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Abstract Instabilities in thermally-driven crack
growth in thin glass plates have been observed in exper-
iments that slowly immerse a hot, pre-notched glass
slide into a cold bath.We show that a nonlocal model of
thermomechanical brittle fracture with minimal input
parameters can predict the entire phase diagramof frac-
ture measured in experiments for the low immersion
speed regime. Geometrical restrictions to crack growth
commonly found in other approaches are absent here.
We discuss a method for determining the appropriate
size of the peridynamic horizon based on a data point
around a separating line between crack-type zones in
the experimental phase diagram.Once the nonlocal size
is smaller than the length-scale introduced by the ther-
mal gradient, the computational results show that no
fracture criterion is needed beyond Griffith’s criterion
to capture the observed instabilities. The combination
of thermal gradients and competing contraction forces
on the two sides of the crack are behind the observed
crack path instabilities. Elastic (velocity) vortices of
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material points show how and why the cracks develop
along the observed paths. Our results demonstrate that
thermally-driven fracture in brittlematerials can be pre-
dicted with accuracy.We anticipate that this model will
lead to design protocols for controlled fracture in brit-
tle materials relevant inmaterials science and advanced
manufacturing.
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1 Introduction

When a thin glass plate seeded with an edge crack is
slowly pushed from an oven into coldwater, an interest-
ing transition between no crack growth, straight crack,
oscillating crack, or branched crack happens. Three
main parameters determine the behavior: the plate’s
immersion velocity, the plate’s width, and the tem-
perature gap between the oven and water bath (Yuse
and Sano 1993, 1997). When the crack propagates,
its propagation speed is close to the plate velocity
(< 50mm/s), which is six orders of magnitude lower
than the Rayleigh wave speed (km/s). Therefore, this
fracture process in glass can be considered as quasi-
static and should be distinguished from the dynamic
fracture in glass (e.g. Hu et al. 2013). The experimen-
tal setup used by Ronsin et al. (1995) and Ronsin and
Perrin (1998) allowed the authors to explore the very
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low plate velocity regime in detail and study the effect
the platewidth on the fracture process. They found non-
linear transition curves between the no crack, straight
crack, and oscillatory crack regimes in a phase-diagram
of plate width versus plate velocity. Yang and Ravi-
Chandar (2001) redesigned the experimental setup to
allow open observations of the crack growth. These
experiments were performed on slightly thicker glass
(0.9 mm thick glass slides) which could be responsible
for the apparent 3D effects (cracks tilting through the
thickness) and unstable crack growth. The authors of
Yang and Ravi-Chandar (2001) found that the T-stress
criterion of Cotterell and Rice (1980) is not applica-
ble in this situation, noticing that the transition from a
straight to an oscillatory crack path does not coincide
with the location at which the T-stress becomes posi-
tive. Sakaue et al. (2008) also found that the T-stress
criterion is inappropriate to evaluate the crack path
instability in a quenched thin glass plate. Yoneyama
et al. (2008), Yoneyama and Sakaue (2014) applied an
experimental-numerical hybrid method to analyze the
stress field around the oscillating the crack tip. They
showed that mode-II stress intensity factor KI I is non-
zero even though the crack propagates smoothly.

Analytical studies for predicting theobservedbehav-
ior in quenched glass have focused on the transition
from the straight crack growth to oscillating crack.
Marder (1994) calculated the conditions under which
this first bifurcation occurs using T-stress criterion.
This criterion was later found, via experimental inves-
tigations, to fail to predict the oscillatory instabil-
ity (Ronsin and Perrin 1998; Yang and Ravi-Chandar
2001; Sakaue et al. 2008).

Various computational models were employed to
simulate thermally-driven crack growth in thin glass
plates. Some models considered the problem as a
dynamic fracture problem, see for example, treatments
using the cohesive element method (Ferney et al.
1999), the Extended Finite Element Method (XFEM)
(Menouillard and Belytschko 2011), the boundary ele-
ment method (Yang and Ravi-Chandar 2001), and Peri-
dynamics (Kilic andMadenci 2009).While some of the
behavior seen in experiments was partially reproduced
in these simulations (e.g., oscillating cracks), in some
instances unphysical parameters (e.g., unrealistically
fast immersion speeds, temperatures beyond the glass
melting point, etc.) had to be used due to the small
time steps required by the explicit dynamic solution
methods (Ferney et al. 1999; Kilic and Madenci 2009;

Menouillard and Belytschko 2011). Quasi-static frac-
ture models were also used to predict the oscillating
cracks observed in experiments, including the spring
model (Hayakawa 1994), the phase field method (Cor-
son et al. 2009), and energy minimization via varia-
tional formulation (Bourdin 2007). However, all such
studies were either purely qualitative or were using
unphysical parameters to manage to reproduce, par-
tially, some of the characteristics of the observed phe-
nomenon.

Corson et al. (2009) obtained smooth oscillating
crack path in their phase field simulation by applying
the principle of local symmetry (PLS) and the Grif-
fith criterion. However, their results are only qualitative
(scaled units and analytical thermal field were used)
and some details on the transition curves are not repro-
duced.

In the present work, we introduce a peridynamic
model that can predict the entire spectrum of phys-
ical behavior for thermally-driven fracture in a thin
glass plate for the experimental conditions of low plate
immersion speed region (0.05–0.5 mm/s). Here we
focus on this particular range of immersion velocities
for the following reasons:

(a) Our intention is to use experimentally measured
Our intention is to use experimentally measured
temperatures, and these temperature fields are pro-
vided in the literature only for immersion speeds
v = 0.05, 0.3, and 0.5mm/s (see Ronsin et al.
1995).

(b) At these immersion speeds, for sufficiently thin
specimens, the 3D effects are negligible since the
plate thickness does not play a role in the heat flow
problem and a 1D approximate representation of
the thermal field is sufficient.

The set of material parameters used by the model
is minimal: thermo-elastic data, and fracture energy
of glass. We find that under the special type of very
small and transient thermal strains, the discrete peri-
dynamic model can leave unbroken bonds bridging
a crack. This leads to configurations that cannot sus-
tain a constantly undulating crack path. Experiments
show that undulating crackswith almost constantwave-
length and amplitude are common in this type of
conditions.

To correct this deficiency caused by utilizing a bond-
failure criterion exclusively based on critical tensile
strain in a bond, we introduce a new and simple addi-
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tion to it that does not require tracking of the crack path
and ensures that even for small shear no bonds bridging
the crack are left behind.

Thedifferent fracture behaviors (no-crack, straightly
propagating crack, oscillating crack, and branching
cracks) are autonomous outcomes of applying only a
critical bond stretch criterion (equivalent to Griffith cri-
terion in classical fracturemechanics) together with the
proposed correction.No other failure criteria (e.g. PLS)
or any dynamic assumptions of crack path development
are required. We solve the problem as quasi-static peri-
dynamic with a static solver based on the nonlinear
conjugate gradient (NCG) method (Shewchuk 1994).
Using the actual physical parameters fromexperiments,
we reproduce the detailed phase diagram that delimi-
tates the crack patterns in terms of immersion speed and
plate width. The wavelengths of the oscillating cracks
and the location of the crack tip relative to the oven
entrance agree remarkably well with the experimental
results. Finally, to enhance the efficiency of the peri-
dynamic computations, we use GPU-based algorithms
for the NCG solvers of the quasi-static equations.

