �= 1
corresponds to Herschel–Bulkley rheology law.

In Cherny and Lapin (2016) the propagation of the
transversal fracture inclined on an angle α varied form
0◦ to 60◦ has been simulated to show the influence of
the angle on the fracture trajectory. In the all considered
cases the shape of the growing fracture was similar to
the one can be seen in Fig. 2—the fracture to reori-
ents in PFP-direction. The main conclusion was that
the greater the wellbore inclination angle is, the larger
distance is required for that. But the particular distance
of fracture reorientation and the curvature of the frac-
ture surface are difficult to predict without simulation.
The simulations performed inCherny andLapin (2016)
show that the reorientation is quite fast. Thus the frac-
ture started from 60◦ inclined wellbore became almost
flat (i.e. inclined less than on 5◦ from PFP) before it
propagates on the distance of 10 wellbore diameters.
Table 1 contains the fracture sizes corresponded to the
moment when the fracture became almost flat for the
other wellbore inclination angles. For generality the
sizes are measured in borehole diameters. It should be
noted that the fracture never became exactly plane, so
the sizes of the fracture correspond to the moments
when the fracture is inclined less than on 10◦ or 5◦
from PFP.

Table 1 Influence of wellbore inclination angle α on the size of
the curved near-wellbore part of hydraulic fracture

Wellbore inclination
angle α

15◦ 30◦ 45◦ 60◦

Fracture size with
front inclination
from PFP-direction
less than 10◦ (in
borehole
diameters)

2 4 6 7

Fracture size with
front inclination
from PFP-direction
less than 5◦ (in
borehole
diameters)

3 7 9 10

5.1 Sensitivity of fracture behavior to rheology
parameters of fracturing fluid

Let us consider how the rheological parameters of the
fracturing fluid influence the fracture behavior in the
near wellbore zone.Wewill fix two of three rheological
parameters K , n, τ0 and vary the third one in quite
a wide range. Of course, a large parametric space of
rheologyparameters can not be covered by a fewpoints,
but main dependencies can be clarified. The 3D code
is computationally expensive but it has been chosen
because it demonstrates the fracture trajectory variation
and the consequences of such variation, such as fracture
width narrowing, increasing of wellbore pressure, etc.

The sensitivity study is performed for the wellbore
inclination angle equal to α = 60◦. With such an
inclination the shape of the resulting fracture is essen-
tially three-dimensional, and to enhance the visibility
of the calculated variables, the distributions of these
variables are shown below for several selected radial
fracture cross-sections. Due to the chosen orientation
of the wellbore relative to the principal remote stresses
the fracture is symmetric with respect to the yz(y′z′)
plane as well as to the rotation axis Ox (Fig. 2). There-
fore, it is enough to consider some radial cross-sections
in only one quadrant. Further, we will consider three
cross-sections (Fig. 9) corresponding to the following
values of an angle ϕ: ϕ = 0◦ (yz plane), ϕ = 45◦,
and ϕ = 90◦ (xz plane). Here, the angle ϕ determines
the rotation of the yz plane around the Oz axis in a
clockwise direction when viewed against the direction
of Oz.
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Fig. 9 Fracture shape for
α = 60◦ and analyzed
fracture cross-sections

5.1.1 Effect of fluid consistency factor

Let us fix the values of behavior index n = 1 and yield
stress τ0 = 0 Pa and consider three different values of
the consistency factor K = 0.03, 0.3, 3 Pa s. Such val-
ues of parameters correspond to the rheology ofNewto-
nian fluid. In Fig. 10 the calculated fracture trajectories
in the radial cross-section yz (ϕ = 0◦) are shown.Here,
the rectangle denotes the position of the wellbore, and
the PFP-direction coincides with the direction of the
axis Oy. One can see that with the increase of the con-
sistency factor the fracture trajectory becomes flatter
and it takes longer for it to alignwith the PFP-direction.
The samegeneral conclusionhavebeenmade inCherny
et al. (2016) and Cherny and Lapin (2016) but below
these results are presented in more details.

