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Abstract In this paper, a simple locking-free triangu-
lar plate element, referred to here as the Mindlin trian-
gular plate elementwith full integration (MTPF), is pre-
sented for the analysis of cracked thick–thin plates. The
element employs a new specially designed incompati-
ble meshless approximation, independent of the nodes
and triangle shape, in order to define displacements
for the purpose of avoiding the use of reduced/selected
integration to make the MTPF locking-free and valid
for the thin plate. The current MTPF is also extended
for the analysis of cracked thick–thin plates, and the
virtual crack closure technique is applied in order to
compute the crack tip stress intensity factors of the
cracked thick–thin plates, where the formula deriva-
tion and numerical implementation are very simple and
convenient for the present MTPF. Several representa-
tive numerical examples demonstrate that the MTPF
is a robust and high-performance element for cracked
thick–thin plates.
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1 Introduction

Plate (and shell) structures play an important role
and offer wide applications in civil, mechanical, and
aerospace engineering. The existence of defects and
cracks in such structures may lead to a substantial
decrease in load capacity, structural safety, and even
structural collapse, and therefore, accurate evaluation
of the fracture mechanics parameters of the cracked
plates is an important topic in structural engineering
practice.

Generally, elastic plate analysis can be performed
by means of three-dimensional elasticity, Kirchhoff
plate formulation, or Reissner–Mindlin plate theory
(Bayesteh and Mohammadi 2011). Among these theo-
ries, Reissner–Mindlin plate theory may be the most
widely used in engineering applications, because it
requires only C0 continuity for the displacement
fields, avoids the C1 continuity requirement difficul-
ties in the Kirchhoff-type theory, and has a rela-
tively very low computational cost compared to the
three-dimensional theory. Unfortunately, the Reissner–
Mindlin plate elements suffer from the shear lock-
ing phenomenon and yield poor results in a thin plate
limit (Ayad et al. 1998; Cen and Shang 2015). Tech-
niques including the assumed shear strain approach,
discrete Kirchhoff/Reissner–Mindlin representation,
mixed/hybrid formulation, and reduced/selected inte-
gration have been employed in order to develop the
locking-free triangular thick–thin plate elements, such
as the element DST-BL by Batoz and Lardeur (1989),
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the element DST-BK by Batoz and Katili (1992), the
element MITC by Bathe and Dvorkin (1985), the
element MiSP by Ayad et al. (1998), the element
DKMTbyKatili (1993), the element RDKTMbyChen
and Cheung (2001), and the element TIP3 by Brasile
(2008). Many of these elements exhibit high accuracy,
demonstrate effective performance for thick and thin
plates, and are applicable to a wide range of practi-
cal engineering problems. However, these popular ele-
ments always involve very complex formulations to
include the transverse shear effects, and are seldom
used in the fracture analysis of cracked plates, because
of their more complex mathematical patterns around
the crack tip.

In recent years, several alternative computational
methods or techniques have been proposed in order to
solve cracked bending problems, including the three-
dimensional FE method (Agnihotri and Parameswaran
2016), extended finite element method (Yu et al. 2014;
Nasirmanesh and Mohammadi 2015), dual boundary
elementmethod (Dirgantara andAliabadi 2000, 2002),
phantom-node method (Chau-Dinh et al. 2012), strip
yieldmodel (Chang andKotousov2012), singular finite
elements (Lim 2011), extended isogeometric analysis
method (Bhardwaj et al. 2015, 2016), reproducing ker-
nel meshless approach (Mohammad et al. 2011; Wang
and Peng 2013; Tanaka et al. 2015), and discrete shear
gap method (Nguyen-Thoi et al. 2012, 2014, 2015;
Liu et al. 2015; Nguyen-Xuan et al. 2009; Phung-Van
et al. 2013a, b). The majority of these methods are free
of shear-locking, avoid remeshing of finite elements,
exhibit high accuracy, demonstrate great potential and
promising application for cracked plate modeling, and
are undergoing rapid development.

