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Abstract A new state-based peridynamic model is
proposed to quantitatively analyze fracture behavior
(crack initiation and propagation) of materials. In this
model, the general relationship of the critical stretch
and the critical energy release rate is for the first time
obtained for the state-based peridynamic model of lin-
ear elastic brittlematerials, and the released energyden-
sity is defined toquantitatively track the energy released
during crack propagation. The three-dimensional (3D)
and two-dimensional (2D) (for both plane stress and
plane strain) cases are all considered. As illustrations,
the compact tension and double cantilever beam tests
are analyzed using the proposed model, which is capa-
ble of successfully capturing fracture behaviors (e.g.,
crack path and concentration of strain energy den-
sity) of the considered fracture tests. The characteristic
parameters (i.e., critical load, critical energy release
rate, etc.) are calculated and compared with available
experimental and numerical data in the literature to
demonstrate validity of the proposed model.
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1 Introduction

It is significant in engineering design to accurately pre-
dict fracture behavior of materials. Although exper-
imental tests remain the best way to catch accurate
results, numerical tools are much effective for complex
structures with less cost. Thus, numerical prediction of
crack growth has attracted much attention.

Most used numerical methods, e.g., finite element
method (FEM), are naturally unsuitable to fracture
analysis because of its requirement of displacement
continuity for classical continuum mechanics. Vari-
ous remedies, such as extended finite element method
(Belytschko and Black 1999), were proposed to handle
the shortcoming of FEM. Though the XFEM has been
successfully applied for a number of fracture problems,
the external criteria (Baydoun and Fries 2012) are still
needed when it is employed to intricate problems. The
theory of peridynamics was first proposed by Silling
(2000) to overcome the limitations of classical contin-
uum mechanics, particularly in dealing with disconti-
nuity problems. Instead of partial differential equations
used in the governing equations of continuummechan-
ics, the integral-differential equations are established
in peridynamics to avoid the displacement derivatives,
which are not defined in discontinuous field. Thus, the
peridynamic model can effectively handle discontinu-
ity problems, such as crack initiation and propagation.
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The first proposed peridynamic (PD) model, so
called “bond-based” (Silling 2000), assumes that points
are connected with bonds through spring-like interac-
tions and the response in a bond is independent of
any other bonds. However, this assumption has con-
straints on material properties and restricts the types
of materials. More general formulation was proposed
as state-based peridynamic model (Silling et al. 2007),
and the bond force density between points depends on
the deformation of the points of whole family. In addi-
tion, a two-dimensional ordinary, state-based peridy-
namic model (Le et al. 2014) was proposed for linear
elastic solids.

While peridynamics was primarily proposed to deal
with the problems involving discontinuities, the suit-
able damage models are necessary and important for
quantitative analysis of fracture problems. Silling and
Askari (2005) first proposed the bond damage crite-
rion for prototype microelastic brittle material and pre-
sented the relationship between the critical stretch for
bond failure and the critical energy release rate of
material. This model was used to analyze dynamic
brittle fracture (Ha and Bobaru 2011), and it was
later extened for damge predictions of concrete (Ger-
stle et al. 2007), composite material (Xu et al. 2007),
orthtropic media (Ghajari et al. 2014), interface delam-
ination (Hu et al. 2015), and bimaterial structures
(Zhang and Qiao 2018). Furthermore, Hu et al. (2012)
presented the formution of the J-intergral in the frame-
work of bond-based peridynamics.

However, the aforementioned damage models for
fracture analysis were all proposed using the bond-
based peridynamic model. In the state-based peridy-
namic model, two connected points affect each other
with collection of the deformation of the entire fam-
ily. But the existing damage model in the framework
of bond-based peridynamics model is not feasible for
peridynamic state. Instead, Foster et al. (2011) pro-
posed an energy-based failure criterion which can be
used in peridynamic state, and the critical energy den-
sity for bond failure was defined and derived from
the critical energy release rate of material. However,
it is not easy to calculate the strain energy density
stored in each neighboring bond in the state-based
peridynamic model because of the nonlinear relation-
ship between force scaler and extension scaler of the
bond. Thus, it is necessary to develop state-based peri-
dynamic model for fracture analysis and obtain new
form of critical stretch in the context of state-based

peridynamic model for potential quantitative fracture
analysis.

In this paper, a peridynamic damage model for frac-
ture analysis is proposed with the new form of criti-
cal stretch considering peridynamic state, and the frac-
ture tests using the compact tension (CT) and double
cantilever beam (DCB) specimens are quantitatively
analyzed. First, the general state-based peridynamic
model applicable for both the 3D and 2D cases is pre-
sented, and the relationship between the state-based and
bond-based peridynamicmodels is introduced. A state-
based peridynamic damagemodel for linear elastic brit-
tle materials is proposed, and the new form of criti-
cal stretch considering peridynamic state is given. The
parameter of energy release density is defined to quan-
titatively track the energy released during crack prop-
agation. The quantitative fracture analysis and conver-
gence studyof theCT test are performedusing the crack
length (a) to specimen width (w) ratio a/w = 0.5, fol-
lowed by the damage predictions of the CT specimens
with different values of a/w. While fracture behav-
ior of DCB test is analyzed with the proposed damage
model, the critical load predictions of DCB specimens
with different crack lengths are discussed. The charac-
teristic parameters (e.g., critical load and critical energy
release rate) are calculated and comparedwith available
experimental and numerical data in the literature.