The distributions of the fracture width and the fluid
pressure for the selected radial cross-sections at the
same timemoment are shown in Figs. 11 and 12, corre-

spondingly, for low and high values of the consistency
factor: K = 0.03 Pa s (on the left) and K = 3 Pa s (on
the right). In these figures, the variable r is the radial
coordinate of the corresponding fracture point in the
cylindrical coordinate system connected with the ver-
tical axis Oz (Fig. 9) and with the origin at the center
of the initial fracture. One can see that in the case of
low fluid viscosity for ϕ = 0◦ and ϕ = 45◦ there is
an inconsiderable fracture width narrowing: not more
than 10 to 15% of its maximum width. However, com-
paring these fracture width profiles with the one at the
cross-section ϕ = 90◦, one can conclude that there
is not a narrowing but rather the fracture widening in
the near wellbore zone of several borehole diameters
in size. In the case of highly viscous fluid, the fracture
width behavior is similar to the planar fracture case:
the width reaches its maximum at the borehole and
then monotonically decreases with the distance from
the wellbore.
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Fig. 10 Fracture trajectories in yz plane for Newtonian fluid
and wellbore inclination angle α = 60◦: 1—K = 0.03 Pa s;
2—K = 0.3 Pa s; 3—K = 3 Pa s

In the case of low fluid viscosity the pressure pro-
file is more convex than for the case of highly viscous
fluid as presented in Fig. 12: the pressure is almost con-
stant at the most part of the fracture and falls abruptly
near the fluid front. Moreover the higher viscosity pro-
duces the higher length of the fluid lag that can be seen
in the figure as an interval of zero pressure near the
fracture front. Despite some fracture widening in the
cross-sections for ϕ = 0◦ and ϕ = 45◦ (as shown in
Fig. 11, left), the pressure distributions are almost the
same in all the considered cross-sections. In the case of

high fluid viscosity, the fluid pressure is more sensitive
to the curvature of the trajectory. It decreases consider-
ably faster in the most curved cross-section (ϕ = 90◦).
And this leads to the significant difference in penetra-
tion of the fracture into the rock in different directions.

In Fig. 11 one can see that the fracture penetration
in the direction of the xz plane (ϕ = 90◦) is by almost
40% larger than in the direction of the yz plane (ϕ =
0◦). In the case of low viscosity fluid, this difference is
about 8% only.

5.1.2 Effect of fluid yield stress

To demonstrate the effect of the fluid yield stress, let
us fix the values of the behavior index n = 1 and
the consistency factor K = 0.03 Pa s and consider
two different values of the yield stress τ0 = 0 Pa and
τ0 = 1000 Pa. The latter value is chosen as the upper
limit of the yield stress for practically used fluids. With
non-zero value of τ0 such a combination of the rheol-
ogy parameters corresponds to the rheology of Bing-
ham fluid. In Fig. 13 the calculated fracture trajectories
in the radial cross-section yz are shown. One can see
that in the chosen wide range, the fracture trajectory
is almost insensitive to the fluid yield stress. This is
related to the fact that at the early stageof the transversal
fracture development the fluid shear rates in the fracture
are very high, because of the radial flow spreading. In
Cherny and Lapin (2016) it has been shown that values
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Fig. 11 Fracture width versus radial coordinate for α = 60◦ and Newtonian fluid with viscosity K = 0.03 Pa s (left) and K = 3 Pa s
(right): 1—ϕ = 0◦; 2—ϕ = 45◦; 3—ϕ = 90◦
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Fig. 12 Fluid pressure versus radial coordinate for α = 60◦ and Newtonian fluid with viscosity K = 0.03 Pa s (left) and K = 3 Pa s
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Fig. 13 Fracture trajectories in yz plane for wellbore inclination
angle α = 60◦ and Bingham fluid with K = 0.03 Pa s: 1—
τ0 = 0; 2—τ0 = 1000 Pa

of fluid shear rate at the early stage of transversal frac-
ture propagation are about 3 orders greater than values
that is typical for long fractures.Hence, the contribution
of the yield stress into the fluid shear stress becomes
negligible. For example it can be seen from the appar-
ent viscosity formula written in terms of fluid flux |q|
(10) in “Appendix” for the case of high values of the
fluid flux. Due to that the influence of yield stress is
negligible, and Bingham fluid model (n = 1, τ �= 0)
can be replaced by the Newtonian one.
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Fig. 14 Fracture trajectories in yz plane for wellbore inclination
angle α = 60◦ and Power-law fluid with K = 0.66 Pa s: 1–
n = 1; 2—n = 0.9; 3—n = 0.8