In the work of Cai and Zhu (2017a, b), a simple
MTP9 (Mindlin-type triangular plate elementwith nine
degrees of freedom) was proposed for thick–thin plate
analysis. The element MTP9 avoids shear locking, and
exhibits an effective convergence rate as well as high
accuracy; however, reduced/selected integration must
still be applied to the shear energy term to make the
element MTP9 valid for the thin plate. In this study,
several specifically designed meshless approximations
are employed for the construction of a new type of
locking-freeMTPFwithout the use of reduced/selected
integration, which is necessary in the element MTP9.
Moreover, the present MTPF is extended for the anal-
ysis of cracked thick–thin plates, and the virtual crack
closure technique (VCCT) is employed in order to com-
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Fig. 2 Triangular mesh for mid-surface of plate

pute the crack tip stress intensity factors (SIFs) of the
cracked thick–thin plates, in which the formula deriva-
tion and numerical implementation are very simple and
convenient.Numerical evaluationdemonstrates that the
element MTPF is highly useful and applicable to prac-
tical engineering.

2 Basic theory of element MTPF

2.1 Meshless approximation at triangular element

We consider a linear elastic plate containing a through-
thickness crack and undergoing infinitesimal deforma-
tion, as shown in Fig. 1. The length, width, and height
of the plate are a, b, and h respectively. The plate mid
plane is taken as the x − y plane. The z-axis is perpen-
dicular to the mid plane, which is divided into arbitrary
triangular elements, as illustrated in Fig. 2.

According to the Reissner–Mindlin plate theory, a
meshless approximation in each triangular element ei
is assumed as
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Locking-free triangular plate element 3

u = Neae (1)

where u = {
u v w

}T
is the displacement approach of

ei along the x , y, and z axes; ae = [
a1 a2 · · · am

]T
is

the interpolation degrees of freedom (d.o.f.) of ei ; Ne

is the shape function of ei , where

Ne =
⎡

⎣
zPT (x) 0 0
0 zPT (x) 0
0 0 PT (x)

⎤

⎦ (2)

are employed in this work. Here, x0 = x − xi , y0 =
y − yi , (xi , yi ) are the coordinates of the central point
of element ei , and the linear shape function is taken as

PT (x) = [
1 x0 y0

]
. (3)

The quadratic shape function is taken as

PT (x) = [
1 x0 y0 x20 x0y0 y20

]
(4)

and the cubic shape function is taken as

PT (x) = [
1 x0 y0 x20 x0y0 y20 x30 x20 y0 y20 x0 y30

]
(5)

The displacement approximation in Eq. (1) is a mesh-
less interpolation, which is defined at the central point
of element ei and is independent of the nodes and ele-
ment shape. Moreover, (xi ,yi ) are the central point
coordinates of element ei . Because the displacement
approximation in Eq. (1) is independent of the nodes
and element shape, an arbitrary displacement approxi-
mation order, as required by the solving accuracy, can
be constructed with no difficulty in the current plate
element.

Substituting Eq. (1) into the following strain–
displacement relations of the linear elastic problem,

εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
≈ 0,

γxy = ∂u

∂y
+ ∂v

∂x
, γyz = ∂w

∂y
+ ∂v

∂z
, γxz = ∂u

∂z
+ ∂w

∂x
(6)

we obtain

ε = Lu = LNeae = Bae (7)

where ε = {
εx , εy, γxy, γyz, γxz

}T is the strain vector
and B is the strain matrix. Furthermore,

B = LNe (8)

L =

⎡

⎢⎢⎢⎢⎢
⎣

∂
∂x 0 0
0 ∂

∂y 0
∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x

⎤

⎥⎥⎥⎥⎥
⎦

(9)

For an isotropic linear elastic material, we can express
the stress–strain relations in element ei as

σ = DBae (10)

where the elasticity matrix

D = D0

⎡

⎢⎢⎢⎢
⎣

1 v 0 0 0
v 1 0 0 0
0 0 1−v

2 0 0
0 0 0 1−v

2k 0
0 0 0 0 1−v

2k

⎤

⎥⎥⎥⎥
⎦

(11)

Here D0 = E
1−v2

, E is the elastic modulus,v is the
Poisson ratio, and k = 1.2 is the shear correction factor
of the section. Because σz � σx and σz � σy in the
Reissner–Mindlin plate theory, σz and its influence on
deformation are neglected in Eqs. (7) and (10).

