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Abstract This paper presents a theoretical approach
to determine the dynamic fatigue strength characteris-
tics of ceramics under variable loading rates on thebasis
of the slow crack growth (SCG) concept. First, a prob-
abilistic effective inert strength model was derived on
the basis of the SCG concept in conjunction with the
Weibull distribution for ceramics subjected to multi-
stage loading. Second, a four-point bending test was
conducted onAl2O3 under constant and two-stage vari-
able loading rates, and the fracture surface was then
observed. The experimental data that depend on load-
ing rates can be unifiedly evaluated after converting the
data to the effective inert strength, obeying the three-
parameterWeibull distribution. In addition, theWeibull
plots of the inert strength, which were calculated from
the inclusion size on the fracture surface using the grain
fracturemodel, showed good agreement with the three-
parameter Weibull distribution for the converted effec-
tive inert strength. These analytical results theoretically
indicate that dynamic fatigue under variable loading
rates occurs by obeying SCG at the inclusion. Further,
the inert strength and its scatter depend on the size and
distribution of inclusions.
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1 Introduction

The brittle fracture of ceramics occurs owing to var-
ious defects such as internal crack-like defects, void,
coarse grains, impurities, inclusion, and processing
flaws. The strength of ceramics is determined by the
fracture toughness and the largest defect size (Ritter
1995) in the various defects. It is well known that the
strength depends on the loading time because fracture
occurs owing to slow crack growth (SCG) at the largest
defect (Evans 1980). Research on fatigue fracture has
been actively conducted since the 1970s. The SCGcon-
cept was developed by Evans andWiederhorn, which is
a classical concept for predicting strength and life. The
following studies were conducted on the basis of the
SCG concept: cyclic fatigue crack propagation (Evans
and Fuller 1974; Evans et al. 1975; Evans and Lange
1975), dynamic (Evans and Johnson 1975) and static
(Wiederhorn andBolz 1970) fatigue strength properties
at room and high temperatures, probabilistic relation-
ships between stress and life in conjunction with the
Weibull distribution (Evans and Wiederhorn 1974a),
and life prediction (Evans and Wiederhorn 1974b). In
addition to these, several researchers have applied the
SCG concept to the analysis of the dynamic and static
(Ritter and Humenik 1979; Seshadri et al. 1982; Phani
1988; Breder 1995; Pan et al. 1998; Choi et al. 2005;
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Pfingsten and Glien 2006; Teixeira et al. 2007; Mat-
suda and Watanabe 2011; Matsuda and Ogi 2017),
cyclic (Guiu et al. 1991; Okabe and Ikeda 1991; Zhu
et al. 2004), and thermal fatigue properties (Hassel-
man et al. 1975; Kamiya and Kamigaito 1982; Ogi and
Ito 2011) of various ceramics. It should be noted that
these analyses were carried out on experimental data
obtained from fatigue tests under a constant loading
rate, static, and stress amplitude loadings. To assure
the strength reliability of a system using ceramics, it
is necessary to investigate fatigue properties under not
only these constant loading conditions but also vari-
able loading conditions. Previous studies on fatigue
properties under variable loading conditions include
Gilberta and Ritchiea (1998) and Choi and Horibe
(1993), who investigated the propagation behavior of
cyclic fatigue cracks under variable stress amplitude
loadings. Hoshide et al. (1988) analyzed the cyclic
fatigue life under two-step variable cyclic loading on
the basis of the SCG concept. Siegmund (2004) numer-
ically analyzed the growth of transient fatigue cracks
using an irreversible cohesive zone model. Ogi et al.
(2010) predicted the transverse crack density under
two-step variable cyclic loadings using a probabilistic
SCG model to evaluate brittle matrix cracking in car-
bon fiber reinforced plastics (CFRP) laminates. How-
ever, the dynamic fatigue strength characteristics under
variable loading rates were not experimentally and the-
oretically investigated.

The purpose of this study is to theoretically deter-
mine the dynamic fatigue strength characteristics of
ceramics under variable loading rates on the basis of
the SCG concept. First, a probabilistic effective inert
strength model was derived on the basis of the SCG
concept, in conjunction with the Weibull distribution
for ceramics subjected to multi-stage loading. Next,
experimental data obtained from the four-point bend-
ing (FPB) test of Al2O3 under two-stage variable load-
ing rates were analyzed using the model. Finally, the
relationship between the effective inert strength deter-
mined from experimental data and inclusion size of the
fracture occurring in ceramics was theoretically dis-
cussed.