5.1.3 Effect of fluid behavior index

In this subsection, let us studyhow the fracture behavior
depends on the fracturing fluid behavior index. Three
fluids with the same values of the consistency factor
K = 0.66 Pa s and yield stress τ0 = 0 and differ-
ent values of the behavior index n = 1; 0.9; 0.8 will be
considered.With n �= 1 such a combination of the rheo-
logical parameters corresponds to the model of power-
law fluid. Figure 14 presents the calculated fracture
trajectories in the radial cross-section yz. The distribu-
tions of the fracture width and the fluid pressure in the
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selected radial cross-sections at the same time moment
are shown in Figs. 15 and 16, correspondingly, for two
different values of the behavior index: n = 0.8 (on the
left) and n = 1 (on the right). Comparing the curves
presented in Figs. 10, 11 and 12 with the ones shown
in Figs. 14, 15 and 16, one can conclude that, on the
whole, the increase of the fluid behavior index has the
same effect on the fracture behavior as the fluid con-
sistency factor increase. The higher the behavior index
value is, the slower the fracture reorientation in thePFP-

direction. The fracture width grows with the increase
of the behavior index. There is practically no fracture
width narrowing near the wellbore. With the increase
of the behavior index, the non-uniformity of the frac-
ture propagation in different radial directions becomes
more pronounced.

The analysis conducted in the current section shows
that due to the peculiarities of transversal fractures
geometry they are not prone to the fracture width nar-
rowing near the wellbore, which is known as “pinch-
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ing” in the oil and gas industry. The fracture curvature
(turning and twisting) influences only the degree of
its penetration into the rock in different radial direc-
tions. In the considered case of the fracture orientation
relative to the remote stresses, the least penetration is
observed in the cross-section containing the deviated
wellbore axis as compared to other directions. How-
ever, one should not extend these conclusions directly
to the other types of the fracture geometry, for exam-
ple, to band-type fractures (PKN-like geometry),which
require a separate study. The analysis conducted by the
authors in Cherny et al. (2009) within the KGD type
fracture geometry has demonstrated that for fractures
under plane deformation conditions the pinching can
lead to a considerable narrowing of the fracture width
at the wellbore.

5.2 Sensitivity of fracture behavior to fracturing fluid
rheology in the case of “low shear rates”

In previous sections it has been shown that both the
consistency factor and the behavior index affect the
fracture trajectory in a similar way. Variation of any
of these parameters leads to variation of the apparent
viscosity (10). The question arises if a variation of any
parameters has the same effect as a variation of vis-
cosity has, will it be enough to set one parameter—the
viscosity only? In Cherny and Lapin (2016) for the case
of high shear rate γ̇ = ∂v1/∂x3 it has been shown that it
is really possible and Herschel–Bulkley model may be
replaced by Newtonian one. But the value of apparent
viscosity should be chosen carefully. The apparent vis-
cosity strongly depends on the shear rate value, this fact
is easy to demonstrate for example using its expression
for 1D fluid flow

ηp = (K γ̇ n + τ0)/γ̇ , (42)

So the shear rate value that is used to calculate the
apparent viscosity should be chosen accurately and
should be close to the value that is observed in the
fracture at the proper stage of the propagation. Then
Newtonian fluid model can be used both for pseudo-
plastic (n ≤ 1, τ = 0) and Bingham (n = 1, τ �= 0)
fluid flow simulation.