2 Review of peridynamic models

In the general state-based peridynamic model (Silling
et al. 2007), the equation ofmotion of thematerial point
x is:

ρ (x) ü (x, t) =
∫
Hx

{
T [x, t]

〈
x′ − x

〉

−T
[
x′, t

] 〈
x − x′〉} dVx′ +b (x, t)

(1)

where Hx is the neighborhood of point x, ρ is the den-
sity, and u is the displacement of x at time t . x′ is the
material point in the neighborhood of x, and b (x, t) is
the body force density of the point x. As shown inFig. 1,
T [x, t] andT

[
x′, t

]
are the force vector states that show

the constitutive models of points x and x′, respectively.
In this section, a general state-based peridynamic

model available for both the 3Dand2Dcases is first pre-
sented. The relationship between the state-based and
bond-based peridynamic models is discussed.
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Fig. 1 Ordinary state-based peridynamic model

2.1 General peridynamic model

For the linear elastic isotropic material, the general
strain energy density of material point x in the peri-
dynamic model can be expressed as (Silling 2000):

W = aθ2

2
+ b

2

(
ωed

)
·ed (2)

where a and b are the peridynamic constants, respec-
tively.ω is the influence function, θ is the volumedilata-
tion, and ed is the deviatoric extension state. The dot
product (·) is defined in Silling (2010). As described in
Silling (2010), those parameters in the case of 3D take
forms of:

θ = 3
ωx ·e
q

, ed = e − θx/3, a = k, b = 15μ

q
(3)

where k and μ are the bulk and shear modulus, respec-
tively. x is the scaler state whose value at the posi-
tion ξ is the scaler bond length |ξ |, e is the extension
scalar state, and q is the weighted volume defined by
q = (

ωx
) ·x .

The scaler force state t of the 3D peridynamic model
for elastic solid material is (Silling 2010):

t = 3kθ
ωx

q
+ 15μ

q
ωed (4)

Unlike the definitions of the 2D peridynamic model in
Le et al. (2014), the different forms of θ and ed in this
study are used as:

θ = 2
ωx ·e
q

, ed = e − θx/2 (5)

Then, following the same deduction steps in Silling
(2010), the expressions of a and b for 2D peridynamic
model have different values as:

a = k′, b = 8μ

q
(6)

where k′ is the two-dimensional (2D) bulkmodulus that
can be expressed in terms of the elastic modulus E and
the Poisson’s ratio v as:

k′ =
{

E
2(1−v)

Plane stress
E

2(1+v)(1−2v)
Plane strain

(7)

And the form of scalar force state t for 2D peridynamic
model can be expressed as:

t = 2k′θ ωx

q
+ 8μ

q
ωed (8)

Thus, in the 2D peridynamicmodel, by using the differ-
ent definitions of θ and ed in Eq. (5), the peridynamic
energy density of Eq. (2) and the scalar force state of
Eq. (8) have the different formations as those in Le
et al. (2014). However, it can be proven that two kinds
of forms are equal, and these forms in Eqs. (2) and (8)
are much simple and easy to compute.

Generally, using the definitions of Eqs. (3) and (5),
the strain energy density of peridynamic model in
Eq. (2) can be rewritten as (Silling 2010):

W = 1

2
a′θ2 + b

2

(
ωe

) ·e (9)

where a′ is defined as:

a′ =
{
a − bq

9 3D

a − bq
4 2D

(10)

where a and b are given in Eqs. (3) and (6) for the cases
of 3D and 2D, respectively. The form of scalar force
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state t can then be rewritten as:

t = (
a′θ

)∇eθ + bωe (11)

where∇eθ is the Frechet derivative of θ with respect to
e. According to the definition of the Frechet derivative
(Silling et al. 2007) and using the forms of θ in Eqs. (3)
and (5), ∇eθ can be written as:

∇eθ =
{
3ωx

q 3D

2ωx
q 2D

(12)

In summary, the general expressions of the strain
energy density and scalar force state are given in
Eqs. (9) and (11), respectively, and they are available
for both the 3D and 2D caseswith the respective param-
eters.

2.2 Relationship between the
state-based and bond-based peridynamic models

For the bond-based peridynamic model, there are
restrictions on the values of the Poisson’s ratio as
(Silling 2000):

v =
{ 1

3 Plane stress
1
4 3D or Plane strain

(13)

Substituting these constrained values of v into the def-
inition of a′ in Eq. (10) leads to a′ equaling to 0. Then,
the forms of strain energy density in Eq. (9) and scalar
force state in Eq. (11) can be reduced as:

W = b

2

(
ωe

) ·e, t = bωe (14)

Specially, if the influence function takes the form of
ω = δ/x , which is then substituted in the forms of b,
and the value of v in Eq. (13) is used, the forms in
Eq. (14) can be rewritten as:

W = 1

2

∫
Hx

1

2
Cs2xdVξ = 1

2

∫
Hx

wξdVξ ,

t = 1

2
Cs = 1

2
f (15)

where the bond stretch scaler state s is defined as s =
e / x, wξ and f are the micropotential and scalar bond
force of bond ξ in the bond-based peridynamic model

(Silling and Askari 2005), and C is the bond constant
which has the values of:

C =
{ 18k

πδ4
3D

12k′
πδ3h

2D
(16)

Until now, the forms of strain energy density and scalar
force state are reduced to the expressions given in
Eq. (15) with the constrained values of v and special
form of influence function, and the forms of wξ and f
are totally equal to those of the bond-basedperidynamic
model in Silling and Askari (2005) and Ha and Bobaru
(2011) for the cases of 3D and 2D, respectively. Thus,
the bond-based model can be regarded as a special case
of state-based model.

3 State-based
peridynamic model for fracture analysis

In this section, a state-based peridynamic model for
fracture analysis of linear elastic brittle materials is
proposed, and more general relationship of the critical
stretch for bond failure with the critical energy release
rate ofmaterial commonly used in linear elastic fracture
mechanics (LEFM) is for the first time established.

Unlike the bond-based peridynamic model, there is
no real bond between pair points in the state-based peri-
dynamics. The bond here is used loosely to describe the
relationship between pair points and can be thought as
an interaction potential (Foster et al. 2011), and the
bond stretch criterion thus still works. When the defor-
mation of bond between the two points grows beyond
the critical stretch value, the bond permanently breaks
and the crack will initiate and grow when a number of
broken bonds coalesce into a surface and propagate.