The paper is organized as follows: Sect. 2 presents
a brief introduction of the peridynamic model. Sec-
tion 3 describes our simulation setup for the quenched
glass experiment. Section 4 presents our numerical
results and discussion. We summarize our results in
Sect. 5.

2 The peridynamic model

The bond-based peridynamic theory is adequate to
describe the fracture in soda-lime glass, which, for the
temperature range considered in the experiments from
room temperature up to 300 ◦C, can be taken as a linear-
elastic and brittle material. The details of the model for
dynamic fracture and numerical implementation can be
found in Bobaru and Zhang (2015). The effect of the
fracture on the thermal field can be ignored for the thin
glass plate in the experimental conditions and a one-
way coupled thermal-mechanical model is adequate
for the low immersion speed tests discussed here. We
summarize the thermo-mechanical model (Kilic and
Madenci 2010) below and focus on the implementa-
tion of the static solver using the conjugate gradient
method.

The equation of motion of any node at x in the ref-
erence configuration at time t is given by (Kilic and

Madenci 2010):

ρü (x, t) =
∫
Hx

f
(
x̂ − x,u

(
x̂, t

) − u (x, t) , Tavg
)

dVx̂ + b (x, t) , (1)

where ρ is the mass density, u is the displacement vec-
tor field, Tavg = (

T
(
x̂, t

) + T (x, t)
)
/2 is the average

thermal field, Hx is the neighborhood regionofx (called
the horizon region), f is the pair-wise force function,
and b is the prescribed body force density field.

For a static problem, left side of Eq. 1 vanishes,
which leads to∫
Hx

f
(
x̂ − x,u

(
x̂
) − u (x) , Tavg

)
dVx̂ + b (x) = 0,

(2)

for every node x. Here we denote ξ = x̂ − x as the
relative reference position between node x and x̂, η =
u

(
x̂, t

) − u (x, t) as the relative displacement, average
temperature Tavg as T for convenience, and ξ + η =ŷ−
y represents the current relative position between the
nodes. The interaction between material points is set to
zero beyond a certain horizon size δ, such that

f (ξ , η,T ) = 0 if |ξ | > δ. (3)

The force density function is given as

f (ξ , η, T ) = f (|ξ + η| , |ξ | ,T )
ξ + η

|ξ + η| , (4)

where f is a scalar-valued function of the distance
between the nodes in reference and deformed config-
urations. In this work, we use a Prototype Microelas-
tic Brittle (PMB) material model (Silling and Askari
2005), in which f is defined as

f (|ξ + η| , |ξ | , T ) = g (s (ξ , η) , T ) h (ξ , η, T ) , (5)

where

s = |ξ + η| − |ξ |
|ξ | =

∣∣ŷ − y
∣∣− ∣∣x̂ − x

∣∣∣∣x̂ − x
∣∣ , (6)

is the bond stretch, and g is a linear scalar-valued func-
tion given by

g (s, T ) =
{
c
(
1 − |ξ |

δ

)
(s − αT T ) if |ξ | < δ,

0 otherwise,
(7)

where αT is linear thermal expansion coefficient, and
c is the spring constant in the form of

c = 36E
πδ3

(8)

for conical micromodulus function in 2D plane stress
(Bobaru and Zhang 2015). E is Young’s modulus of
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the material, δ is the horizon size, and h is a history-
dependent scalar-valued function given as

h (ξ , η, T ) =
{
1 if s (ξ , η) − αT T < s0,
0 otherwise,

(9)

where s0 is the critical stretch determined by:

s0 =
√

5πG0
9kδ , (10)

for a conical micromodulus function in 2D plane stress
(Bobaru and Zhang 2015). G0 is the fracture energy
(energy per unit fractured area for complete separation
of the body in two halves), and k is the bulk modulus.

This material model is equivalent to the kernel func-
tion using n = 1 for peridynamic kernel c(x̂, x)/∣∣x̂ − x

∣∣n (see Chen et al. 2016). They constructed a
peridynamic kernel (n = 2) based on physical princi-
ples for dynamic elasticity (and thermal diffusion) and
showed that this is the only one whose convergence to
the classical solution does not depend on the fineness
of the discretization grid. Both models (with n = 1,
or n = 2) converge, in the limit of horizon going to
zero and ratio of horizon to grid spacing going to infin-
ity, to the classical solution for problem with sufficient
smoothness. Notice that for some kernel choices, the δ-
convergence (when the horizon to grid spacing is kept
constant as the horizon goes to zero) may lead to con-
verged values that are different from the classical ones
(Tian and Du 2013).

Here, we noticed no significant differences on crack
patterns between n = 1 and n = 2, and the rest of the
results in this paper use the kernel from the original
PMB model (n = 1). The local damage at a point is
defined as (Silling and Askari 2005)

D (x) = 1 −
∫
Hxh(x,ξ ,η,T )dVξ∫

HxdVξ
. (11)

According to Eq. 2, the force density on node i is
discretized as

Fi =
∑
jεHi

f
(
x j − xi ,u j − ui ,

Tj + Ti
2

)

�V j + bi = 0, (12)

where i and j are node numbers, �V j is the reference
volume of node j . Notice that the HHB partial vol-
ume correction (Bobaru and Zhang 2016) is applied to
improve the accuracy of mid-point quadrature scheme
because node j may not be fully covered within the
horizon of node i .

Solving the nonlinear system in ui of Eq. 12 is
equivalent to minimization of the potential energy with
respect to the nodal coordinates of all discretization
nodes. The negative gradient of the total potential
energy with respect to the current nodal coordinates of
node i is Fi . Starting from a starting guess for ui given
by unrestricted thermal expansion of the plate, we use
the nonlinear conjugate gradient (NCG)method, like in
(Zhang et al. 2016), to find the solution for the system in
Eq. 12 for the starting given temperature profile. After
each “translation” of the experimentally-measured or
analytical temperature field (see Sect. 3 for details),
the starting guess for NCG is the displacement field
obtained by the NCG solver on the previous tempera-
ture field.

The NCG method is modified from sections B4 and
B5 in Shewchuk (1994), and is shown in Algorithm 1.
Here we use the secant method for the line search and
the Polak–Ribière formula for calculating the value of
β. The line search convergence criterion is defined as:

α2δd > ε2LSs
2
0�x2, (13a)

where α is a coefficient (see Algorithm 1), δd is the dot-
product of search direction d with itself, �x is the grid
spacing, and εLS is the error tolerance for line search,
equal to 10−5 in this study. The NCG convergence cri-
terion is defined as:∑
i
F2
i < NDOF · ε2CG · F2

bmax, (13b)

where NDOF is the number of degree of the freedom in
the system, εCG is NCG error tolerance, taken here as
5 × 10−5, and Fbmax is the maximum allowable bond
force (when s = s0) given as

Fbmax = cs0�V, (14)

where �V is the volume of a node assuming uniform
grid. Error tolerance εLS and εCG were chosen suffi-
ciently small that ensures no noticeable crack path dif-
ferences when smaller convergence tolerances values
are used.
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The static solver in algorithm 1, in conjunction with
the bond-failure criterion (exclusively based on critical
tensile strain in a bond, see Eqs. 9 and 10) has been
successfully applied to predict mode-I-dominated brit-
tle fracture under fatigue conditions (see, e.g., Zhang
et al. 2016). The critical tensile strain criterion, how-
ever, has its performance affected when mode-II frac-
ture is an important component of mixed-mode failure.
As we shall see in Sect. 4.1, the oscillating behavior
of thermally-driven cracks in glass is such a case of
mixed-mode cracking (mode-I-dominated and with a
sign-changing mode-II, see Sakaue et al. 2009). We
will show that small amounts of temporary shear defor-
mations, that otherwise create a full crack in the physi-
cal experiment, leave some “leftover”, unbroken bonds
that continue to bridge the partial crack, when the criti-

cal tensile strain criterion alone is applied in our peridy-
namicmodel (see Sect. 4.1 for details). These unbroken
bonds further affect the search direction in the energy
minimization Algorithm 1 and lead to false (unphys-
ical) minima corresponding to a fast damping of the
oscillating crack. To eliminate this problem, we intro-
duce a new and simple extra failure criterion that does
not require tracking of the crack path and ensures left-
over unbroken bonds from these small, transient shears,
break, when getting near, but not passing, their critical
strain.