It also has been shown in Cherny and Lapin (2016)
that both the wellbore pressure and the fracture width
are sensitive to fluid rheology. But if the apparent vis-
cosity is constant then the variation of all other fluid

parameters almost has no effect on the fracture trajec-
tory. These conclusions in Cherny and Lapin (2016)
have been made only for the case of very high shear
rates, which is typical for the early stage of transverse
fracture propagation.

In this section another case of fluid flow is con-
sidered—case of “low shear rates” to estimate the
influence of apparent viscosity and other fluid rheol-
ogy parameters separately. The term “low shear rates”
means that under such shear rates the summands in
formula (42) provide comparable effect on the value of
the apparent viscosity. To study the effect of the frac-
turing fluid rheology on the hydraulic fracture behavior
for this case, the following set of input parameters has
been chosen. The radius of the borehole shown in Fig. 2
is equal to Rw = 0.5 m and the wellbore is not devi-
ated: α = 0. The outer radius of the initial transversal
fracture is equal to Rin = 1m. The remote compressive
in-situ stresses in the rock are σ∞

x = σ∞
y = 4 MPa,

σ∞
z = 3 MPa. The mechanical properties of the sur-

rounding rock are described by the following param-
eters: Young’s modulus E = 20 GPa, Poisson’s ratio
ν = 0.2, fracture toughness KIc = 3 MPa

√
m. The

fracturing fluid is injected with the rate of Qin =
32 × 10−3 m3/s. The base value of the consistency
factor is K = 1000 Pa sn . The values of the fluid behav-
ior index n and the fluid yield stress τ0 can vary from
fluid to fluid. Four cases of the fluid rheology have been
considered:

1. Newtonian fluid: K = 1000 Pa sn , n = 1, τ0 =
0 Pa;

2. Bingham fluid: K = 1000 Pa sn , n = 1, τ0 =
400 Pa;

3. Power-law fluid: K = 1000 Pa sn , n = 0.5, τ0 =
0 Pa;

4. Herschel–Bulkley fluid: K = 1000 Pa sn , n = 0.5,
τ0 = 400 Pa.

In Fig. 17, the dependences of the wellbore pressure
on time are shown in logarithmic scale for the rheolog-
ical models of the fracturing fluids listed above. One
can see that the slopes of all four curves relative to the
abscissa axis differ from each other. The increase of the
yield stress and the decrease of the power law index lead
to the reduction of the inclination angle of the corre-
sponding pressure curve. In the first case, this happens
due to the increase of the wellbore pressure required by
the fracture development for late times, and in the sec-
ond case—due to its decrease for early times. One can
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Fig. 17 Wellbore pressure versus time in logarithmic scale for
α = 0: 1—Newtonian fluid; 2—Bingham fluid; 3—Power-law
fluid; 4—Herschel–Bulkley fluid
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Fig. 18 Wellbore pressure versus time in logarithmic scale for
α = 0 and for Newtonian fluid with viscosity: 1—K = 500 Pa s;
2—K = 1000 Pa s; 3—K = 2000 Pa s

see also that on the considered time interval the well-
bore pressure curve for Newtonian fluid cannot serve
as a good approximation for any of the cases of non-
Newtonian fluid injection in Fig. 17. It should be noted
that in contrast to the “high shear rates” case this mis-
match cannot be corrected by the proper choice of the
Newtonian fluid viscosity only. The variation of New-
tonian fluid viscosity does not result in the variation of
the pressure curve slope but just changes the distance
between the curve and the abscissa axis. This can be

observed in Fig. 18, where the dependences of thewell-
bore pressure on time are presented for a wide range of
variation of the Newtonian fracturing fluid viscosity.

It should be noted that an inaccurate determina-
tion of the fluid pressure causes errors in the fracture
width estimation. In practice, this may lead to incor-
rect conclusions about the necessary volume of clean
gel injected into the wellbore before proppant slurry
pumping, to errors in the calculation of the propped
fracture profile and, ultimately, to an incorrect predic-
tion of the well productivity after hydraulic fracturing.