Thus, the strain energy of element ei can be
expressed as

�e = 1

2

(
ae

)T
∫ h/2

−h/2

(∫ ∫

�eiB
TDBdxdy

)
dzae

(12)

With the definition of the meshless approximation in
Eq. (1), the adjacent elements ei and e j in Fig. 2 have
their own d.o.f. and independent deformation, which
means that these elements are totally discontinuous.
However, the displacement and deformation over the
share boundary of non-overlapping elements ei and e j
should actually be continuous. A fictitious thin layer el
may be introduced, with length l, width δ, and height
h, where δ � l and δ � h, in order to enforce the
continuous conditions over the share boundary of the
elements, as shown in Fig. 3.

Because δ � l and δ � h, points p1 and p2 in
Fig. 3 can be regarded approximately as the same point
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Fig. 3 Fictitious thin layer over share boundary

p, having local coordinates (s, n, z) and global coor-
dinates

(
xp, yp, z p

)
, and the strain–displacement rela-

tions in thin layer el are simplified as

γns ≈ ū p2 − ū p1

δ
, εn ≈ v̄ p2 − v̄ p1

δ
, γnz ≈ w̄ p2 − w̄ p1

δ
(13)

where ūp1 and ūp2 can be computed using Eq. (1), as
follows:

ūp1 = λlNei
(
xp, yp, z p

)
aei (14)

ūp2 = λlNe j
(
xp, yp, z p

)
ae j (15)

Here, Nei
(
xp, yp, z p

)
is the shape function of point p

in element ei , Ne j
(
xp, yp, z p

)
is the shape function of

point p in element e j , aei is the d.o.f. of element ei , ae j

is the d.o.f. of element e j , and λl is the transformation
matrix from the global coordinates (x, y, z) to local
coordinates (s, n, z), where

λl =
⎡

⎣
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎤

⎦ (16)

The detailed derivation process of Eq. (13) can be
found in the work of Cai and Zhu (2017a). Substituting
Eqs. (14) and (15) into Eq. (13) results in

εl = 1

δ
Nlal (17)

where

εl = [
γns εn γnz

]T
(18)

Nl = λl
[−Nei Ne j

]
(19)

al =
[
aei

ae j

]
(20)

The stress–strain relations in thin layer el are then
expressed as

σ l = Dlεl (21)

where

σ l = [
τns σn τnz

]T
(22)

Dl =
⎡

⎣
G0 0 0
0 E0 0
0 0 G0/k

⎤

⎦ (23)

in which G0 = E
2(1+v)

, E0 = E
1−v2

, and k = 1.2. The
material constants in Eq. (23) are taken as those of the
average of elements ei and e j . The width δ of the fic-
titious thin layer el is an important artificial parameter
for the MTPF, but it is easy to select a reasonable δ to
satisfy δ � l andδ � h in the current formulation.
Numerical studies indicate that the variation of δ in a
relatively large range has little effect on the accuracy
of the calculation results for the analyses of thick–thin
plates in practical engineering. In this paper, the width
δ is taken as δ = 0.0001l.

It can be seen that, if the fictitious thin layer el is
replaced by contact springs ks , kn , and kz between adja-
cent elements, the current formulation becomes a dis-
continuous deformation analysis (DDA, Shi 1993) type
ofmethod for plate analysis, which is also a special case
of the numerical manifold method (NMM, Shi 1991).

Therefore, the strain energy of thin layer el can be
expressed as

�l = 1

2δ

(
al

)T ∫ h/2

−h/2

(∫ l/2

−l/2

(
Nl

)T
DlNlds

)
dzal

(24)

The enforcement of the displacement and load bound-
ary conditions can be derived in a similar manner (Cai
and Zhu 2017a) as in Eq. (24). Please refer to Cai and
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Fig. 4 Minor adjustment at
crack tip for implementation
of VCCT
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Zhu (2017a) for the detailed derivation of the equilib-
rium equation for the plate

K · U = F (25)

where K is the global stiffness matrix, F is the force
vector, and U is the d.o.f. vector to be solved.