3 System setup

In the experiment, the glass plate thickness is usually
smaller than the diffusion length at low plate speed
(Ronsin et al. 1995). Therefore, the temperature pro-
file through the thickness and width can be considered
as constant. In addition, the effect of crack growth on
the temperature profile can also be ignored. Therefore,
the slow thermal cracking can be considered as quasi-
static, as long as the temperature profile is updated to
mimic the conditions in the experiment. Note that we
could also solve the transient heat problemwith peridy-
namics (see e.g. Bobaru and Duangpanya 2010, 2012)
but given the experimental details of the thermal field
provided in the experiments (Ronsin and Perrin 1998),
this is not necessary here.We thus account for the effect
of the plate velocity v only via a “moving” tempera-
ture profile T (x) imposed along the plate’s length, as
a function of the coordinate x along the glass plate’s
length direction.

The problem is modeled using 2D plane stress
assumptions and a sketch of the simulated system is
shown in Fig. 1. The glass slide with a small pre-
crack (45◦ tilted or 0◦ horizontal, 1 mm long) at edge
is immersed into the cold water bath with a constant
velocity v. The steady-state thermal field (correspond-
ing to the plate velocities shown in Fig. 1 bottom
panel) is applied, and translated between the quasi-
static thermos-elastic solutions with a small advance-
ment step (from left side of the plate to the right) relative
to the discretization grid spacing (see Table 1). This
stepping strategy ensures converged crack paths, and
is equivalent to allowing a certain number of bonds to
break between static iterations used inmodeling fatigue
crack growth with PD (Zhang et al. 2016). Far away
from the hot end of the gap (> 5mm into oven), the
region is considered inactive in NCG solver in order to
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Fig. 1 Top: model setup with glass slide immersed into cold
water bath with constant velocity v. A steady-state thermal gra-
dient (relative to the cold front) leads to stable crack growth with
propagation speed similar to the plate immersion speed. Region
far from the hot end of the gap (> 5mm) is considered inac-
tive (fixed coordinates in NCG solver), to save computations.
Bottom: Temperature fields input in the PD model. Steady-state
thermal fields for three plate velocities (v = 0.05, 0.3, 0.5mm/s)

from experimental data in Ronsin and Perrin (1998). Notice tem-
perature transition regions inside cold bath and oven. Thermal
fields for plate velocities v = 0.1, 0.2, 0.4mm/s are obtained
by linear interpolation from nearest available experimental data.
The analytical thermal field (applied in qualitative studies in
Sects. 4.1, 4.2) is from the formula shown in Appendix A1 (see
Eq. A1)

Table 1 Material properties for soda-lime glass, the sample geometry, and PD simulation parameters

Material properties E (GPa) ρ (kg/m3) G0 at 30 ◦C(J/m2)

72 2440 3.8

Geometry Width w (mm) Gap h (mm) Length L (mm)

4–18 5 30

PD parameters δ (mm) ma Cold front increment (mm)

0.4, 0.2 6 0.015

δ = 0.4mm is applied to the qualitative studies in Sects. 4.1 and 4.2, while δ = 0.2mm is used in the quantitative studies in Sects. 4.3–4.6
a m is the relative grid density defined as the ratio of horizon size to the grid spacing
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Fig. 2 The PD simulation cycle: advance the cold front over the
sample by a small increment; solve the nonlinear system using
NCG; break all qualified bonds based on the critical bond strain
criteria (Eqs. 9 and 10) and correction criteria (Eq. 16); repeat

save computations in the PD simulation. Therefore, we
only solve the system to the left of the active/inactive
boundary in Fig. 1 top panel.

The corresponding steady-state thermal fields for
three plate velocities (v = 0.05, 0.3, 0.5mm/s) were
digitized from experimental curve (see Fig. 2 in Ron-
sin and Perrin 1998) using about 100 data points (Fig. 1
bottom panel). Notice that the transitions of the temper-
ature between three zones occur over a distance of a few
mm(less than 10mm) in experiments. The thermal field
for three other plate velocities (v = 0.1, 0.2, 0.4mm/s)
were obtained using weighted average below:

Tv (x) =
(
Tv1 (x) × ln

(
v2
v

) + Tv2 (x) × ln
(

v
v1

))

ln
(

v2
v1

) ,

(15)

given v1 < v < v2. Tv = 0.1 (x) and Tv = 0.2 (x) were
calculated from the weighted average of Tv = 0.05 (x)
and Tv = 0.3 (x), and Tv = 0.4 (x) from theweighted aver-
age of Tv = 0.3 (x) and Tv = 0.5 (x). The temperature at
any other location on the glass plate is obtained via a
“local” cubic spline interpolation built using two near-
est data points to the left, and two to the right of the
specific location. An analytical thermal field was also
used in the qualitative studies in Sects. 4.1 and 4.2. The
expression for the analytical thermal field can be found
in Appendix A1.

The measured fracture energy as a function of the
temperature (Fig. 11 inRonsin and Perrin 1998) is used
to compute the temperature-dependent s0 using a fitted
curve (see Appendix A2). The velocity dependence of
fracture energywithin the plate velocity range 0.05–0.5
mm/s does not appear to be significant (see Fig. 10 in
Ronsin and Perrin 1998) and thus is not considered in
this study.

Figure 2 illustrates one PD simulation cycle in our
model. The thermal field advances over a small spa-
tial increment, then energy minimization is performed

using the NCG solver and all qualified PD bonds are
broken based on the critical strain criterion. At this
step, NCG solver should be run until no more bonds
break, before moving the temperature field over the
sample for the next iteration. However, because we use
a sufficiently small advancement of the thermal field,
we noticed no significant differences in the solutions
when the “re-equilibration” part is skipped. The simu-
lation cycle is repeated until the cold front advances a
sufficiently long distance.

In order to make a direct quantitative comparison
with Rosin’s experimental work (Ronsin et al. 1995;
Ronsin and Perrin 1998), soda-lime glass with same
material properties is used in our simulation. Mate-
rial properties and simulation parameters are listed in
Table 1. A uniform 2D square grid is used to gener-
ate the nodal coordinates and the corresponding nodal
areas.