Similarly to Silling and Askari (2005), as shown in
Fig. 2, the points x and x′ are connected with the bond
ξ , and the H1 domain is cut by the crack area from the
whole horizon domain which is a sphere or circle in
the cases of 3D or 2D, respectively. According to the
form of peridynamic strain energy density in Eq. (9),
the strain energy of point x gathers from other points in
its horizon through those bonds.When the bond stretch
s of ξ grows beyond the critical stretch s0, the bond ξ is
broken and the part of strain energy of point x gathering
from point x′ is lost or released. As the crack grows or
propagates, all bonds connecting the point x with the
points x′ in H1 are all broken, and the corresponding
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Fig. 2 Computation of the total energy absorbed by point x in
the domain H1

part of strain energy of the point x gathering from all
points in the H1 domain is thus released. Now, assume
that the work requiring the point x to separate with
all the neighboring points in H1 is equal to the strain
energy released as the crack grows.

To compute the released energy of point x, assuming
that the bond stretch of all bonds ξ across the crack area
all arrives the critical stretch s0, the extension scaler is
e = s0x .

For 3D peridynamic model, according to the defini-
tion of θ in Eq. (3), the volume dilation caused by all
broken bond is:

θ̃s = 3
ωx ·e
q

= 3

∫
H1

ωx2s0dVξ∫
H ωx2dVξ

= 3λ(z)s0 (17)

where λ(z) is the ratio of the volume weight from the
points in the H1 domain to the volume weight from the
points in the whole horizon, defined as:

λ(z) =
∫
H1

ωx2dVξ∫
Hx

ωx2dVξ

(18)

Substituting Eq. (18) into the strain energy density of
Eq. (9) leads to the released energy of a point x because
of the crack growth as:

Wx = a′

2
θ̃2s + b

2

∫
H1

ωx2s20dVξ

= 1

2

(
9a′λ(z)2 + bqλ(z)

)
s20 (19)

Thus, the total released energy at unit area is:

dUe = 2
∫ δ

0
dWxdz = 2

∫ δ

0

1

2

(
9a′λ(z)2 + bqλ(z)

)
s20dz

= (
9a′β ′ + bqβ

)
s20 (20)

The first two multipliers of 2 in Eq. (20) is for the dou-
ble side of the crackbecause of the homogeneous nature
of the body, where β and β ′ are the certain parameters
which are affected by the influence function, defined as:

β =
∫ δ

0
λ(z)dz, β ′ =

∫ δ

0
λ(z)2dz (21)

The total released energy at unit area is equal to the
critical energy release rate or fracture energy G0, and
it is expressed as:

G0 = dUe = (
9a′β ′ + bqβ

)
s20 (22)

So, the critical stretch (s0) of state-based peridynamic
model for 3D is uniquely obtained in term of the critical
energy release rate (G0) as:

s0 = √
G0/(9a′β ′ + bqβ) (23)

In the cases of 2D, following the same deductions and
using different peridynamic parameters in Eqs. (5) and
(6), the released energy of point x and total released
energy at unit area take the forms of:

Wx = 1

2

(
4a′λ(z)2 + bqλ(z)

)
s20 , dUe

= (
4a′β ′ + bqβ

)
s20 (24)

Then, the critical stretch of state-based peridynamics
model for 2D cases can be written as:

s0 = √
G0/(4a′β ′ + bqβ) (25)

As a whole, substituting a′ in Eq. (10), a and b in
Eqs. (3) and (5) into Eqs. (23) and (25) for the cases of
3D and 2D model, respectively, the critical stretch of
state-based peridynamic model can totally be rewritten
as:

s0 =
{√

G0/((9k − 15μ) β ′ + 15μβ) 3D√
G0/((4k′ − 8μ) β ′ + 8μβ) 2D

(26)

where β and β ′ are defined in Eq. (21), which are based
on the definition of λ(z) in Eq. (18). The values of β

and β ′ are the certain parameters which are decided
by the horizon size δ, the form of influence function,
and the dimension of the model. Specifically, when the
influence function takes the form of ω = δ/x which
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is substituted to Eq. (21), the values of β and β ′ are
computed using Matlab and then given as:

3D :
{

β = δ
5

β ′ = 26
405δ

, 2D :
{

β = 3δ
4π

β ′ = 0.23873δ
(27)

For the bond-based peridynamic model, there are
restrictions on the Poisson’s ratio. Substituting the val-
ues of v in Eq. (13) into Eq. (26) and using Eq. (27), the
forms of critical stretch in the bond-based peridynamic
model are recovered as:

s0 =

⎧⎪⎨
⎪⎩

√
5G0
9kδ 3D√
πG0
3k′δ 2D

(28)

These forms of the critical stretch in Eq. (28) are just
identical to the forms given in Silling andAskari (2005)
and Ha and Bobaru (2011) for the cases of 3D and 2D,
respectively, as typically proposed for the bond-based
peridynamic model. Particularly, for the mode I type
crack, the critical energy release rate GIC can be cal-
culated from Sun and Jin (2013) as:

GIC =
⎧⎨
⎩

(
1−v2

)
E K 2

IC Plane strain

1
E K

2
IC Plane stress

(29)

In summary, the general relationship of the critical
stretch with respect to the critical energy release rate in
LEFM is for the first time obtained in Eq. (26) for the
state-based peridynamic model. The 3D, plane stress
and plane strain cases are all considered. Unlike the
fracture analysis for the bond-based model as given in
Silling and Askari (2005) and Ha and Bobaru (2011),
the critical stretch for the state-based model takes the
varying values of the Poisson’s ratio into account.
As a validation, the proposed state-based peridynamic
model for fracture analysis can be further reduced to
the bond-based damage model with the typical influ-
ence function and constrained values of the Poisson’s
ratio. Also, unlike the critical stretch given in Madenci
and Oterkus (2014) which is in the discrete form and
with the special form of influence function, the new
form in Eq. (26) developed in this study is in a general
form for the state-based peridynamics and suitable to
any reasonable influence function.