2 Modeling

In this modeling, the cumulative crack propagation of
SCGduringmulti-stage variable loading of p (1≤ j≤p)

steps is considered. When stress σj (t) (period time tj)
is applied to a brittle body with a crack in the jth stage,
the stress intensity factor KI at mode I of a crack of
length a is expressed as

KI = Yσj (t)
√
a (1)

where Y denotes a constant that depends on the geom-
etry of the crack. Then, the crack propagation rate v for
SCG is given as (Evans 1980)

v = da

dt
= C

(
KI

KIC

)n

(2)

where n, KIC, and C denote the crack propagation
index, fracture toughness, and material constant which
is v at KIC, respectively. Directly integrating Eq. (2)
using Eq. (1) yields

a−λ
j−1 − a−λ

j = Cλαnσ n
max,jteff,j (3)

where aj−1, aj, and σmax,j denote the crack length at
the end of the j–1th stage, the crack length at the end of
the jth stage, and the maximum stress at the jth stage,
respectively, α and λ equal Y/KIC and (n − 2) /2,
respectively, and

teff,j =
∫ tj

0

(
σj (t)

σmax,j

)n

dt (4)

is the effective loading time at the jth stage, which is the
time obtained assuming that σmax,j is statically loaded.
The summation of Eq. (3) with respect to j from 1 to p
yields

a−λ
0 − a−λ

p = Cλαn
p∑

j=1

σ n
max,jteff,j (5)

where a0 and ap denote the crack length at the end of
the 0th stage (i.e., the initial crack length) and the crack
length at the end of the pth stage, respectively.
a0 is related to KIC and the inert strength Si usingEq. (1)
as

a0 =
(
KIC

Y Si

)2

. (6)

When unstable crack growth occurs at the end of the
pth stage, ap is expressed as

ap =
(

KIC

Yσmax,p

)2

. (7)

Substituting Eqs. (6) and (7) into Eq. (5), the effective
inert strength S∗

i , which is a function corresponding to
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the maximum stress and the effective loading time in
all the stages, leads to

S∗
i = σmax,p

⎧⎨
⎩1 + goσ

−2λ
max,p

p∑
j=1

σ n
max,jteff,j

⎫⎬
⎭

1/2λ

(8)

where go equals Cλα2; when p = 1, Eq. (8) becomes
(Matsuda and Ogi 2017)

S∗
i = σmax

{
1 + goσ

2
maxteff

}1/2λ
. (9)

Assuming the weakest link model, the brittle fracture
of ceramics including initial cracks with various sizes
occurs at one of the largest cracks. It should be noted
that a lower limit for the inert strength Sth must exist
because there is an upper limit of the crack length ath in
the cracks. When the inert strength Si obeys the three-
parameter Weibull distribution, replacing Si with the
effective inert strength S∗

i in Eq. (8) gives the fracture
probability F as

F = 1 − exp

[
−

(
S∗
i − S∗

th

So

)m]
(10)

where S∗
th, m, and So denote the location, shape, and

scale parameters, respectively. Incidentally, S∗
th ≈ 0 in

Eq. (10) gives the two-parameter Weibull distribution
as

F = 1 − exp

[
−

(
S∗
i

So

)m]
. (11)

Therefore, in the case of the SCG-controlled time-
dependent fracture, the strength data obtained from
tests conducted under single and multi-stage variable
loadings can be unifiedly evaluated byWeibull analysis
of the effective inert strength converted using Eq. (8).

3 Experimental procedures

3.1 Specimen

The specimen used in the experiment was Al2O3

(Referceram AL1, JFCC) with a rectangular cross sec-
tion (w4mm × h3mm × L 40mm). The average sur-
face roughnesswasmeasured as 0.36µm.Themechan-
ical properties are listed in Table 1. The fracture tough-
ness K ∗

IC was measured through a three-point bending
test conducted for specimen-introduced pop-in crack
at a crosshead speed (CHS) of 0.5mmmin−1 based
on the single edge pre-cracked beam (SEPB) method

Table 1 Mechanical properties of Al2O3

Bulk density
ρ (Mg/m3)

Young’s
modulus E
(GPa)

Mean grain
size do (µm)

Fracture
toughness
K ∗
IC (MPa

√
m)

3.93 380 5.3 4.4

Fracture toughness K ∗
IC was measured using the SEPB (single

edge pre-cracked beam) method

of the ISO 15732 or the Japanese Industrial Standard
(JIS) R1607. The K ∗

IC denotes the fracture toughness
for a long crack, which is different from the true frac-
ture toughness KIC for a small crack. In addition, it
should be noted that the K ∗

IC measured from the SEPB
method slightly depends on the CHS due to slow crack
growth (Quinn et al. 1992; To et al. 2018).