A typical simulation consists of 1600 steps, which
equals 24 mm on the advance of the cold front. The
energyminimizationwith the NCG solver is performed
on each step; it usually takes up to a few thousands
cycles of the NCG algorithm to find the configuration
corresponding to the energy minimum. The computa-
tional cost increases significantlywhen the horizon size
decreases and with increasing value of m. m is the rel-
ative grid density defined as the ratio of horizon size to
the grid spacing. GPU acceleration helps in this case,
and the static solver in the PD simulation is accelerated
by more than 100 times (single GPU vs CPU single
core). This acceleration makes simulations of a sys-
tem with one half-million nodes affordable (running in
a few days). The implementation of the simulation on
GPU is performed usingCUDAandCUBLAS libraries
(NVIDIA).

4 Numerical results

4.1 Leftover unbroken bonds across
the crack and additional bond failure criterion

First, we qualitatively analyze the growth of thermally
driven cracks on a setup similar to that in (Bouch-
binder et al. 2003; Pham et al. 2008). The simula-
tions are performed on a pre-notched (45◦ tilted, 1
mm long) soda-lime glass plate with material prop-
erties and geometry listed in Table 1. The glass plate
has a width w = 10mm, length L = 30mm. The gap
length h = 5mm and an analytical thermal field (see
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Fig. 3 Effect of leftover unbroken bonds across the crack and
inspiration for the extra bond-failure criterion. a Attenuating
crack path oscillations and high sensitivity to small changes in
temperature gap or plate width. bA plot of the PD bond connec-
tivity shows a large amount of leftover unbroken bonds across
the crack (black circle), which affects the next static solution and
leads to unphysical local minima. c, d Zoom-in on the “velocity”
vector plots (displacement difference between two consecutive
static solutions) at the crack tip area show that nodes on the

opposing sides of the crack move away from each other but not
perpendicular to the crack line (black dot line). This asymmetric
movement on opposite sides of the crack line indicates existence
of shear motion, which leads to some leftover unbroken bonds
(red lines) bridging the crack. This shear motion changes direc-
tion as the crack advances towards the other side of the plate;
this leads to the different orientations of the bridging bonds (see
c and d). The “velocity” vector plots in c and d are taken when
the crack tip is nearby, not for the final state shown in b

Fig. 1 bottom panel and Appendix A1) was applied due
to its easier implementation (see black line in Fig. 1,
bottom panel). Similar theoretical thermal fields were
used in other studies (see e.g. (Bouchbinder et al. 2003;
Pham et al. 2008). We use a relatively large hori-
zon size δ = 0.4mm (1/25 of plate width w) and
m = δ/�x = 6. The theoretical thermal field translates
from left to right with a step size of 0.015 mm between
iterations, which is 0.0375 relative to the horizon size.

Our first attempt to simulate thermally-driven crack
growth in a glass plate showed signs of oscillat-
ing cracks. However, the oscillating cracks attenuate
rapidly (die-off) and the crack continues to grow as a
straight crack (see Fig. 3a), independent of temperature
input conditions. In addition, we noticed only a very

small range of temperature, compared to what is seen
in experiments, over which we obtain the oscillation
behavior. Outside of this range (of a few degrees centi-
grade), we either get straight crack growth or branching
cracks. The same sensitivity is noticed in terms of plate
width changes.

To understand the reasons behind this behavior, we
plot the bonds connectivity in Fig. 3b. We observe that
there are many leftover, unbroken bonds bridging the
crack (see circles in Fig. 3b). Such bonds form a small
angle with the local crack direction, and suffer rela-
tively small thermomechanical deformations, includ-
ing small shear (see Fig. 3c, d), only for the period
when the thermal gradient is present at that particu-
lar location. These small shear, temporary deforma-
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Fig. 4 The extra bond-failure criterion. a Strain history in a bond
that will be left unbroken (red line in Fig. 3c) by the regular cri-
terion. The critical bond strain s0 given in Eq. 10 is approached
but never passed, as the crack tip advances by the bond loca-
tion. b The angle between the velocity vectors of this bond’s
end-nodes shows that nodes are moving away from each other
(angle > 120◦) when the bond strain approaches s0. This gen-
erated one of two conditions in the extra failure criterion. The

other condition comes from the observation of high damage index
on nodes along the crack line. c Smooth and stable oscillating
crack is obtained after extra failure criterion is applied (Eq. 16).
d Only few unbroken bonds remain when the extra failure cri-
terion is used. Several leftover bonds still exist (black circles)
only because damage index at one of the nodes is slightly lower
than the Dmin used. The effect of these bonds on crack path is
negligible

tions are not sufficient to induce failure in all bonds
crossing the growing crack (Fig. 4a). The critical bond
strain criterion is not satisfied for all bonds in the crack
region when small and temporary amounts of shear are
applied. This is a deficiency of the current bond failure
criterion, which is limited to bond-breaking in tension
only.

The computations show that the shear motion
changes sign as the crack tip advances in an oscilla-
tory manner, which agrees well with the experimental
observations that mode-II stress intensity factor KI I

changes sign in accordance with the variation of the y-
coordinate of the crack tip location (Sakaue et al. 2009;
Yoneyama and Sakaue 2014). The sign change of the

shear component leads to the orientation switch (seen in
Fig. 3c, d) for the leftover unbroken bonds at different
phases of the oscillation. Note that a peridynamic form
of the J-integral for mode I loading has been introduced
in (Hu et al. 2012), where it was shown that, in the limit
of the horizon going to zero, the peridynamic J-integral
converges to the classical value of the J-integral.

Once the temperature profile moves over, the local
thermal strain gradients subside fast, and these bonds
will never break. These unbroken bonds, however, fur-
ther affect the search direction in the energy mini-
mization algorithm and lead to false (unphysical) min-
ima corresponding to the observed fast damping of the
oscillating crack.
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To remove the unbroken bonds across the crack, a
general bond-breaking criterion that accounts for shear
failure should be introduced. For the time being, we
propose an extra bond-failure criterion added to the
existing critical bond strain failure criterion (Eqs. 9
and 10) that causes bond breaking via tensile strain
in the bond.

An investigation of the nodes’ motion near the crack
tip illustrates that nodes on two sides of the crack sur-
face move away from each other (Fig. 3c, d), with the
angles between their corresponding “velocity” vectors
being very large (Fig. 4b). For a quasi-static problem,
we define the nodal “velocity” vectors as the displace-
ment vector between two consecutive static solutions.

Based on these observations, the extra bond failure
criterion we introduce is: break the bond connecting
node i and node j if

both Di and Dj > Dmin, (16a)

and
vi · vj

|vi |
∣∣v j ∣∣<cos (θmin) , (16b)

are satisfied. Here, Di is the damage index on node i , vi
is the velocity of node i which equals the node displace-
ment difference from previous step, Dmin and θmin are
parameters chosen to be 0.3◦ and 120◦ in thiswork. The
first condition in the extra criterion ensures that nodes i
and j reside on or near a crack surface,while the second
condition guarantees that nodes i and j are located on
opposite sides of the crack. A close look into the bond
connectivity in Fig. 3b shows that the unbroken bonds
exist for nodes within a layer smaller than the horizon
size, away from the crack surface. The damage index at
such nodes is larger than about 0.3. For a straight crack,
nodes on opposite sides of the crack surface near the
crack tip move away from each other in almost 180◦
(see Fig. 4b). However, for a curved crack, this angle
can be lower than 180◦ . We choose θmin = 120◦ to
allow such tolerance but still disqualify bonds connect-
ing nodes that are on the same side of the crack surface.