5.3 Probability of the arrested state of the hydraulic
fracture driven by HB fluid

Overview of the results will complete the answer to
the question whether the hydraulic fracture driven by
HB fluid can stop? This is quite an appropriate ques-
tion.Herschel–Bulkley rheology law includes non-zero
yield stress. This rheology feature causes HB fluid flow
stop in a number of practical cases of its application.
Examples include the pumping through a pipe, a flow
between two planes (see Sect. 4.2), spreading on a
plane, etc. It would be natural to expect that the use of
the HB fluid as a fracturing fluid under certain condi-
tions will also lead to the arrested state of the hydraulic
fracture when the wellbore pressure that pushes the
fluid into the fracture is not enough to overcome the
friction forces at the fracture sides. However, for the
growing transversal hydraulic fracture this is amislead-
ing idea. The calculations of the penny-shaped fracture
propagation at constant injection rate have shown that
with the fracture growth the wellbore pressure does not
increase but it falls (see curve 4 in Fig. 17, for exam-
ple). However, despite thewellbore pressure decrement
the force pushing the fluid into the fracture grows pro-
portionally to the increase of the fracture width at the
wellbore.

As an illustration of the statement made above,
Fig. 19 shows the 3D picture of fluid velocity inside the
fracture for α = 60◦ for Herschel–Bulkley fluid with
the following parameters: K = 1000 Pa s, n = 0.5,
τ0 = 400 Pa. The velocity profiles for the selected
radial cross-sections ϕ = 0◦; 45◦; 90◦ (as indicated in
Fig. 9) are presented in Fig. 20. One can see that the
fluid velocity becomes zero only at the fluid front and
in the fluid lag where fluid doesn’t flow. This means
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Fig. 19 Distribution of fluid velocity modulus for α = 60◦ and Herschel–Bulkley fluid with parameters: K = 1000 Pa s, n = 0.5,
τ0 = 400 Pa

r, m

|v
|, 

m
/s

0 0.5 1 1.5 20

5

10

15

20

3
2

1

Fig. 20 Fluid velocity modulus versus radial coordinate for α =
60◦ andHerschel–Bulkley fluidwith parameters: K = 1000 Pa s,
n = 0.5, τ0 = 400 Pa: 1—ϕ = 0◦; 2—ϕ = 45◦; 3—ϕ = 90◦

there is no zones inside the fracture where the fluid is
arrested.

The statement about the impossibility of an arrested
state is valid not only for the penny-shaped fracture but
also for any other geometrical fracture model that does
not include any artificial limitations for the fracture
width growth at the wellbore such as, for instance, the
KGD model geometry. The stress barrier preventing
the fracture propagation along the borehole can serve

as an example of such limitations. The geometry of the
fracture developing under high stress barrier restriction
is described well within the PKNmodel, which, in fact,
is very similar to the model of the fluid flow in a pipe
of a variable length. For the PKN model, the arrest of
the fluid flow in the fracture and the subsequent stop
of its propagation seem quite probable, for example, in
the case of maintaining a constant injection pressure in
the wellbore.

6 Conclusion

The 3D model of transversal hydraulic fracture prop-
agation from a cavity developed by the authors ear-
lier has been extended to the case of Herschel–Bulkley
fluid injection. It should be noted that the new model
takes into account the following specifics: the presence
of borehole, the variable fluid pressure gradient along
the fracture, and the lag between the fluid front and
the fracture front during its propagation. Such features
make the model very suitable for simulating the early
stage of hydraulic fracture development and, in partic-
ular, for studying the near wellbore fracture tortuosity.
Due to the additional non-linearity of the problem intro-
duced by Herschel–Bulkley fluid rheology, the model
algorithm is slower and more prone to the issues with
convergence in comparison with the original 3Dmodel
of hydraulic fracture driven by Newtonian fluid.
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The analysis of the fracture behavior sensitivity to
the parameters ofHerschel–Bulkley fracturingfluid has
been performed. Based on the obtained results one can
conclude that the transverse hydraulic fracture is not
prone to the so-called “pinching” effect and there is no
zones inside the propagating fracture where the frac-
turing fluid is in an arrested state even with high values
of the fluid yield stress.