In addition, the forms of released energy of a
point are given in Eqs. (19) and (24) for 3D and 2D

cases, respectively. The variable parameter of point,
i.e., released energy density, is defined to quantify the
released energy as crack grows. The value of released
energy density is equal to the released energy of a point,
and the summation of the released energy density of
system is equal to the total incremental surface energy.
However, the released energy density is not a real phys-
ical energy, rather than the division of total released
energy into the points around crack when crack propa-
gates because of the non-local characteristic of peridy-
namic model.

Since the crack initiates and grows spontaneously
in peridynamic fracture simulation, there is no explicit
gap point of time between stable load before crack ini-
tiation and the increasing load as crack propagates. To
track the zero time when the crack begins to grow,
the critical time tc is defined. According to the forms
of released energy density in Eqs. (19) and (24), the
total released energy increases progressively with the
increasing number of broken bonds. At the stage of
the crack initiation, even some bonds around the pre-
crack tip are broken, the system is stable to undertake
the displacement load. Until the total released energy
increases beyond a critical value, the crack starts to
propagate. Thus, the critical released energy is defined
as:

ws = 1

2
G0B
x (30)

where 
x and B are the grid size and thickness of
model ahead the crack tip, respectively. And the criti-
cal time tc is defined as

tc = t0, i f WS (t0) = ws (31)

where WS(t0) is the total released energy (the incre-
mental surface energy) of system in the time t0. Thus,
the critical time tc is recorded when WS(t0) increases
to be equal to the critical released energy ws , and it is
proven to be the timewhen the crack starts to propagate.

4 Numerical implementation

Similarly to Silling and Askari (2005), the continuum
system is discretized into the finite material nodes, and
each node has a finite volume. The equation of motion
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in Eq. (1) can thus be rewritten as:

ρi üi (xi , t) =
∑
j∈Hi

{T [xi , t]
〈
x j − xi

〉

− T [x j , t]
〈
xi − x j

〉}Vj +bi (xi , t)

(32)

where i and j are the node numbers, and Vj is the vol-
ume of node j . In all the examples followed, the uni-
form grid size 
x is used. The summation of Eq. (32)
is taken over the horizon Hi of node i as

∣∣x j − xi
∣∣ ≤ δ,

where δ is the horizon size as δ = m
x .
For theperidynamic simulations, the explicit (Silling

and Askari 2005) and implicit (Zhang et al. 2016) time
integration methods are usually used for dynamic and
static analysis, respectively. In the following examples,
the brittle damage process is simulated and the explicit
time integrationVelocity-Verlet algorithm (Hairer et al.
2003) is employed.

A paralleled C++ program has been developed to
numerically solve the peridynamic equations. In the
present work, all examples are run on a 24-core work-
station running Linux.

5 Application to fracture specimens

In this section, the standard compact tension (CT)
(ASTM E399-12 2013) and double cantilever beam
(DCB) (ASTM D5528-01 2001) tests commonly for
fracture characterization are considered to demonstrate
and validate the proposed state-based peridynamic
damage model.

5.1 Compact tension (CT) test

5.1.1 Problem
setup and computational detail for CT test

The CT test (ASTM E399-12 2013) is usually used to
determine the critical energy release rate of linear elas-
tic isotropic metallic material. The CT specimen can
be schematically shown in Fig. 3.

From the standard of test (ASTM E399-12 2013),
the relationship of the critical stress intensity factor,
KIC , and the maximum crack propagation load, Pc,
can be shown as:

KIC = Pc
Bw1/2 f

( a

w

)
, (33)

1.2 w

w

x
y

a

1.25 w

0.55 w o

uy(t)

uy(t)

Fig. 3 The CT specimen

where

f
( a

w

) =
(2+ a

w )
[
0.886+4.46 a

w
−13.32( a

w )
2+14.72( a

w )
3−5.6( a

w )
4
]

(1− a
w )

3/2 (34)

as shown in Fig. 3, a and w are the crack length and
width of the specimen, respectively, and B is the thick-
ness of the specimen. The crack mouth opening com-
pliance is calculated as:

Vm
Pc

= 1

E ′B
q

( a

w

)
(35)

where

q
( a

w

)
= 19.75(

1 − a
w

)2
[
0.5 + 0.192

a

w

+ 1.385
( a

w

)2 − 2.919
( a

w

)3

+ 1.842
( a

w

)4]
(36)

for which Vm is the crack mouth opening displacement
at point o in Fig. 3, and:

E ′ =
{

E
(1−v2)

Plane strain

E Plane stress
(37)

In summary, the critical values of applied load and
crack mouth opening compliance for the standard CT
test can be obtained in Eqs. (33) and (35), respectively.
Since the expressions for a/w in Eqs. (34) and (36)
are considered to be accurate within 1% over the range
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0.2 ≤ a/w ≤ 1.0 (ASTM E399-12 2013), the equa-
tions can be used as the standard experimental results to
compare with and validate the numerical peridynamic
simulation results.

In this example, the material used is the 1CrMoV
steel (Neale 1978), and thematerial properties are given
in Table 1. The plane strain condition is considered, and
uniform thickness of B = 1mm is used. Damping is
not considered in this example, and the energy balance
condition is satisfied during the whole work.

The explicit time integration is utilized in this exam-
ple. The uniform time step of 50ns (nanosecond) is
used, and it is proven to be the stable time step even for
the finest grid size considered. The specimen is loaded
by the linearly increasing displacement along the load
line as shown in Fig. 3, with a constant speed of 20
mm/s. The total loading time is long enough to ensure
that the dynamic effect is negligible before crack prop-
agation. Unlike the standard CT specimen in ASTM
E399-12 (2013), there is no physical holes simulated
at the position of the loading pin on the CT specimen as
shown in Fig. 3, and the displacement load is applied
on the nodes located within 1mm × 1mm square cen-
tered at the position of the loading pin. Moreover, the
no-damage zones are set in the loading areas to avoid
the undesired damage because of local effect of loading
conditions.