We emphasize that the introduction of this extra con-
dition only perturbs the system infinitesimally, because
the bonds to which is applied, are very close to being
broken at the moment when the conditions in Eq. 16
apply (see Fig. 4a, b). Moreover, although the extra
bond failure criterion is applied over the entire simu-
lation domain, it only becomes active at pairs of nodes

that reside on different sides of the crack and which
are moving away from each other with a very large
angle between their corresponding “velocity” vectors.
The criterion does not influence the advancement of
the crack tip because damage indices for nodes slightly
ahead of the crack tip region do not satisfy the condition
given in Eq. 16a.

The results in Fig. 4c show an extremely stable, peri-
odically oscillating crack obtained after the implemen-
tation of the extra bond-failure criterion. The bond con-
nectivity plot also verifies that almost all the leftover
unbroken bonds (Fig. 4d) are eliminated and a very
“clean” crack surface is obtained.A few leftover unbro-
ken bonds still exist (black circles) because the damage
index at one of the end-nodes was slightly lower (0.29)
than the value we ran the test with, Dmin = 0.3. The
effect of these few bonds on the crack path are, in any
case, negligible. A safer value for this parameter would
be Dmin = 0.25.

4.2 Transition of crack propagation
regime with increase in temperature gap

We first investigate the transition of the crack propa-
gation type with the increase in temperature gap, using
the theoretical (analytical) thermal field, same mate-
rial properties, and same glass plate geometry as in
Sect. 4.1. Figure 5 clearly shows the transition of the
crack shape from straight (Tgap = 141 ◦C, Fig. 5a),
to dying oscillating (Tgap = 163 ◦C, Fig. 5b), to sta-
ble oscillating (Tgap = 181 ◦C, Fig. 5c), to branch-
ing (Tgap = 221 ◦C, Fig. 5d), to oscillating-branching
hybrid (Tgap = 281 ◦C, Fig. 5e), to multiple branch-
ing (Tgap = 381 ◦C, Fig. 5f), under higher and higher
temperature gap. The straight crack, stable oscillating
cracking, and oscillating-branching hybrid crack are
in excellent agreement with the experimental observa-
tions (see Fig. 5h–j) in Yuse and Sano (1993), obtained
for similar type of conditions in thin Borosilicate glass
plate). The dying oscillating crack matches extremely
well with experimental observations (see Fig. 11 in
Sakaue et al. 2009). Figure 5g illustrates the crack
growth using a horizontal pre-crack (placed slightly
off-center to introduce a small initial asymmetry),
which reproduces the stable oscillating crack obtained
using a 45◦ tilted pre-crack (Fig. 5c). We conclude
that the oscillating crack with constant wavelength are
highly stable in our computations, and are not sensitive
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Fig. 5 Transition of the crack path from straight (a), to dying
oscillations (b), to stable oscillations (c), to branching (d), to
oscillating-branching hybrid (e), to multiple branching (f) with
an increase in temperature gap. Crack patterns in a, c, e match
experimental results in h, i, and j, in (Yuse and Sano 1993),
respectively. The crack pattern in g is obtained under the same
conditions as that in c, except for the horizontal pre-crack (placed
slightly off-center to introduce a small asymmetry), instead of
the 45◦ tilted pre-crack used in c. The development of stable
oscillating crack initiates from different types of asymmetries
and is not sensitive to the direction of the pre-crack

to the type of pre-crack from which they are gener-
ated. Note that experiments do mention the high repro-
ducibility of this type of crack growth in glass plates
(Yuse and Sano 1993).

It has to be pointed out that although we are capable
of producing branching cracks with the static solver
when the temperature gap is high, a dynamic solver
for the coupled thermo-mechanical problem would be
more appropriate in this regime. In experiments (Yuse
and Sano 1997;Yang andRavi-Chandar 2001), branch-
ing is induced at the higher immersion speeds (and/or
higher temperature gap, and/or larger plate width). The
approximation of the temperature field as steady-state
is likely departing from the real situation. This is the
reason for which this regime should be modeled by
using a coupled transient thermomechanical PDmodel,
in 3D (because the transient heat transfer through the
thickness of the platewould alsoplay a role in this case).

4.3 Phase diagram for crack types

Convergence studies (δ-convergence) for PD quasi-
static models using the same solvers as in this work

Fig. 6 Morphology phase diagram of crack transition in terms
of plate velocity v against plate widthw. Different crack patterns

computed by the model are marked by ( ) for no crack growth,

( ) straight crack, ( ) oscillating crack, and ( ) branched
crack. Inset images show actual crack paths computed for v =
0.05mm/s at different plate widths w. Experimental delimiters

wc(v) ( ) and wosc(v) ( ) from Ronsin and Perrin (1998) are
shownwith their corresponding guidelines (pink straight line and
cyan dash line). Our model captures the nonlinear shape of the
transition curves in this regime. The configuration marked by the
red circle is used in the δ-convergence study

have been reported in (Zhang et al. 2016) for model-
ing fatigue crack growth. Those simulations were per-
formed with m = 4. A larger m = 6 is used in our
study because a largerm produces less grid dependency
of crack path (see Dipasquale et al. 2014). Larger m-
values is always better from the point of view of accu-
racy, but is comes at a cost: the computational time
scales with O(m2).

We conduct a δ-convergence study for thermally-
driven fracture using δ = 0.4, 0.3, 0.2, 0.15, and
0.1mm with m = 6, respectively. The physical param-
eters are as follows: plate immersion speed v =
0.05mm/s, plate width w = 15mm, temperature gap
Tgap = 135 ◦C (see location marked by the red cir-
cle in Fig. 6). These conditions are especially del-
icate because they are near the separation, in the
phase diagram, between oscillating crack and straight
crack growth behavior observed in experiments. The
experimental thermal field (see Fig. 1 bottom panel) is
applied. This plate width w = 15 mm, turns out to be
only 1 mm above the critical plate width wosc (which
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separates the straight crack growth behavior from the
oscillating crack at this immersion speed, see column
for v = 0.05 mm/s in Fig. 6).

Branching cracks are observed at δ = 0.4 and 0.3
mm, while oscillating crack is observed when using
δ = 0.2 mm and lower (see Appendix A3). The crack
path depends on the horizon size, up to a certain level,
for two reasons:

(a) The “thickness of damage” changes with the hori-
zon size (see Ha and Bobaru 2010). The amount
and distribution of material on both sides of the
crack is critical in this problem, since this distri-
bution is what determines the amount of thermal
strains,which in turn controls the crack path evolu-
tion (see Sect. 4.6). The smaller the horizon size,
the less damaged material volume (with broken
bonds) we get; an imbalance between the amount
of material to the left and right of the advancing
crack line is smaller when the same small quan-
tity is “shaved off” both side than when the same,
but larger amount is removed from both sides; as a
result, decreasing the horizon size leads to a reduc-
tion in the amplitude of oscillations of an undu-
lating crack path, or, a higher entropy behavior
switches to a lower one (e.g. branching transitions
to oscillating crack, oscillating cracks transitions
to straight crack, straight crack to no crack), if we
are near a transition demarcation zone in the phase
diagram.