It was shown that while simulating the early stage
of transverse hydraulic fracture development one can
neglect the yield stress of Bingham fracturing fluid
without loss of accuracy. The influence of yield stress
on themain parameters of the fracture trajectory, width,
wellbore pressure is neglible and the variation of the
behavior index affects the main fracture parameters in
the same way as the variation of the fluid viscosity or
consistency factor does. Therefore Herschel–Bulkley
fluid model can be replaced by Newtonian one if the
hydraulic fracture simulation results provided that the
parameter of the linear rheological law (apparent vis-
cosity) is measured for the expected shear rates inter-
val. This is only valid for the early stage of the frac-
ture growth modeling (small scale fracture). For large
scale fractures, it is impossible to obtain the low error
of approximation at each moment of the considered
time interval while approximating the actual rheolog-
ical curve of the fracturing fluid with just a constant
apparent viscosity.

The obtained results have demonstrated once again
that one should be careful while interpreting the results
of any laboratory experimentswith hydraulic fracturing
(lab scale) and using them for designing a full-scale
hydraulic fracturing job (field scale).
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Appendix

A.1 Herschel–Bulkley fluid model

Let us consider the most general form of the equa-
tions of incompressible HB-fluid flow in the 3D case.
It includes the continuity equation

∇ · v = 0 (43)

and the momentum equation

ρ
D v
Dt

= ∇ · P. (44)

In (43), (44) v = {vi } is the fluid velocity vector
and P = {pi j } is the total stress tensor divided into two
parts

P = −pE + T, (45)

where p is the scalar called the hydrodynamic pres-
sure, T = {τi j } is the viscous stress tensor, and E =
diag(1, 1, 1) is the unit (or identity) tensor. The vis-
cous stress tensor T is connected with the strain rate
tensor D = {Di j } by the constitutive relations
T = ηD, for T � τ0, (46)

D = 0, for T < τ0. (47)

In (46), (47) the components of the tensor D are

Di j = ∂vi

∂x j
+ ∂v j

∂xi
(48)

and η is the viscosity function given by the Herschel–
Bulkley rheology model

η(D) = K Dn−1 + τ0

D
. (49)

Here, K is the flow consistency factor; n is the flow
behavior index that governs the degree of shear thinning
or thickening; τ0 is the yield stress. T and D denote the
second invariants of the respective tensors given by the
following formulas

T =
√
1

2
τi jτi j and D =

√
1

2
Di j Di j . (50)

The index form of Eqs. (43) and (44) is the follow-
ing:

∂vi

∂xi
= 0, (51)

ρ

[
∂vi

∂t
+ ∂(viv j )

∂x j

]
= − ∂p

∂xi

+ ∂

∂x j

[
η(D)

(
∂vi

∂x j
+ ∂v j

∂xi

)]
. (52)

A.2 Equations for 2D HB fluid flow in 3D fracture

The fracture width W is much smaller than its lon-
gitudinal size. Therefore, the flow inside the fracture
can be considered locally as the flow in a thin channel
between two parallel plates. Without loss of generality
let’s assume that the axis x1, x2 of the local coordinate
system lie in the tangent plane to the fracture surface
and the axis x3 is orthogonal to the fracture surface.
Then the transversal fluid velocity component can be
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assumed small (v3 ≈ 0) as compared to its longitudinal
components. Also the derivatives of the fluid velocity
components in the longitudinal directions ∂/∂x1, ∂/∂x2
are small in comparison with their derivatives in the
transverse direction ∂/∂x3. The fluid pressure and its
consistency factor are considered constant in the trans-
verse direction. The time derivatives in Eq. (52) are
disregarded. The non-stationarity of the fracture prop-
agation model is conditioned by the continuity Eq. (51)
through the relationship between the fracture width W
and the transversal fluid velocity v3

∂W

∂t
= v3. (53)

Under the assumptions made above, Eqs. (51) and
(52) can be simplified.Omitting small terms inEq. (52),
one can obtain for i = 1, 2

∂p

∂x1
= ∂

∂x3

[
η(D)

∂v1

∂x3

]
,

∂p

∂x2
= ∂

∂x3

[
η(D)

∂v2

∂x3

]
.