First, the fracture prediction of the CT test is per-
formed with the proposed state-based peridynamic
model as a/w = 0.5 (Fig. 3), followed by the con-
vergence study (Bobaru et al. 2009). Then, the CT
specimens with different values of a/w are considered
to quantitatively validate the proposed model for pre-
dicting crack propagation problems with different pre-
crack lengths.

5.1.2 Fracture behaviors of CT test with a/w = 0.5

In this section, a typical initial pre-crack length a0 =
20mm and the specimen width w = 40mm are used
as shown in Fig. 3 which leads to a/w = 0.5.

For the numerical peridynamic simulation, the sys-
tem is discretized into a finite number of nodes with
uniform grid spacing. The values of δ = 1mm and
m = 5 are first considered to quantitatively analyze
the fracture behavior of CT specimen.

The contours of y-direction displacement, damage
(crack), and released energy density at the typical time
of CT simulation are shown in Fig. 4, where the param-

eter of damage is defined as the volume weight of bro-
ken bonds in Silling and Askari (2005). As the dis-
placement load increases, the y-direction displacement
increases linearly and symmetrically (see Fig. 4a, b),
and the crack starts to grow at the location of pre-crack
tip around 6.0 × 10−3 s (see Fig. 4c), and it grows
along the pre-crack direction (see Fig. 4d) because of
the symmetry of the geometry and loading condition.
Meanwhile, the released energy density emerging at
the location of crack starts to grow (see Fig. 4e), and
it grows synchronously along with the crack path (see
Fig. 4f). As shown in Fig. 4, the distribution of released
energy density completely overlaps with the new dam-
age map around both sides of pre-crack, because the
released energy density is calculated from all the gath-
ering broken bonds of point in Eq. (24), similar to the
definition of damage given inSilling andAskari (2005).

Distributions of elastic strain energy density and
released energy density around the crack tip before and
after the pre-crack propagation are shown in Fig. 5. As
shown in Fig. 5a, the strain energy density is first con-
centrated at the location of pre-crack tip, and the value
of concentrated energy increases with the increasing
displacement load before the crack starts to grow (see
Fig. 5b, c). As the crack grows, the concentrated loca-
tion of strain energy density moves with the crack tip,
and the values of the concentrated strain energy density
are nearly equal (see Fig. 5c, d).Meantime, the released
energy density appears before the strain energy density
arrives the maximum value (see and compare Fig. 5b,
e), and it follows the same concentrated location as
that of the strain energy density as the crack grows (see
Fig. 5f, g). Comparing Fig. 5d and g, the concentrated
location of strain energy density moves its front and
overlaps with the head of the released energy density
path, and the value and concentrated area size of the
released energy density are much larger than those of
the strain energy density.

The plots of different energy components chang-
ing with the increasing displacement load are shown
in Fig. 6. As shown in Fig. 6, the sum of Ue (the strain
elastic energy), Uk (the kinetic energy), and WS (the
incremental surface energy) is equal to We (the work
done by external forces) during the CT simulation. It
thus perfectly matches the energy balance condition
(Sun and Jin 2013):

dWe = dUe + dUk + dWS (38)
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Fig. 4 Contours of y-direction displacement distribution (a and
b), damage (c and d), and released energy density (e and f) of CT
specimen at crack propagation of 6 × 10−3 s and 12 × 10−3 s,

respectively. aAT 6× 10−3 s, bAt 12× 10−3 s, cAt 6× 10−3 s,
d At 12 × 10−3 s, e At 6 × 10−3 s, f At 12 × 10−3 s
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Table 1 Material
properties for 1CrMoV steel
(Reproduced with
permission from Neale
1978)

E (GPa) v ρ (kg/m3) KIc (MPa/m1/2)

214 0.27 7850 64.2

Fig. 5 Distributions of elastic strain energy density (a–d) and released energy density (e– g) around the crack tip area before and after
the pre-crack propagates. a 4.5 × 10−3 s, b 5 × 10−3 s, c 5.5 × 10−3 s, d 6 × 10−3 s, e 5 × 10−3 s, f 5.5 × 10−3 s, g 6 × 10−3 s
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Also as shown in Fig. 6, the kinetic energy of the CT
specimen is negligible as comparedwith the strain elas-
tic energy before the crack starts to grow, which is con-
sistent with the assumption of LEFM considered in the
model.

The length of the crack increasing with the displace-
ment load is shown in Fig. 7. As shown in Fig. 7,
the velocity of crack propagation (i.e., the slope of
the plot) decreases with time. Comparing this curve
in Fig. 7 with the plot of incremental surface energy in
Fig. 6, two curves have the similar trends. Though the
released energy density appears at 4.71 × 10−3 s, the
crack does not start to propagate until the total damage
energy increases to 3.024 × 10−3 J at the critical time
tc = 5.26×10−3 s, which matches the released energy
density distribution before the pre-crack starts to prop-
agate (as shown in Fig. 5e). This means that even some
bonds of point around the crack tip are broken, the sys-
tem can still carry the displacement load, which thus
confirms the definitions of critical released energy and
critical time in Eqs. (30) and (31).

The relationship of 
e (the edge opening displace-
ment) and 
p (the crack tip opening displacement)
during CT simulation are shown in Fig. 8, where 
e

is equal to Vm in the standard test (ASTM E399-12
2013) and 
p is the displacement between two load-
ing tips which is two times of uy (the displacement
load). As shown in Fig. 8,
e increases linearlywith the
increasing of 
p before the crack starts to propagate,
and the slope of this region of plot is nearly 0.75. As the
crack starts to grow, the slope of the curve decreases
with time. The relationship between the edge opening
displacement and tip opening displacement before the
crack growth matches closely with that given in the
experimental CT test (Neale 1978), i.e.,


e = 0.77
p (39)

The typical load-displacement is given in Fig. 9. As
shown in Fig. 9, before crack initiation, the applied
load increases linearly with the edge opening displace-
ment, and the value of the reciprocal of slope of this
region is 0.214mm/KN. The value of critical applied
load Pc is 1.31KN, peaked at the critical time tc. After
the critical time, the crack starts to grow and the load
drops with the oscillations because of the explicit time
integration in transient analysis.