(b) The sharpness of the temperature gradient recov-
ered by the PD solution depends, up to a point,
on the horizon size (see Bobaru and Duangpa-
nya 2010, 2012). When the horizon is large rela-
tive to the width over which temperatures changes
rapidly which could be considered as a rele-
vant length-scale in this problem (see Bobaru
and Duangpanya 2012), the PD solution cannot
approximate well the actual thermal strains and
the computed contraction forces exerted around
the crack tip, which influence the crack path (see
Sect. 4.6), will differ from the real case. Once the
horizon size is sufficiently small (relative to the
length scale introduced by the temperature gradi-
ent) the thermal field matches the physical one.

The search for an “optimal” horizon size can be exe-
cuted via the convergence study detailed in Appendix
A3, which is really a “calibration” for the horizon size
using data points near one of the separation boundaries

between zones in the experimental phase diagram.Such
a calibration procedure performed using a single point
in the phase diagram is valid as long as using the “cal-
ibrated” horizon size recovers the entire experimental
phase diagram. The convergence study inAppendixA3
gives a horizon of δ = 0.2 mm as an “optimal” size for
our test, and we shall see that such a horizon size is
indeed able to recover the entire experimental phase
diagram.

For the rest of the computations reported here we
select and use δ = 0.2mm. With this horizon size, the
ratio to the smallest geometrical dimension of all the
plates considered here is w/δ = 20 (see also Bobaru
and Duangpanya 2012).

We perform a quantitative study for the crack type
that results from the thermal loading discussed below,
and compare results against the experimental ones from
Ronsin et al. (1995), Ronsin and Perrin (1998). For a
fair comparison,weuse the same soda-limeglass as that
listed in these experiments. Thermal field profiles at dif-
ferent plate velocities were extracted from experimen-
tal measurements in Ronsin and Perrin (1998), or inter-
polated from the nearest available experimental data
in that paper, if not provided in there. A temperature-
dependent fracture energy is fitted from the experimen-
tal measurements (see Fig. 12 in Appendix A2).

Simulations of crack growth with six different
immersion velocities ranging from 0.05 to 0.5 mm/s,
and plate widths ranging from 4 to 18 mm were per-
formed. The temperature difference Tgap between the
oven and cold bath is kept as 135 ◦C. In our quasi-
static simulations, plate velocity is not a direct input
parameter. Instead, thermal field profiles correspond-
ing to different plate velocities are provided. The ther-
mal profiles effectively embed the “dynamics” in this
problem: the immersion speed.

Figure 6 shows the phase diagram, computed with
PD, for crack propagation type/mode, in terms of
immersion velocity and plate width: no crack growth

( ), straight crack ( ), undulating crack ( ), and
branching crack ( ). The lines in this plot are curve-
fits to the experimental data (also shown) from Ronsin
and Perrin (1998).

We ran tests for a grid of six immersion velocities
by 14 plate widths, for 84 + 1 = 85 (one extra for
w = 4mm) different configurations. In general, we
observe that for lower immersion velocities and small
platewidths, no crack grows from the pre-notch.When,
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for a given immersion speed, w exceeds a certain crit-
ical value wc, a crack starts to grow in a straight line.
Crack path instability occurs when the plate width con-
tinues to increase above wosc, where oscillating cracks
are observed. When w is slightly beyond the onset of
oscillations, the crack shape is almost sinusoidal. As
w continues to increase, the amplitude of the, until
now, uniform oscillations increases and the periodic-
ity is no longer stable, eventually leading to branched
cracks. Similar to the crack pattern transition observed
in Fig. 5, the inset images in Fig. 6 show the transition
from no crack (w = 6mm), to straight crack (w = 10
mm), to oscillating crack (w = 15mm), to branching
(w = 18 mm) with the increase of plate width w, at
the particular plate immersion speed v = 0.05 mm/s
and for the temperature gap Tgap = 135 ◦C. Movies
showing the transient temperature field and growth of
straight crack, oscillating crack, and branching crack
can be found in the Supplementary material for two
different immersion speeds (0.05 mm/s and 0.5 mm/s)
and several plate widths (see Movies 1–5).

It is interesting to note that, for a certain plate width,
the computed PD results show that surprising situa-
tions of the following kind are possible for a plate
of fixed width: oscillating crack happens at a lower
immersion speed, straight crack growth at intermedi-
ate speed, and a return to oscillating crack at higher
speed. This “nonlinear” behavior is peculiar, but is it
seen in reality? Surprisingly, yes! The extracted sepa-
ration lines between these regions of crack-types from
the experimental phase diagram given in (Ronsin and
Perrin 1998) are shown on the same graph. The critical
values wc for the no-crack to straight-crack transition,
and wosc for straight-crack to oscillating-crack transi-
tion, are functions of plate velocity v. Ronsin and Per-
rin (1998) provide experimental values wc(v) ( ) and
wosc(v) ( ) for some plate velocities, and we placed
these values on the computed phase diagram in Fig. 6.
We also use the guidelines (pink continuous and cyan
dotted lines in Fig. 6) digitized from Ronsin and Perrin
(1998) in our phase diagram for a direct comparison.
Note that Ronsin and Perrin (1998) do not investigate
the transition to branching regime.

The PD-computed and experimental separations
between the different crack behavior regions in the
phase diagram of Fig. 6 are almost identical. The per-
fect match includes the unusual nonlinear behavior
mentioned above, in which a plate of a certain width
may transition from no-crack to straight-crack, and

Fig. 7 Wavelength of the oscillating crack as a function of the
platewidth.A linear dependence is noticed for several immersion
speeds

back to no-crack (or from straight-crack to oscillat-
ing crack, and back to straight-crack), with increasing
immersionvelocity.Themaximumdeviation in the sep-
aration lines in terms of critical plate width is within
1 mm across all plate velocities. It must be pointed
out that only four experimental data points ( ) were
available for “straight” to “oscillating” crack transition
within the velocity range studied here. Because of this,
the guideline we drew for Losc (pink line in Fig. 6)
may not represent the actual separation line with high
accuracy. The PD model captures the nonlinearity in
both transition curves, noted in the experimental data
(Ronsin and Perrin 1998).

We emphasize that our simulations only used the lin-
ear thermomechanical model, with damage modeled
via the failure of PD bonds in tension based on the
critical bond strain criterion (Eqs. 9 and 10) and the
correction criterion (Eq. 16) for cracks growing under
small and temporary shear deformations. The constant
bond failure strain is equivalent to Griffith’s criterion
(Silling and Lehoucq 2010). No other explicit failure
criteria based on energy, stress, or strain were used.

4.4 Oscillating wavelength

Figure 7 shows the wavelength of the oscillating
crack as a function of the plate width for different
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Fig. 8 Equilibrium crack
tip location ztip as a function
of plate width w. Plate
immersion speed
v = 0.1mm/s, gap distance
between the oven and cold
bath h = 5mm, temperature
difference Tgap= 135 ◦C.
Crack tip moves towards the
hot oven entrance as the

plate width increases ( ).
The available experimental
results are for a plate
immersion speed of
v = 0.125mm/s ( ) (from
Fig. 7 of Ronsin and Perrin
1998)

plate immersion speeds, with temperature gap fixed at
135 ◦C. Above the critical wosc, the oscillating wave-
length is approximately a linear function of the plate
width. The wavelengths mostly fall in the range of 5–
7 mm, which also match well the values reported in
experiments (Ronsin and Perrin 1998). Specifically, the
wavelength λ for v = 0.2 mm/s and w = 15 mm is
about 5.7 mm, while the experimental value is 5.6 mm
(see Fig. 13 in Ronsin and Perrin 1998).