3.2 FPB test under two-stage variable loading rates

A universal testing machine (Autograph AG-10TE,
SHIMADZU) set up as a load cell with a capacity
of 5 kN, including a jig for the FPB test (under span
L1 = 30mm, upper span L2 = 10mm), was used
as the test machine for the experiments. The FPB
test was conducted under a two-stage variable load-
ing rate (2S-VLR) test by switching the CHS at room
temperature in air. The CHS at the stage-switching
loading stress in the 2S-VLR test is as follows:
Condition I: 0.05mmmin−1 → 0.005mmmin−1,
II: 0.05mmmin−1 → 1mmmin−1, and III:
0.05mmmin−1 → 10mmmin−1. The average stress
rates for CHSs of 0.005, 0.05, 1, and 10mmmin−1 are
0.264, 2.75, 60.5, and 620MPa s−1, respectively. The
stage-switching loading stress was determined as the
fracture stress at a fracture probability of 40%, which
was calculated from the two-parameter Weibull distri-
bution of the fracture stress obtained from the FPB test
under a constant loading rate (CLR) test at a CHS of
0.05mmmin−1. The FPB fracture stress σmax for these
tests was calculated as

σmax = 3P (L1 − L2)

2wh2
(12)

where P, w, and h denote the fracture load, width, and
height of the specimen, respectively.

4 Results

Figure 1 shows the Weibull plots of the fracture
stress σmax obtained from the CLR test at a CHS of
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Fig. 1 Weibull plots of fracture stress obtained in CLR test at
CHS = 0.05mmmin−1 and 2S-VLR test, and curves predicted
from Eqs. (8) and (10)

0.05mmmin−1 and 2S-VLR tests, where the stage-
switching loading stress for the 2S-VLR tests was
320MPa (curves in Fig. 1 are explained in Sect. 5.2).
The fracture probability F is determined using the
median rank method as follows:

F = i − 0.3

N + 0.4
(13)

where i is the modified order of σmax for N data points.
The value of σmax under condition I was slightly lower
than that in theCLR test. On the other hand,σmax values
under conditions II and III were higher than those in the
CLR test and increaseswith an increase in the switching
CHS.

Figure 2 shows scanning electronmicroscope (SEM)
images of the fracture surface near the maximum stress
after the 2S-VLR tests under conditions II and III.
Although mirror, mist, and hackle were obviously
observed in the fracture surface of glass and sili-
con nitride (Tanaka et al. 2002; Matsuda and Watan-
abe 2011), the characteristic fracture surface was not
observed in these fracture surfaces. The fracture sur-
faces aspect did not vary under different test condi-
tions, and inclusion was observed in either case, which
was the same as the fracture surface (Matsuda and Ogi
2017) in the CLR test. From the above results, it can
be presumed that brittle fracture in CLR and 2S-VLR
tests occurs at an inclusion. It should be noted that the
fracture stress calculated using Eq. (12) may be slightly
overestimated as it is assumed that the fracture occurs

Inclusion100μm

(b)

Inclusion10μm

(a)

Fig. 2 SEM images of fracture surfaces obtained in 2S-VLR
tests under conditions a II and b III

at the surface although Fig. 2 shows otherwise. In this
study, the fracture stress was approximately calculated
using Eq. (12) because the position of the observed
inclusion was approximately 20µm from the surface
(see Fig. 2b).

5 Discussion

5.1 Weibull plots of effective inert strength converted
using data from CLR and 2S-VLR tests

Data from the CLR and 2S-VLR tests were converted
to the effective inert strength S∗

i using Eq. (8) and the
SCG parameters of n = 21.1 and go

(= Cλα2
) =

2.54 × 10−3 MPa−2 s−1 in Table 2. The CLR test
data was obtained under a wide range of CHSs
from 1000 to 0.005mmmin−1 at room temperature in
air; then, the SCG parameters were determined from
the data (see the “Appendix” and Matsuda and Ogi
2017).