The relationship between the total incremental sur-
face energy WS and the crack length a as the crack

0.00 0.08 0.16 0.24
0.00

0.12

0.24

0.36

En
er

gy
 (J

)

uy (mm)

  Ue

  Uk

  WS

  Ue+Uk+WS

  We

Fig. 6 Different energy components during CT test simulation

grows is shown in Fig. 10,whereWS is equal to the total
released energy gathered from the released energy den-
sity of system. As a whole, WS increases linearly with
the crack length but in the step-jump form. The value
of a step in horizontal axis is the grid size 
x , while
the value of a step in vertical axis is nearly equal to
the valueGB
x . To trace the numerical energy release
rate as crack propagates, the calculated critical energy
release rate GQ is defined as:

GQ = 
WS

B
x
(40)

which means that the calculated critical energy release
rate GQ/B is equal to the slope of the plot of WS vs.
a. The value of GQ in Fig. 10 is 18.50KJ, as reported
in Table 2. Also, at the beginning of the plot, the crack
length increases with the incremental surface energy
beyond the critical released energy ws , as defined in
Eq. (30).

5.1.3 Convergence study ofCT specimenwith a/w=0.5

Typical size a0 = 20mm andw = 40mm are still con-
sidered. The convergence study is performed with the
horizons of δ = 1 and 2mm, and m = 4, 5, 6, respec-
tively.

First, a fixed horizon size δ = 1mm and the vary-
ing values of m = 4, 5 and 6 are used for the m-
convergence test. The plots of strain energy density
and released energy density around the crack tip area
with different values of m are shown in Fig. 11. As
shown in Fig. 11, the plots for two different val-
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0.00 0.08 0.16 0.24
30

35

40

45
a 

(m
m

)

uy (mm)

Fig. 7 Crack length versus displacement load during CT test
simulation
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Fig. 8 Edge opening displacement versus tip opening displace-
ment during CT test simulation
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Fig. 9 Applied load versus edge opening displacement during
CT test simulation

30 33 36 39 42
0.00

0.08

0.16

0.24

W
S (J

)

a (mm)

Fig. 10 Incremental surface energy versus crack length as crack
propagates

ues of m have the same pattern, and for the larger
value of m, the concentrated effect is much obvious.
The typical load-displacement plots for different val-
ues of m are shown in Fig. 12. As shown in Fig. 12,
the plots for different values of m are nearly coin-
cided and have the similar values of slope and criti-
cal applied load, which are reported in Table 2. Fur-
thermore, with the increasing value of m, the oscilla-
tion effect of curves is weakened when crack propa-
gates.

Then, the fixed value of m = 5 is selected to per-
form the δ-convergence test with the varying values of
δ = 2 and 1mm. The distributions of strain energy den-
sity and released energy density around the crack tip
area with different values of δ are shown in Fig. 13.
As shown in Fig. 13, the damage patterns and strain
energy profiles for two different horizons are approx-
imately same. For the smaller value of horizon δ =
1mm, the concentrated effect of strain energy den-
sity and released energy density are more obvious, i.e.,
the sizes of concentrated area are much smaller and
the maximum values are much bigger, which matches
the local intensity in fracture mechanics. In addition,
the plots of the total incremental surface energy WS

with respect to the crack length a for different val-
ues of horizon are shown in Fig. 14. As demonstrated
in Fig. 14, two plots with different horizons have the
nearly same slope but with different increasing steps.
For the smaller value of horizon, the value of a jump
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Fig. 11 Strain energy density plots at 5.5×10−3 s (a and b) and
released energy density at 6× 10−3 s (c and d) around the crack
tip area. a At 5.5 × 10−3 s (m = 4), b At 5.5 × 10−3 s (m = 5),
c At 6.0 × 10−3 s (m = 4), d At 6.0 × 10−3 s (m = 5)

0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

m = 4
m = 5
m = 6

P 
(K

N
) 
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Fig. 12 Applied load versus edge opening displacement for dif-
ferent values of m with δ = 1mm

step in the plots of Fig. 14 is smaller, and the plot con-
verges to a straight line. The values of slopes are also
reported in Table 2.

The simulation results of CT test for different values
of δ andm are given in Table 2. As reported in Table 2,
the characteristic parameters, i.e., (
p)c (the critical
load tip opening displacement), (
e)c (the critical edge
opening displacement), Pc (the critical applied load),

e/P (the crack mouth opening compliance), and GQ

Fig. 13 Strain energy density plots (a andb) and released energy
density (c andd).a δ = 2mmat 6.0×10−3 s,b δ = 1mmat 5.5×
10−3 s, c δ = 2mmat 6.0 × 10−3 s, d δ = 1mmat 5.5 × 10−3 s

30 33 36 39 42
0.00

0.08

0.16

0.24

W
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δ  = 2 mm
δ  = 1 mm

Fig. 14 Incremental surface energy versus crack length for dif-
ferent values of δ with m = 5

(the calculated critical energy release rate), are used in
this study to quantify the crack initiation and propa-
gation of CT test specimen, and the simulated results
are then compared with and verified by those from the
standard CT test (ASTM E399-12 2013), as given in
Eqs. (33), (35) and (37).

From Table 2, the critical applied load Pc matches
closely with the standard values in Eq. (33) with the
maximum difference of 3.0%, which means that the
peridynamic simulation can successfully predict the
critical applied load of CT test. The average value of
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compliance is less than that from Eq. (35); however,
the maximum difference of crack mouth opening com-
pliance between different values of δ and m is small
(less than 4.7%), confirming that the model converges
in the elastic region. Since the numerical peridynamic
model in Fig. 3 does not exactly emulate the actual
standardCT specimen inASTME399-12 (2013)which
has the loading holes and notch and there is the stiff-
ness enhancement of additional material in the simu-
lation model, the crack mouth opening compliance by
the peridynamic model is expectedly less than that of
standard experimental model. In addition, the differ-
ence of compliance has no effect on the critical applied
load which is much important in fracture analysis.