4.5 Crack tip location

We computed the values for the equilibrium (after the
crack has advanced a short distance into the plate)
crack tip location ztip at different plate widths w for
a fixed plate velocity v = 0.1 mm/s, given gap dis-
tance between the oven and cold bath h = 5mm, and
given temperature difference Tgap = 135 ◦C. Under
these conditions, for plate widths in the range of 10–13
mm, the propagating crack path remains straight. As
the plate width increases, more elastic energy is avail-
able and the crack tip stabilizes closer to the entrance in
the hot oven, and may even enter slightly into the oven
region for the larger plate widths (Fig. 8). This trend
matches very well the experimental results performed
under the same conditions, exceptwith a slightly higher
plate velocity v = 0.125mm/s (see Fig. 7 of Ronsin
and Perrin 1998).

4.6 Elastic vortices and instability of crack growth

To better understand the reasons behind the observed
crack path instabilities, we find that probing the rel-

ative motion field (the “velocity” field, see Sect. 4.1)
is very informative and rather fascinating. Collective
elastic rotational motion of material points in an elastic
solid (aka elastic vortex) was mentioned in Shilko and
Psakhie (2014) in a study of dynamicmode II cracking,
where the vortex velocity approached the shear wave
speed. Elastic vortices were also observed in dynamic
mode I cracking and branching in Bobaru and Zhang
(2015) [see page 90 and Fig. 28 in Bobaru and Zhang
(2015)]. Herewe show that the elastic vortex is also rel-
evant in quasi-static crack growth in quenched glass,
where the vortex velocity (the translational speed of
coherent structures, not the nodal velocities) is very
small, below mm/s.

In order to visualize the streamlines of the nodal
velocity field (see Sect. 4.1), the Linear Integral Con-
volution algorithm (Cabral andLeedom1993; vanWijk
2002) was applied. First, the image pixels colored by
the velocity vector magnitude is blended with a ran-
dom black/white noise image. Then, the local behavior
of the vector field at a pixel (x,y) is approximated by
computing a local streamline that starts at this pixel
and moves out in the positive and negative directions
for a certain distance (e.g. 20 steps with step size of
one pixel). The color at pixel (x, y) is calculated as the
convolution of a suitable integral kernel with the color
of all pixels in this streamline. Intuitively, this is similar
to pouring color into a river.

Figure 9 illustrates the formation of elastic vortices
ahead of the crack tip for different crack paths caused
by different plate widths, while the temperature dif-
ference Tgap and plate immersion speed v are fixed
at 135 ◦C and 0.2 mm/s, respectively. Even for a plate
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Fig. 9 Elastic vortices appear in the streamlines of the “velocity”
field. Crack paths for different platewidthsw, for the temperature
gap Tgap = 135 ◦C, and plate immersion speed v = 0.2mm/s.
a w = 10mm; b w = 13mm; c w = 16mm. The color indi-
cates the relative magnitude of the “velocity” vector (normalized
to [0 1] with 1 representing the maximum value, at the scale
of 10−4 mm/s, estimated from maximum displacement vector
divided by the time interval between two consecutive static solu-
tions)

without a crack, given the geometry and the thermal
gradient over the plate, one would obtain the circular
vortices noticeable near the top and bottom right side of
the plate (in the oven). These symmetric vortices, rela-
tive to the center line, are always present. For the plate
widthw = 10mm(Fig. 9a), the straight crack advances
along the symmetry line, as if it is “drawn”, as in metal
sheet drawing between rollers, in this case the circular
vortices. For a larger platewidth,w = 13mm (Fig. 9b),
the crack maintains straight-line growth, but two sym-
metric vortices appear in the crack tip vicinity. The
material points ahead of the crack tip move towards the
crack tip, while for lower plate width w = 10 mm (for
the same immersion speed and temperature gap) they
move away from the crack tip (see videos in the Sup-

plementary material for the motion). It is interesting to
point out that the transition from straight to oscillating
crack does not coincide with the change of “velocity”
vector direction ahead of the crack tip. The straight-to-
oscillating transition was experimentally verified (see
Yang and Ravi-Chandar 2001) to not match the change
of T-stress sign, and therefore, the T-stress criterion
(Cotterell and Rice 1980) for crack path instability is
not applicable in this case.

At an even larger plate width, w = 16mm, as the
contraction forces growon the two sides about the crack
(because the amount of material contracting as it is
immersed in the cold bath, is larger), any small imbal-
ance between them leads to the formation of elastic
vortices that are no longer symmetric about the central
line (see Fig. 10).When one such vortex becomes suffi-
ciently “stronger” than its “twin”, the crack moves in a
direction as if it is pulled by the stronger elastic vortex
towards it. Eventually, the material (and its associated
contraction force) on the side opposite to the direction
in which the crack grows becomes sufficiently large
that the contraction force (and the velocity vortex asso-
ciated with it) becomes dominant and it starts to turn
the crack around, pulling the crack back. This process
repeats, resulting in a constantly undulating crack path.
In terms of velocity vortices, the continued competition
between the strength of the “cyclones” surrounding the
crack tip, which vary with the plate width, the immer-
sion speed, and the temperature gap, leads to the growth
of oscillating crack paths. This phenomenon reminds
us of the coherent turbulent structure commonly seen
in fluids (see, e.g., Hussain 1986).

At even larger plate widths and/or higher immersion
speed (e.g. w = 16mm and v = 0.5mm/s), branched
cracks are produced (Fig. 11a). Here we are particu-
larly interested in how crack branching develops (cir-
cled in Fig. 11a). Interestingly, the crack does not split
in two at its tip, instead, a secondary branch starts from
a point along the main crack. This happens because the
larger amount of stored elastic energy in thewider plate
leads to sharper turns in oscillating crack path, nearly
perpendicular to the immersion direction (Fig. 11b);
the combination between opening of a nearly vertical
crack and shrinkage (thermal contraction due to cool-
ing) of the glass plate creates a vortex that continues
to pull the crack away from the immersion direction;
however, this crack growth is slowed down as it starts
to move perpendicular to the immersion direction, and
its growth is not sufficient to release the stored elastic
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Fig. 10 Elastic vortices in the streamlines of the “velocity” field.
Oscillating crack path at different phases for the temperature
gap Tgap = 135 ◦C, plate immersion speed v = 0.2mm/s, and
w = 13mm: a before crack tip arrives at amax amplitude; b after
the crack tip passes a max amplitude; c before crack tip reaches
another maximal amplitude. Observe the competition between
the coherent turbulent structures and the resulting path followed
by the crack

energy caused by the thermal field. Therefore, a new
crack branch develops around the turning point of the
existing crack, where strain energy is now concentrated
(Fig. 11c). The initiation of this secondary branch is
happening under mode-I conditions.