(54)

Equation (52) for i = 3 degenerates under the stated
assumptions. The integration of Eq. (54) over x3 gives

η(D)
∂vi

∂x3
= ∂p

∂xi
+ Ai , (55)

where Ai are some constant values.
Further, the cases of Newtonian and Herschel–

Bulkley fluids are discussed separately. For Newtonian
fluid, we have η(D) = μ = const , τ0 = 0 and then
from Eq. (55) it follows that

vi = x23
2μ

∂p

∂xi
+ Ai

x3
2μ

+ Bi . (56)

Taking into account the boundary conditions at x3 =
0 and x3 = W

vi = 0, i = 1, 2 (57)

one can obtain

vi = −x3
W − x3
2μ

∂p

∂xi
. (58)

From the expressions for fluid fluxes

qi =
∫ W

0
vi dx3, i = 1, 2 (59)

and Eq. (58) we can get the equations connecting the
derivatives of the fluid pressure with the fluxes

qi = − W 3

12μ

∂p

∂xi
, (60)

Equations (60) coincidewith the ones used inShokin
et al. (2015) and Cherny et al. (2016).

Using the Equations (58) and (60) one can obtain
shear rate value

γ̇ = ∂v1

∂x3
= 6qi

W 2 . (61)

For HB-fluid, the viscosity function η(D) depends
on the velocity components that are functions of x3. For
integrating Equations (55), let us move to a coordinate
system, inwhich the direction of x1-axis coincideswith
the direction of the velocity vector u. In this coordinate
system, we have

η(D) = K

(
∂v1

∂x3

)n−1

+ τ0

(
∂v1

∂x3

)−1

. (62)

Integrating Equation (55) and taking into account the
boundary conditions (57) and the expressions for the
viscosity function (62), one can obtain

v1 = −nK−1/n

(n + 1)

(
∂p

∂x1

)1/n

(
(0.5W − zτ )

1+1/n − vd(x3)
1+1/n

)
, (63)

where

vd(x3) =

⎧⎪⎨
⎪⎩

0.5W − x3 − zτ , x3 < 0.5W − zτ
0, 0.5W − zτ ≤ x3 ≤ 0.5W + zτ
x3 − 0.5W − zτ , x3 > 0.5W + zτ

, zτ = τ0

∣∣∣∣
∂p

∂x1

∣∣∣∣
−1

.

The latter formula for vd(x3) takes into account the
typical velocity profile of the HB fluid flow between
two parallel plates as shown in Fig. 21. This formula is
correct if the pressure gradient is enough to overcome
the yield stress∣∣∣∣

∂p

∂x1

∣∣∣∣ >
2τ0
W

. (64)

Otherwise the fluid is motionless. Similarly, one can
obtain the expression for the second velocity compo-
nent v2. Now the expressions for the fluid fluxes can be
written in the following form:
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Fig. 21 Typical velocity profile of HB fluid flow between two
parallel plates

qi = − n

(4n + 2)(2K )1/n
W 2+1/n

(
∂p

∂xi

)1/n

(
1 − 2zτ

W

)1+1/n (
1 + 2zτ

W

n

n + 1

)
. (65)

Extracting the first degree of the pressure derivatives
∂p/∂xi in the right-hand side of Equation (65) gives

qi = − W 3

12ηa

∂p

∂xi
, (66)

where ηa is an apparent viscosity. It can be expressed
in terms of the pressure derivatives ∂p/∂xi as well as
in terms of the fluxes.

The expression of the apparent viscosity through the
pressure derivatives can be obtained from the Equation
(63)

ηa = ηp = (2K )1/n(2n + 1)

6n

∣∣∣∣
∂p

∂x1

∣∣∣∣
(n−1)/n

W (n−1)/n + (4n + 2)21/nτ0

3n
∣∣∣ ∂p
∂x1

∣∣∣
1/n

W 1/n
. (67)

Rewriting Equation (67) in another coordinate sys-
tem results in the substitution of the pressure derivative
∂p/∂xi by the pressure gradient∇ p, which is invariant
relative to coordinate transformations

ηa = ηp(∇ p) = (2K )1/n(2n + 1)

6n
(W |∇ p|)(n−1)/n

+ (4n + 2)21/nτ0
3n(W |∇ p|)1/n , (68)

where

|∇ p| =
((

∂p

∂x1

)2

+
(

∂p

∂x2

)2
)1/2

.