While the critical applied load and crack mouth
opening compliance are used to capture the character-
istic of CT test before the crack starts to propagate, the
calculated critical energy release rate GQ , as defined
in Eq. (40), is employed to validate the effectiveness of
the simulation during crack propagation. As shown in
Table 2, the maximum difference of GQ in comparison
with the critical energy release rate GIC is less than
3.6%.

5.1.4 Analysis of CT test with different values of a/w

The CT test specimens with different values of a/w are
considered to validate the proposed state-based peri-
dynamic (PD) model for predicting the crack initiation
and propagation with different pre-crack length.

A fixed specimen width of w = 40mm and differ-
ent crack length of a0 increasing from 8 to 32mm are
considered for different values of a/w. According to
the convergence study given above, the values of m =
5 and δ = 2mm are used in the following analysis.

The critical applied load and crack mouth com-
pliance for different values of a/w are presented in
Figs. 15 and 16, respectively. The critical applied load
decreaseswith the increasing value of a/w, as shown in
Fig. 15. Except a/w = 0.2, the critical applied loads of
peridynamic simulation are close to those fromEq. (33)
within a maximum difference of 5.4%, and the differ-
ence increases asa/w approaching to 0.2 because of the
local effect of the displacement load in the peridynamic
model. Meanwhile, the value of crack mouth compli-
ance increases exponentially with a/w, as shown in
Fig. 16. The predicted values of crack mouth compli-
ance from the peridynamic model are less than those
in Eq. (35); however, the difference decreases as a/w

0.2 0.4 0.6 0.8
0.0

0.8
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2.4

3.2
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Fig. 15 The critical applied load of CT specimens with different
values of a/w
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Fig. 16 The crack mouth compliance of CT specimens with
different values of a/w

increases, and it is less than 4.0% when a/w increases
to 0.6.

As aforementioned, the stiffness in the peridynamic
model (see Fig. 3) is higher than that in the experimen-
tal CT specimen (ASTM E399-12 2013) which has the
loading holes and notch, and it thus leads to larger criti-
cal applied load and less crackmouth compliance in the
peridynamic simulation. As the value of a/w increases
(i.e., the crack length increases), the stiffening effect of
material at the location of loading holes and notch on
stiffness decreases and the simulation model can thus
well capture the critical applied load and crack mouth
compliance of CT test specimen.

The quantitative values of simulation characteris-
tic parameters of CT test for different values of a/w

are given in Table 3. As shown in Table 3, the val-
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Table 2 Peridynamic simulation results for CT test with a/w = 0.5

δ (mm) 2 1 ASTM-E-399-12 (2013)

M 4 5 6 4 5 6

(
p)c (mm) 0.224 0.242 0.222 0.210 0.210 0.215

(
e)c (mm) 0.292 0.292 0.289 0.280 0.280 0.286

Pc (KN) 1.34 1.33 1.29 1.30 1.31 1.33 1.329


e/P (mm/KN) 0.218 0.220 0.224 0.215 0.214 0.215 0.237

GQ (N/mm) 17.49 18.33 18.18 17.54 18.50 18.38 17.856

L

a

P, uy

P, uy

h

h

Fig. 17 The DCB specimen

ues of calculated critical energy release rate GQ for
different a/w are close to the input value of GIC (=
17.856N/mm), with a maximum difference of 3.1%.

5.2 Double cantilever beam (DCB) test

5.2.1 Problem setup and computational detail for
DCB test

Double cantilever beam (DCB) test is a common
method to determinate the critical energy release rate
of material under mode I fracture loading. As shown in
Fig. 17, the special dimensions of DCB specimen are
given as: L = 240mm, h = 20mm, and uniform thick-
ness B = 10mm.The properties are chosen to replicate
steel (Bidokhti et al. 2017), as reported in Table 4, and
the plane stress condition is considered the same as the
numerical model based on the finite element method
(FEM) in Bidokhti et al. (2017).

The explicit time integration is utilized, and the uni-
form time step of 200ns is used. The specimen is loaded
with symmetrical and linearly increasing displacement
at a constant speed of 20mm/s, as shown in Fig. 17.

In the DCB specimen simulation, the typical value
of initial pre-crack length of a0 = 100mm is first con-
sidered to analyze facture behavior under displacement
loading. Then, the critical load analysis of DCB spec-
imens with the different initial pre-crack length a0 is
performed.

5.2.2 Fracture behavior of DCB test with initial
pre-crack length a0 = 100mm

The typical initial pre-crack length a0=100mm is first
considered. In the peridynamic (PD)model, the system
is discretized into uniform grids, and the values of δ =
2mm and m = 5 are considered.

The displacements contours of DCB specimen in
deformed shape are presented in Fig. 18. As shown
in Fig. 18b, the two sub-beams move symmetrically
upward and downward, respectively, with the value of
displacement of about 1.2mm. Meanwhile, the crack
starts to grow along the pre-crack direction, and the
contours of the crack path, strain energy density, and
released energy density around the crack tip area are
shown in Fig. 19. As expected, the strain energy density
is concentrated at the location of initial pre-crack tip
(see Fig. 19b), and the released energy density appears
at the crack tip and follows the crack path (see Fig. 19c).

The typical load-displacement plot of DCB test is
shown in Fig. 20. As shown in Fig. 20, the peridynamic
model successfully captures the load-displacement
relationship of DCB test as compared with the FEM
results given in Bidokhti et al. (2017). While the curve
oscillation appears as the load drops and the crack
grows because of the explicit time integration strat-
egy. The values of critical load and displacement are
reported in Table 5.