It is well established that the general Reissner–
Mindlin triangular plate element sharing degrees of
freedom at the nodes exhibits the serious problem of
shear-locking for the thin plate, even if reduced/selected
integration is applied for the element. However, the dif-
ficulty of constructing a simple and locking-free trian-
gular plate element is effectively solved in the current
MTPF by means of the definition of the new incompat-
ible approximation in Eq. (1), which is independent of
the nodes and triangular element shape. Furthermore,
it is noted that regular full integration can be applied to
make the element MTPF valid for the thin plate for the
computation of Eq. (25), which differs from thework of
Cai and Zhu (2017a) and others using reduced/selected
integration for the shear term. The following numeri-
cal examples indicate that the current MTPF exhibits
a highly effective convergence rate for both thick and
thin plates.

3 Crack tip analysis

For the convenience of implementing the VCCT, as
shown in Fig. 4b, point q2, which is the nearest node
along the extended line direction of q1 − q, is tem-
porarily moved to q3 to cause q1 − q and q − q3 to
have an equal distance. The movement of q2–q3 does
not affect interpolation accuracy, because the approx-
imation in Eq. (1) is meshless and independent of the
element shape.

q

nσ

( )v sΔ

0r 0r

s

n

q1 q3

z

Fig. 5 Calculation of SIFs by VCCT

In the local coordinates (s, n, z) of Fig. 5, the rel-
ative displacements [�ū (s, z) ,�v̄ (s, z) ,�w̄ (s, z)]
of (− r0, 0) to (0, 0) in front of crack tip q and
the stresses

[
τns (s, z) , σn (s, z) , τnz (s, z)

]
of (0, 0) to

(r0, 0) behind crack tip q can easily be calculated using
Eqs. (17) and (21) for the thin layer. According to the
VCCT (Rybicki and Kanninen 1977; Valvo 2015), the
energy release rate at crack tip q can be approximately
calculated by⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GI ∼= 1
2hr0

∫ h/2

−h/2

r0∫

0

σn (s, z) �v̄ (s − r0, z) dsdz

GII ∼= 1
2hr0

∫ h/2

−h/2

r0∫

0

τns (s, z) �ū (s − r0, z) dsdz

GIII ∼= 1
2hr0

∫ h/2

−h/2

r0∫

0

τnz (s, z)�w̄ (s − r0, z) dsdz

(26)

whereGI is the energy release rate of crackmode I,GII

that of crack mode II, and GIII is that of crack mode
III.

The SIFs for the Reissner–Mindlin plate are defined
as:
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⎧
⎨

⎩

K1 = limr→0
√
2πrσθ (r, 0, h/2)

K2 = limr→0
√
2πrτrθ (r, 0, h/2)

K3 = limr→0
√
2πrτθ z (r, 0, 0)

(27)

where r, θ are the local polar coordinates around crack
tip q. The SIFs can be computed by means of the
relations between the energy release rate and SIFs for
the Reissner–Mindlin plate theory,for example, K1 =√
3EGI (Dirgantara and Aliabadi 2000).
It is observed that the proposed method contains a

very simple formula that avoids using of singular inte-
grations due to the local enrichment basis capturing the
stress singularity around the crack tip, and prevents the
relatively complicated J-integral for the crack model-
ing of plate bending problems in the previous popular
methods. To the best of our knowledge, the proposed
MTPF should be the simplest element for calculating
the SIFs of the cracked thick–thin plates at this stage.

4 Numerical examples

In this section, several problems are solved in order
to demonstrate the performance of the current element
MTPF for the thick-to-thin plates.