While the newbranch grows rapidly, the evolution of
the thermoelastic deformations ahead of the crack tip of
the original path “restart” its growth. The two branches
now advance at almost the same pace (Fig. 11d). Notice

Fig. 11 Elastic vortices in the streamlines of the “velocity”
field. a Full branched crack path for the temperature gap Tgap =
135 ◦C, plate immersion speed v = 0.5mm/s, and w = 16mm.
Snapshots show the development of a side branch (dashed circle
in a): b before the side branch appears; c side branch tip emerges;
d side branch continues to grow

that the two branches influence each-others growth (see
the elastic vortices in Fig. 11a). Their spacing is rela-
tively uniform (see also Fig. 5e, f), and when one oscil-
lates (at higher immersion speed or larger platewidths),
the other does it too, in tandem [see alsoFig. 1 inSakaue
et al. (2008) for experimental results on this observa-
tion]. The streamlines for this case showmany patterns
similar to limit cycles and bifurcations seen in phase
portraits for dynamical systems (see Strogatz 2001).

The “velocity” field for other plate widths in the
case of immersion speed v = 0.5mm/s can be found
in Fig. 14 in Appendix A4. Movies of crack growth
showing the velocity vortices for three different plate
widths (10, 13, and 16 mm) and two different immer-
sion velocities (0.2 mm/s and 0.5 mm/s) can be found
in Supplementary material (see Movies 6–11).

5 Summary

Wedemonstrated computational predictability of slow-
growth thermal cracking in glass for the specific set
of experiments with a notched hot thin glass plate
immersed into a cold bath. In contrast with previous
attempts at simulating this type of experiments, we
provide quantitative comparisons between our model’s
results and experiments. The new peridynamic model,
with an improved fracture criterion that eliminates
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“bridging bonds” left behind the crack front when very
small and temporary thermo-mechanical shear defor-
mations are present, reproduces in detail the crack-
instability phase diagram obtained experimentally in
Ronsin and Perrin (1998), as well as the crack tip
location dependence on the plate width. The model
captures the crack growth patterns (no crack growth,
straight crack, oscillating crack, branching crack) that
depend on the immersion speed and plate width, and
matches perfectly the experimental observations of the
transition curves between these regions. From the point
view of motion of material points during the thermally-
driven fracture process, we show that the growth of
oscillating crack paths is a direct result of the compe-
tition between the relative strength of elastic vortices
developed in the vicinity of the crack tip. For suffi-
ciently large plate widths (for a fixed immersion speed
and temperature gap), the contraction forces are strong
enough to sustain elastic vortices that “pull” the crack
back and forth leading to the propagation of an undu-
lating crack path initiated by small asymmetry in the
location of the pre-notch.

We discussed a method for determining the appro-
priate size of the peridynamic horizon based on data
points at the separation between crack-type zones in
the experimental phase diagram. For the immersion
speeds tested in this paper (v = 0.05−0.5mm/s range
and temperature gap of 135 ◦C), a static peridynamic
solver was sufficient to solve the problem (once the
horizon size is smaller than the relevant length-scale

in the problem induced by the thermal gradients, or
the width over which the temperatures change fast).
For cases in which the immersion speed or the tem-
perature gap are significantly higher, a dynamic and
fully coupled thermomechanical solver may need to be
used.

The unrestricted growth of damage provided by
the peridynamic model allowed autonomous crack
growth in arbitrary directions, as well as initiation of
secondary crack branches in thermally-driven crack
growth. The simple peridynamic model used here
shows that the complexities observed in quenched-
glass fracture behavior can be predicted to the finest
details. The interesting similarities between coherent
structures observed in the velocity field of this prob-
lem and coherent structures in fluids or bifurcation
diagrams of dynamical systems require further explo-
ration.
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Fig. 12 Temperature-dependent fracture energy. The guideline (blue line) for the experimental data points ( ) is fitted using Eq. A1
(red dot line). The experimental data are digitized from Ronsin and Perrin (1998)
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Appendix A1: Mathematical expression of the ana-
lytical thermal field

An analytical expression, shown in Fig. 1, that approx-
imates the thermal field from the water bath, across the
gap, and into the oven, is (see Bouchbinder et al. 2003,
Pham et al. 2008):

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 i f x ≤ − H,

T0 + 1
2 Tgap

(
1 − 1−exp

(
x

LD

)

1−exp
(
− H

LD

)
)

i f − H < x ≤ 0,

T0 + 1
2 Tgap

(
1 − 1−exp

(
− x

LD

)

1−exp
(
− H

LD

)
)

i f 0 < x ≤ H,

T0 + Tgap i f x > H,

(A1)

where H = 10mm (double of the gap length h) to have
a transition of the temperature between three zones sim-
ilar to that observed in the experiment (see Fig. 1 bot-
tom panel), T0 the temperature of the cold water bath,
Tgap the temperature difference betweenwater bath and
oven, LD = 1 mm the diffusion length, and x the coor-
dinate along length direction with the origin (x = 0)
placed at the interface between the water bath and the
gap.

Appendix A2: Temperature dependent fracture
energy

Experiments showed that the fracture energy decreases
with the increase of the temperature at the crack tip
( dots and corresponding blue guideline in Fig. 12,
digitizied from Fig. 11 in Ronsin and Perrin 1998). To
take this effect into consideration in our simulation, the
guideline is fitted using the equation:

G0 = G0,min + (
G0,max − G0,min

)
· exp [−β (T − T0)] , (A2)

where G0,max = 3.8 J/m2 and G0,min = 1.6 J/m2 cor-
respond to the fracture energy at lower temperature
limit temperature (T0 = 30 ◦C) and at higher tempera-
ture limit, respectively. β = 1/14 is a fitting parameter.
Equation A2 represents the experimental G0—T rela-
tion very well, for T above 45 ◦C. A slight deviation
below 45 ◦Chas no impact on the crack growth because
the crack tip never falls in this low temperature region.

Fig. 13 Crack paths for different horizon sizes δ, while other
parameters are fixed: a δ = 0.4 mm; b δ = 0.3 mm; c δ = 0.2
mm; d δ = 0.15 mm; e δ = 0.1 mm. The m-ratio is 6
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Fig. 14 Elastic vortices appear in the streamlines of the “veloc-
ity” field. Crack paths for different plate widths w, for the
temperature gap Tgap = 135 ◦C, and plate immersion speed
v = 0.5mm/s. a w = 10mm; b w = 13mm; c w = 16mm

Appendix A3: δ-convergence

Figure 13 shows the crack path at different horizon
size δ while other parameters are fixed: Tgap = 135
◦C, immersing velocity v = 0.05 mm/s, plate width
w = 15mm, m = δ/�x = 6. On the physical phase
diagram, the physical parameters place this case near
the transition zone between growth of a straight crack
and an oscillatory crack (see Fig. 6). Branching cracks
are observed at δ = 0.4 and 0.3 mm, while oscillating
crack is observed at δ = 0.2mmand lower. Thehorizon
size influences the amount of damage along the crack
path. For a larger horizon, a larger amount of mate-
rial is damaged and any small imbalance between the
amounts of material on the sides of the crack path gets
amplified more. As the horizon decreases, this imbal-
ance approaches the physical, real imbalance, that leads
to thermal strain larger on one side than the other,which

consequently results in contraction forces that pull the
crack from its straight path into an oscillatory one. (see
discussion in Sect. 4.3). Notice that for the oscillat-
ing crack case, the wavelength appears to be relatively
insensitive to the horizon size, while the starting point
of oscillations slightly moves farther from the notch tip
the smaller the horizon is.

AppendixA4: Elastic vortex and instability of crack
growth for v = 0.5mm/s
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