To get the formula for the apparent viscosity in terms
of the fluid fluxes, let us sum the squares of the right-
hand sides of Equation (65) for q1 and q2 and express
the pressure gradient |∇ p| in terms of the fluid flow
vector module |q| = (q21 + q22 )

1/2, which is invariant
relative to coordinate transformations similar to |∇ p|.
Then we obtain

ηq = K

6

(
4n + 2

n

)n (
W 2

|q|
)1−n

+ 2n + 1

3(n + 1)

τ0W 2

|q| .

(69)

Formula (69) is a 2D generalization to the case of
Herschel–Bulkley rheologyof the expressions obtained
earlier by other researchers for a Power-law fluid. For
the case of the Power-law fluid (τ0 ≡ 0) the Equation
(66) with the apparent viscosity expressed by formula
(69) has been used in Sousa et al. (1993), Garagash
(2006), and the expression (68) has been employed in
Ouyang et al. (1997) and Rungamornrat et al. (2005).
Here as well as in Cherny and Lapin (2016) formula
(68) is chosen because then there is no need to calculate
the fluid flux while the fluid flow equations are solving.

Note that like in case of Newtonian fluid one can
obtain the value of shear rate using the Equations (63),
(66) (69), but the calculations are quite more compli-
cated

γ̇ = ∂v1

∂x3
= 1

K 1/n

[
K

(
4n + 2

n

)n ( |q|
W 2

)n

+ 3n + 1

n + 1
τ0

]1/n
.

(70)

Integrating equation (51) over x3 and taking into
account relationships (53) and (59), one can obtain the
equation for the fracture width W

∂W

∂t
+ ∂q1

∂x1
+ ∂q2

∂x2
= 0. (71)

The substitution of the expression for the fluxes (66)
into Equation (71) gives the equation for the fluid pres-
sure

∂

∂x1

(
W 3

12ηa

∂p

∂x1

)
+ ∂

∂x2

(
W 3

12ηa

∂p

∂x2

)
= ∂W

∂t
. (72)

One should note that one of the major difficulties
while modeling the fluid flows with non-zero yield

123



3D model of transversal fracture propagation 39

stress (such as Bingham of Herschel–Bulkley fluids) is
the necessity to trace the boundary between the region
of non-zero strain rate (46), where the Eqs. (49), (52),
(62), (65)–(66), (67), (68), (69), (72) are applied and
the region (47) where the fluid flow should be treated
as the rigid body motion (Di j = 0). For the model-
ing of the regions with the zero and non-zero strain
rate tensor (yielded and unyielded regions) within the
framework of the same equations variousmodifications
of the expression for the viscosity (49), are used, and
they prevent its degeneration when D → 0 (Mitsoulis
2007).

In the problems of fluid flow in the hydraulic frac-
ture the search for the boundary of the unyielded
region is easier than in the problems of fluid flow in
the regions with the given boundaries. The unyielded
region appears in each point of the fracture (x1, x2) in
the middle of its cross-section (between the fracture
sides 0 < x3 < W ). The boundaries of the region
are calculated explicitly, while solving the problem of
fluid flow between two parallel plates (65). This solu-
tions is used to obtain equation (72) As it can be con-
cluded from (64) the pressure gradient is bounded from
zero. The area where strain rate tensor is zero can fill
the whole cross section, then fluid at this crack point
(x1, x2) stops, and equation (72) is not valid.But the cal-
culations made in Sect. 5.3, show that such a situation
can not be realized in the simulation of the fractures
considered. This means that at all points of the frac-
ture the fluid flows, and the pressure gradient always
exceeds 2τ0

W . This allowsus to use equation (72)with the
expression for viscosity (68) without additional modi-
fications.
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