4.1 Simply supported square plate under uniform load

A simply supported square plate under uniform load q
is considered for linear elastic analysis. The plate side
length and thickness are L and h, respectively. A quar-
ter of the plate ismodeled based on symmetry, as shown
in Fig. 6. The n×n regular mesh in Fig. 7 and irregular
mesh in Fig. 8 are employed for the convergence stud-
ies. This example is also solved by the MTP9 with the
linear shape function and reduced/selected integration
in Cai and Zhu (2017a), but here it is used for the pur-
pose of testing the performance of the current MTPF
without using reduced integration for the shear energy
term.

In the following numerical examples, seven quadra-
ture points for each triangular element (Cowper 1973)
and three Gauss quadrature points for each fictitious
layer are used for the MTPF integration using the
quadratic shape function in Eq. (3). Furthermore, 12
quadrature points for each triangular element (Cowper
1973) and four Gauss quadrature points for each ficti-

[ ]0, 0s wθ = =

0

y

x

nθ =

Simply supported:0
nθ

=

610 , 0.3E v= =

Fig. 6 Model of square plate

Fig. 7 Typical regular mesh (16 × 16) for square plate

tious layer are used for the MTPF integration using the
cubic shape function in Eq. (4).

Tables 1 and 2 list the results of the dimensionless
central displacementw0 (×qL4/100D0) for the simply
supported plate with the quadratic and the cubic shape
functions, respectively. The results listed in Tables 1
and 2 indicate that the currentMTPFwith the quadratic
shape function is free from shear lockingwith an aspect
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Locking-free triangular plate element 7

Fig. 8 Irregular mesh with 460 elements for square plate

ratio of h/L ≥ 0.005, while the MTPF with the
cubic shape function is locking-free to the thin limit
of h/L = 0.0001. In general, from a practical view-
point, the current MTPF with different shape function
orders, which is locking-free at least for h/L ≥ 0.005,
is sufficient for the analyses of various thick–thin plate
types in practical engineering. Tables 1 and 2 also illus-
trate that the presentMTPF exhibits satisfactory results

Table 3 Number of quadrature points for reduced/selected inte-
gration of plate element

Shape
function

Triangular
element

Fictitious layer
(bending term)

Fictitious layer
(shear term)

Quadratic 4 3 2

Cubic 7 4 3

for the thick-to-thin plates, and is insensitive to element
distortions of the irregular mesh in Fig. 8.

Similar to the MTP9 in Cai and Zhu (2017a),
reduced/selected integration can be used to solve the
problem of shear locking in the current plate ele-
ment exploiting the higher-order displacement func-
tions. Table 3 lists the number of quadrature points
for reduced/selected integration of the plate element.
Table 4 provides the central deflection of the simply
supported square plate using reduced/selected integra-
tion and the regular mesh of 16 × 16. It can be seen
that, although it is not necessary for practical engineer-
ing, the current plate element with reduced/selected
integration exhibits effective performance for thick-to-
thin plates (locking-free to the thin limit of h/L =
0.0001for both the quadratic and cubic shape func-
tions).

Because the element MTPF with the cubic shape
function exhibits an improved convergence rate and
overall superior performance to that of the quadratic

Table 1 Central deflection for simply supported square plate with quadratic shape function

h/L 0.001 0.005 0.01 0.10 0.15 0.20 0.25 0.30

MTPF (4 × 4) 0.3288 0.3571 0.3789 0.4263 0.4532 0.4902 0.5376 0.5956

MTPF (8 × 8) 0.3538 0.3967 0.4029 0.4273 0.4537 0.4905 0.5379 0.5958

MTPF (16 × 16) 0.3947 0.4054 0.4062 0.4274 0.4537 0.4905 0.5379 0.5958

MTPF (Fig. 8) 0.3998 0.4053 0.4060 0.4274 0.4537 0.4906 0.5379 0.5958

Exact 0.4064 0.4064 0.4064 0.4273 0.4536 0.4906 0.5379 0.5956

Table 2 Central deflection for simply supported square plate with cubic shape function