The normalized numerical critical energy release
rate of DCB test is also shown in Fig. 21, where GQ
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Fig. 18 Displacements
contours of DCB specimen
in deformed shape: a x
component and b y
component

Fig. 19 Simulation of DCB
specimen: a crack path, b
strain energy density, and c
released energy density,
around the crack tip at
60 × 10−3 s
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Table 3 Peridynamic simulation results for CT test with different a/w

a/w 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(
p)c (mm) 0.116 0.146 0.189 0.242 0.262 0.320 0.398

(
e)c (mm) 0.142 0.187 0.243 0.292 0.340 0.412 0.508

Pc (KN) 2.63 2.13 1.76 1.33 0.913 0.588 0.292


e/P (mm/KN) 0.054 0.088 0.138 0.220 0.372 0.70 1.74

GQ (N/mm) 18.35 18.28 18.28 18.33 18.19 18.41 18.21

Table 4 Material properties
of steel (Reproduced with
permission from Bidokhti
et al. 2017)

E (GPa) v ρ (kg/m3) GIc (N/mm)

200 0.3 7850 9.6278

0 1 2 3
0

1

2

3

4

P 
(K

N
) 

uy (mm)

PD
FEM

Fig. 20 Applied load versus displacement of DCB specimen
with the initial crack a0 = 100mm

(the calculated critical energy release rate) is calculated
using Eq. (40) and normalized by the respective input
value (i.e., GIC = 9.6278 N/mm as given in Table 4).
As shown in Fig. 21, the calculated critical energy
release rate first increases quickly, and then stabilizes
with further crack growth, indicating a great match
(ASTM D5528-01 2001). The difference between the
calculated and input critical energy release rates is less
than 1.8% as the crack grows.

5.2.3 DCB test with different values of initial crack
length a0

The different values of initial crack length varying from
a0 = 100 to 200mm are considered. Again, the values

100 120 140 160 180
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0.2

0.4

0.6

0.8

1.0

1.2

G
Q

/G
IC
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Fig. 21 Numerical critical energy release rate of DCB specimen
estimated by the peridynamic model
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Fig. 22 The critical applied load of DCB specimens with dif-
ferent initial crack length a0
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Fig. 23 The critical displacement of DCB specimens with dif-
ferent initial crack length a0

Table 5 Peridynamic simulation results of DCB test with dif-
ferent initial crack length a0

a0 (mm) 100 120 140 160 180 200

(uy)c (mm) 1.17 1.62 2.18 2.77 3.44 4.20

Pc (KN) 3.14 2.66 2.36 2.07 1.86 1.69

of δ = 4mm and m = 5 are used in the peridynamic
(PD) simulation.

The critical applied load and displacement for dif-
ferent values of initial crack length are presented in
Figs. 22 and 23, respectively. As shown in Figs. 22
and 23, with the increasing value of the initial crack
length, the critical load decreases and the critical dis-
placement increases. Both the critical load and dis-
placement from the peridynamic model greatly match
those from the FEM data within maximum differences
of 3.0 and 2.3%, respectively. The values of critical
load and displacement of DCB specimens with differ-
ent initial crack lengths are given in Table 5.

6 Conclusions

In this study, a state-based peridynamic model for frac-
ture analysis is proposed, and the general relationship
of the critical stretch and the critical energy release
rate is for the first time obtained for the state-based
peridynamic model of linear elastic brittle material.
This model is utilized to predict the crack initiation
and propagation. The commonly used fracture speci-

mens, i.e., compact tension (CT) and double cantilever
beam (DCB), are considered, and their fracture tests
are investigated. First, the quantitative prediction of
crack initiation and propagation and associated con-
vergence study of the CT test are performed with an
initial crack length of a/w = 0.5, followed by the CT
specimen analysis with different values of a/w. Then,
fracture behavior of DCB test is analyzed, and the crit-
ical load prediction of DCB specimens with different
crack length is performed.

In the CT test case, the crack starts to grow at
the location of pre-crack tip and grows symmetrically
along the pre-crack direction, while the concentrated
zones of strain energy moves along with the crack tip.
The path of released energy density follows and over-
laps the concentrated zones of strain energy. The crack
initiation happens at the time of the incremental sur-
face energy ahead of reaching the critical energy release
rate, even some bonds around pre-crack tip are already
broken. In the convergence study, the denser the grid
size, the more obvious the concentrated effects, the
smaller the size of concentrated area, the bigger the
maximum value of energy density, and the weaker the
oscillation of load-displacement curve as crack propa-
gates.

With the increasing value of a/w, the simulated crit-
ical applied load decreases and is close to that from the
standard equation of Eq. (33) within a maximum dif-
ference of 5.4%, except at a/w = 0.2, because of the
local effect of the displacement load in the peridynamic
model. While the simulated crack mouth compliance
increases exponentially with the decreasing difference
when compared to that from the standard equation of
Eq. (35) because of the stiffness enhancement effect
of material at the loading holes which is neglected in
the peridynamic model. The calculated critical energy
release rate also matches closely with the input critical
energy release rate value.

In the DCB test case, the two sub-beams deform
symmetrically upward and downward, and the crack
starts to grow along the pre-crack direction while the
strain energy density is concentrated at the location of
crack tip. Comparing the simulated load-displacement
curve with that from FEM, the peridynamic model suc-
cessfully captures the load-displacement relationship;
while the curve oscillation appears as the loaddrops and
the crack grows because of the explicit time integra-
tion strategy. The numerical critical energy release rate
of DCB from the peridynamic model also accurately
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matches the input critical value. With the increasing
length of pre-crack, the critical load of DCB specimen
decreases and the critical displacement increases, for
which both match closely with FEM.

The proposed state-based peridynamic model for
crack quantitatively captures the fracture behavior of
the CT and DCB specimen tests. No special fracture
criteria are required in the numerical prediction, and the
only input parameter for fracture in the proposed state-
based peridynamic model is the critical energy release
rate of material. The general relationship of the criti-
cal stretch and the critical energy release rate Eq. (26)
obtained in this study can be used in the framework of
state-based peridynamic model to quantitatively ana-
lyze fracture behavior of linear elastic brittle materials.
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