Figure 3 shows the Weibull plots of S∗
i . Table 2

lists the two and three Weibull parameters of Eqs. (10)
and (11) analyzed from the Weibull plots of S∗

i . The
Weibull parameters were analyzed using the least
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Table 2 SCG parameters and Weibull parameters in Eqs. (10)
and (11) of the effective inert strength for data in CLR and 2S-
VLR tests

go (MPa−2 s−1) 2.54 × 10−3

n 21.1

Eq. (10)

So (MPa) 115.6

m 2.71

S∗
th (MPa) 390.7

Eq. (11)

So (MPa) 511

m 14.8
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Fig. 3 Weibull plots of effective inert strength converted from
data obtained in CLR and 2S-VLR tests, and curves predicted
from Eqs. (10) and (11) using the Weibull parameters

squares method and the correlation coefficient method
(Sakai and Tanaka 1980), respectively. The lines in
Fig. 3 were plotted from Eqs. (10) and (11) using the
Weibull parameters. 2S-VLR test data that depend on
the variable loading rates shown in Fig. 1 can be uni-
fiedly evaluated on aWeibull probability paper together
with the CLR test data, where S∗

i can be approxi-
mated by a curved line rather than a straight line,
indicating that S∗

i conforms to the three-parameter
Weibull distribution. The analytical results support the
proposed model for multi-stage variable loading test
data, indicating that brittle fracture under VLR obeys
SCG.
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Fig. 4 Calculated crack length during CLR and 2S-VLR tests

5.2 Weibull plots of fracture stress depending on
variable loading rates

In this section, variable loading rates dependence of the
fracture stress shown in Fig. 1 is discussed. The curves
in Fig. 1were predicted fromEqs. (8) and (10) using the
SCG parameters and Weibull parameters for Eq. (10),
as presented in Table 2. The predicted curves can accu-
rately reproduce the experimental data. Figure 4 depicts
the crack length ap calculated as p = 2 at each condition
using theSCGparameters presented inTable 2, normal-
ized by the initial crack length a0 = {

KIC/
(
Y S∗

i

)}2.
The curves represent the crack length using

ap = a0

⎧⎨
⎩1 − go

S∗2λ
i

p∑
j=1

σ n
max,jteff,j

⎫⎬
⎭

−1/λ

, (14)

which is obtained from Eqs. (7) and (8), whereas the
arrows indicate the unstable growth predicted using
Eq. (7), assuming Y = √

π , KIC = K ∗
IC, and S∗

i is
the average of σmax in the CLR test under CHS =
200mmmin−1 (see the “Appendix”).

The results indicate that when the loading rate after
switching is low, such as condition I, the fracture stress
decreases slightly compared to that under the loading
rate before switching owing to the increase in the crit-
ical crack length after SCG. On the other hand, when
the loading rate after switching is high, such as condi-
tions II and III, the fracture stress increases compared
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to that under the loading rate before switching owing
to the decrease in the critical crack length after SCG.
Therefore,Weibull plots of fracture stress depending on
variable loading rates exhibit discontinuous behavior.

5.3 Calculation of the effective inert strength from
processing flaw size

It is considered that unstable crack growth occurs when
the stress intensity factor reaches the fracture toughness
KIC for small crack without stable crack growth owing
to the tensile stress acting on a semicircular surface
crack or internal circular crack. Then, the constant frac-
ture toughness criterion (LFMmodel) is given using the
inert strength Si and the equivalent crack length aeq as

KIC = Si
√

πaeq. (15)

If the value KIC is given as the fracture toughness
K ∗
IC for long cracks measured by the SEPB method,

the fracture stress of a long pre-cracked ceramics can
be explained. However, the fracture stress of smooth
ceramics, including small initial cracks, cannot be
explained (Hoshide and Hiramatsu 1999). Therefore,
Usami et al. (1986) proposed a grain fracture model
for smooth ceramics as follows:

KIC

K ∗
IC

=
√
1 + r/2aeq
1 + r/aeq

(16)

where r denotes the grain size at a crack tip. Substi-
tuting Eq. (15) into Eq. (16), Si of smooth ceramics is
obtained as

Si = K ∗
IC√

πaeq

√
1 + r/2aeq
1 + r/aeq

. (17)

Figure 5 shows the Weibull plots of Si calculated using
Eqs. (15) and (17) and the calculatedaeq and curves pre-
dicted fromEqs. (10) and (11) using theWeibull param-
eters listed in Table 2. Then, r in Eq. (17) and KIC in
Eq. (15) were given as 2do (Usami et al. 1986) and K ∗