h/L 0.0001 0.001 0.01 0.10 0.15 0.20 0.25 0.30

MTPF (4 × 4) 0.4025 0.4032 0.4062 0.4274 0.4537 0.4905 0.5379 0.5958

MTPF (8 × 8) 0.4052 0.4061 0.4065 0.4274 0.4537 0.4906 0.5379 0.5958

MTPF (16 × 16) 0.4052 0.4063 0.4065 0.4274 0.4537 0.4905 0.5379 0.5958

MTPF (Fig. 8) 0.4062 0.4063 0.4066 0.4274 0.4537 0.4906 0.5379 0.5958

Exact 0.4064 0.4064 0.4064 0.4273 0.4536 0.4906 0.5379 0.5956
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Table 4 Central deflection for simply supported square plate using reduced/selected integration

h/L 0.0001 0.001 0.01 0.10 0.15 0.20 0.25 0.30

MTPF (quadratic) 0.4045 0.4059 0.4067 0.4274 0.4537 0.4905 0.5379 0.5958

MTPF (cubic) 0.4049 0.4063 0.4065 0.4274 0.4537 0.4905 0.5379 0.5958

Exact 0.4064 0.4064 0.4064 0.4273 0.4536 0.4906 0.5379 0.5956

Table 5 Convergence of central deflection for simply supported square plate with different width-to-length ratios

δ/ l 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001

MTPF (4 × 4) 0.4793 0.4157 0.4072 0.4062 0.4061 0.4061 0.4061

MTPF (8 × 8) 0.4841 0.4159 0.4074 0.4065 0.4064 0.4064 0.4064

MTPF (16 × 16) 0.4897 0.4157 0.4074 0.4065 0.4065 0.4064 0.4065

Exact 0.4064

shape function, only the cubic shape function is stud-
ied in the following numerical examples.

In order to test the effect of the width-to-length ratio
δ/ l of the fictitious thin layer, the convergence of the
simply supported square plate central deflection with
different values of δ/ l and an aspect ratio of h/L =
0.01 is shown in Table 5, and the results indicate that
the ratio δ/ l has little effect on the MTPF accuracy
when δ/ l ≤ 0.001.

4.2 Rectangular plate with center crack

A rectangular plate with a center crack is analyzed, as
illustrated in Fig. 9. The width and length of the plate
are 2b = 1m and 2c = 2m, respectively, while the
material properties are E = 1.0E6MPa and v = 0.3.
The crack size is 2a, and the plate thickness is h. The
two edges parallel to the crack are simply supported,
and moment M is applied to these, while the other
two edges are free. Divisions of 2728 and 7338 tri-
angular elements are employed for the computation of
the rectangular plate SIFs. Figure 10 illustrates a dis-
crete model of the rectangular plate with 1421 triangu-
lar elements. The numerical results for different a/h
are presented in Table 6, along with reference solu-
tions for comparison (Tanaka et al. 2015; Boduroglu
and Erdogan 1983), where the SIF is normalized

by F1 = h2K1
6M

√
πa

. It is observed that high-accuracy
SIF solutions are obtained for the current element
MTPF.

2a

2b

c
c

x

y
M

M
Simply supported

Simply supported

Fig. 9 Analysis model of center crack plate

4.3 Rectangular plate with symmetric edge cracks

As illustrated in Fig. 11, symmetric edge cracks in a
rectangular plate are analyzed. The boundary condi-
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Locking-free triangular plate element 9

Fig. 10 Discrete model of center crack plate with 2728 triangu-
lar elements

tions, geometry dimensions, andmaterial properties are
the same as those of the center crack problem described
in Sect. 4.2. The crack size is a and the plate thickness
is h. The discrete model with 2728 triangular elements
shown in Fig. 10 is also employed for this problem.
The numerical results for different d/b values are pre-
sented in Tables 7 and 8 for b/h = 2.0 and 10.0. As
expected, the results obtained using the current method

2d

2b

c
c

x

y
M

M
Simply supported

Simply supported

aa

Fig. 11 Analysismodel of symmetric edge cracks in square plate

coincide with the reference solutions (Tanaka et al.
2015; Boduroglu and Erdogan 1983) in all cases.

4.4 Single crack emanating from hole

A single crack emanating from a hole in a finite rectan-
gular plate is analyzed, as shown in Fig. 12. The width
and length of the plate are 2b = 1m and 2c = 2m,
respectively. The hole radius is r = 0.05m, the crack
size is a, and the plate thickness is h, while the mate-
rial properties are E = 1.0E6MPa and v = 0.3. The

Table 6 Normalized SIFs F1 for center crack plate

a/h 0.8 (0.2/0.25) 1.0 (0.25/0.25) 4.0 (0.2/0.05) 5.0 (0.25/0.05)

MTPF (2728) 0.8637 0.9037 0.7275 0.7634

MTPF (7338) 0.8651 0.9057 0.7289 0.7651

Tanaka et al. (2015) 0.8683 0.9096 0.7287 0.7663

Boduroglu and Erdogan (1983) 0.8694 0.9094 0.7347 0.7702
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Table 7 Normalized SIFs F1 for symmetric edge crack problem (b/h = 2.0)

d/b 0.2 0.3 0.4 0.5 0.6

MTPF (2728) 1.3601 1.1128 0.9819 0.9066 0.8666

Tanaka et al. (2015) 1.3719 1.1201 0.9886 0.9110 0.8706

Boduroglu and Erdogan (1983) 1.3689 1.1174 0.9844 0.9086 0.8673

Table 8 Normalized SIFs F1 for symmetric edge crack problem (b/h = 10.0)

d/b 0.2 0.3 0.4 0.5 0.6

MTPF (2728) 1.1076 0.9221 0.8255 0.7687 0.7359

Tanaka et al. (2015) 1.1144 0.9225 0.8246 0.7697 0.7377

Boduroglu and Erdogan (1983) 1.1140 0.9250 0.8268 0.7692 0.7351

2b

c
c

x

y
M

M
Simply supported

Simply supported

a

r

Fig. 12 Analysismodel for a single crack emanating from a hole

two edges parallel to the crack are simply supported,
and moment M is applied to these, while the other two
edges are free. Different ratios of a/b = 0.3–0.8 are
analyzed, and a division of 3076 triangular elements

is employed for the SIFs computation of the plate, as
shown in Fig. 13. The numerical results for different
b/h values are presented in Fig. 14, along with refer-
ence solutions for comparison (Dirgantara andAliabadi
2002). It can be seen that the current results closely
match the reference solutions.

5 Conclusions

In this work, a new locking-free element MTPF is
developed for the analysis of cracked thick–thin plates.
The proposed MTPF has the following characteristics:

(1) Without any numerical expediencies, such as
reduced/selected integration, the use of assumed
strain/stress, or the need for stabilization of the
attendant zero energy modes, shear locking is com-
pletely eliminated to the thin limit of h/L = 0.0001
for theMTPF with a cubic shape function, which is
very useful and applicable for the analyses of vari-
ous hick-thin plate types in practical engineering.

(2) TheMTPF has a very simple formulation as well as
numerical implementation for including the trans-
verse shear effects for thick plates. Furthermore, it
exhibits an effective convergence rate, is insensitive
to element distortions, and provides stable solutions
for thick and thin plates.

(3) The element MTPF can conveniently compute the
crack tip SIFs by using the VCCT, which has a very
simple formula derivation and numerical imple-
mentation. Numerical examples indicate that the
element MTPF maintains high accuracy in the cal-
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Fig. 13 Discrete model for a single crack emanating from a hole
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MTPF (b/h=2.0)
Ref.(14) (b/h=2.0)
MTPF (b/h=4.0)
Ref.(14) (b/h=4.0)

Fig. 14 Normalized SIFs for a single crack emanating from a
hole

culation of crack tip SIFs for cracked thick–thin
plates.

(4) The elementMTPFuses ameshless approach and is
independent of the nodes and triangle shape. Thus,
similar to other meshless methods, the MTPF is
easy and ready for automatic simulation of the fail-
ure process of a cracked plate along arbitrary direc-
tions by introducing an appropriate crack propaga-
tion criterion for the plates, and this will be the next
work offered by the author.
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