IC,
respectively, where do denotes the mean grain size (see
Table 1). In addition, aeq was calculated using the inclu-
sion size observed in the fracture surface in theCLR test
and the following equations: 0.226

√
area (for a semi-

circular surface crack) and 0.399
√
area (for an internal

circular crack). The term area in the equations denotes
the area of these cracks (Usami et al. 1986; Matsuda
2016). A good agreement was observed between the
Si calculated using Eq. (17) and the predicted three-
parameter Weibull distribution, including the scatter.
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Fig. 5 Weibull plots of Si calculated using LFM, and grain frac-
ture models and curves predicted using Eqs. (10) and (11). Si
calculated using the grain fracture model showed good agree-
ment with the curve of Eq. (10). The results indicate that when
SCG does not occur, brittle fracture occurs at the grain of the
crack tip

The results indicate that brittle fracture occurs at the
weakest part in the grain located at the tip of the inclu-
sion, irrespective of the variable loading rate. It is con-
cluded that the inert strength and its statistical charac-
teristics are dependent on the size and distribution of
inclusions in ceramics.

6 Conclusion

In this study, a probabilistic effective inert strength
model, which was derived on the basis of the SCG con-
cept in conjunction with the Weibull distribution for
ceramics subjected to multi-stage loadings, was pro-
posed to theoretically determine the dynamic fatigue
strength characteristics of ceramics under variable
loading rates. The experimental data obtained from
the FPB test of Al2O3 under constant and two-stage
variable loading rates were analyzed using the model.
The analytical results indicate that these experimen-
tal data that depend on the loading rates can be eval-
uated in a unified manner by converting the data to
the effective inert strength. The effective inert strength
obeys the three-parameterWeibull distribution. In addi-
tion, the Weibull plots of the inert strength calculated
using the grain fracture model from the inclusion size
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in the fracture surface showed good agreement with the
three-parameter Weibull distribution for the converted
effective inert strength. From these analyses, it can be
concluded that dynamic fatigue fracture under variable
loading rates occurs by obeying SCG at the inclusion.
Further, the inert strength and its scatter depend on the
size and distribution of inclusions.
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Appendix: Determination of SCG parameters

The SCG parameters n and go were determined using
the σmax − σ̇ plots (loading rate σ̇ ) in the CLR test
shown in Fig. 6a by rewriting Eq. (9) as follows:

y = ln

(
S∗
i

σmax

)
= 1

n − 2
ln

(
1 + goσ

2
maxteff

)
. (18)

The ratio S∗
i /σmax on the left-hand side of Eq. (18) was

plotted against x = σ 2
maxteff . Here, the effective inert

strength S∗
i was assumed to be the average of σmax in

the CLR test under CHS = 200mmmin−1 , which
converges to the inert strength as shown in Fig. 6a,
and the effective loading time teff was calculated using
Eq. (4) and the applied stress σ (t) = σ̇ t (period stress
σmax = σ̇ tf) as σmax/{σ̇ (n + 1)}. Then, n and go were
obtained by curve fitting these plots to the equation
y = 1/(n − 2) ln (1 + gox) using the least squares
method, as shown in Fig. 6b. The values of n and go
were obtained as 21.1 and 2.54 × 10−3 MPa−2 s−1,
respectively. The value of n was smaller than n = 37.5,
which was obtained by Ritter and Humenik (1979).
They conducted the CLR test under the loading rate
region from 1/10 to 1/100 of the lowest loading rate
of the CLR test in this study. Then, n was analyzed by
curve fitting the obtained σmax − σ̇ plots to the equa-
tion σmax ∝ σ̇ 1/(n+1), which is obtained on the basis
of the SCG concept. On the other hand, on analyzing
the S–N diagram in the cyclic fatigue test and the S–t
diagram in the static fatigue test, the value of n varied
between 21–25 and 36–54, respectively (Guiu et al.
1991). The value of n obtained from the S–N diagram
almost agrees with this experimental result. The value
of n differs depending on the loading method and the
loading rate region.
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Fig. 6 a σmax − σ̇ plots in CLR test data and determination of SCG parameters for b measured and fitted values of y versus x in
Eq. (18). (Reproduction of Figs. 1 and 3 from Matsuda and Ogi 2017)
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