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Abstract An efficient computational model to simu-
late tensile failure of both hybrid and non-hybrid com-
posite materials is proposed. This model is based on
the spring element model, which is extended to a ran-
dom 2D fibre packing. The proposed model is used
to study the local stress fields around a broken fibre
as well as the failure process in composite materials.
The influence of fibre strength distributions and matrix
properties on this process is also analysed. A detailed
analysis of the fracture process and cluster develop-
ment is performed and the results are compared with
experimental results from the literature.
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1 Introduction

Modelling the longitudinal tensile failure of unidirec-
tional (UD) composite materials is a challenging task
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due to the complex mechanisms that govern this type
of failure. As the main load carrying component, the
fibres play an important role in the failure process. It
is understood that fibre strength is a stochastic prop-
erty that is dominated by a distribution of flaws (Argon
1974; Lamon 2007), therefore an accurate characteriza-
tion of the random nature of fibre strength is necessary
to develop proper composite models.

Another important factor in the failure process is
the stress redistribution once a fibre is broken and the
interaction between multiple fractures leading to the
formation of clusters of broken fibres (Pimenta 2015;
Scott et al. 2011; Swolfs et al. 2015b; Thionnet et al.
2014). If a cluster reaches a critical size it propagates
unstably and causes the failure of the material. When
a fibre breaks it does not fully lose its load carrying
capability because the surrounding matrix is loaded in
shear and transfers stress back onto the unbroken fibre
part (Fukuda 1985; Hedgepeth and Van Dyke 1967;
Landis and McMeeking 1999; Swolfs et al. 2013a). A
region along the fibre called ineffective length is cre-
ated. In this region the fibre’s load carrying capability
is hampered, however, at a certain distance away from
the breakage the fibre stress carrying capability is fully
recovered. The well known Cox’s shear-lag model can
be used to estimate the ineffective length and stress dis-
tribution around the broken fibre (Cox 2002). However,
shear yielding of the matrix at the tip of broken fibre
will be initiated due to an intensive stress concentration
state. To consider this phenomenon, Kelly and Tyson
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(1965) proposed modelling the matrix behaviour within
the ineffective length with a perfect-plasticity model,
therefore, the ineffective length is calculated from the
load balance between the fibre and matrix. Follow-
ing this ideas, the Global Load Sharing (GLS) model
was proposed by Curtin (1991). In this approach, the
stress released from a broken fibre is equally distributed
among the remaining unbroken fibres. GLS models do
not take into account the interaction between the fibres
and no local fields due to fibre fracture are considered.
Local Load Sharing (LLS) models were developed to
take into account fibre interaction in the longitudinal
failure of UD composites (Zweben 1968). Several ana-
lytical models to determine the stress concentration fac-
tor around a single broken fibre (Hedgepeth and Dyke
1967) or in the presence of multiple broken fibres (Bat-
dorf and Ghaffarian 1982; Batdorf 1982; Harlow and
Phoenix 1978) have been proposed. In addition, 3D
Finite Element Models (3D FEM) have been used to
fully model the microstructure of the composite (Mish-
naevsky and Brgndsted 2009; Tavares et al. 2016; Xia
and Curtin 2001). These models are computationally
expensive due to the refined meshes involved and the
complex material models required, imposing a limita-
tion in the number of fibres represented in the Repre-
sentative Volume Element (RVE).

The Spring Element Model (SEM) was proposed
by Okabe and co-workers as a low computational cost
alternative to 3D FEM (Okabe et al. 2005, 2007). The
SEM takes into account local stress redistribution due
to fibre failure. The model is based on the assembly of
periodic packages of fibre and matrix spring elements.
The periodic package or unit cell consists of one fibre
surrounded by six other fibres connected through shear
spring elements that represent the matrix behaviour.
Therefore, the unit cell consists of fibre axial springs in
the longitudinal direction and matrix shear springs in
transverse direction. This modelling approach has the
advantage of being computationally efficient, allowing
the simulation of RVEs with a large number of fibres,
while allowing to accurately capture the stress redis-
tribution and fibre break interaction during the failure
process of UD composites.

The objective of this work is to present a simple, yet
accurate and computationally efficient model to predict
the failure behaviour of composites using a random
fibre distribution. The model should be able to capture
the clustering process leading to the ultimate failure
of UD composites. The influence of different material
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properties on the stress redistribution and the failure
process zone of composites is analysed in detail.

2 Spring element model for random distribution of
different fibres

The model proposed in this section is an extension of
the SEM approach to both random distribution of fibres
and hybrid composites, where the fibres can have differ-
ent geometrical and mechanical properties. The SEM
consists of longitudinal spring elements, which rep-
resent the fibres, connected by transverse spring ele-
ments representing the matrix. The matrix contribution
in the axial load, i.e. fibre direction, is disregarded in
SEM, a commonly accepted hypothesis for UD poly-
mer composites. Therefore, only the matrix shear con-
tribution is represented through shear transverse ele-
ments. The stiffness matrices K of longitudinal and
transverse spring elements, from fibre and matrix ele-
ments, are given by (Okabe et al. 2005):

!
Kr=A4; /O B EBdz, (1)

d
K, = Ay, / B! GB,,dr, )
0

where subscripts f and m denote fibre and matrix ele-
ments, E is Young’s modulus of the fibre, G is the shear
modulus of the matrix, B is the strain-displacement
transformation matrix, Ay is the fibre cross section
area, A,, is the associated area on the fibre surface of
the matrix, [ is the fibre’s length and d is the distance
between surfaces of two adjacent fibres.

2.1 Micro-structure generation and finite element
discretization

To obtain the geometric model necessary to represent
the composite’s micro-structure, a periodic 3D RVE
is generated with a random fibre distribution, using the
random generator developed by Melro et al. (2008) with
the necessary modifications. To guarantee that the RVE
has a defined quadrangular geometry, the fibres that are
divided by the boundary of the RVE are forced to have
its centre at the edge, while ensuring geometric period-
icity. With the centre of the fibres defined, ensuring the
correct fibre volume fraction and that no fibre overlap
occurs, a 2D Delaunay triangulation (Delaunay 1934)
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Fig. 1 2D mesh for a periodic RVE with a random fibre distri-
bution

algorithm is used to generate a 2D triangular mesh. Fig-
ure 1 shows an example of a mesh, where each circle
represents a fibre and each line a matrix shear element.
Finally, to generate the 3D RVE mesh the previously
obtained 2D mesh is replicated with an offset distance
of [*, which is the predetermined length for fibre spring
elements, until the final total desired length of the RVE
in fibre direction is achieved. The generated sections are
connected through longitudinal fibre spring elements.

Taking By = [1/1° —1/%] and considering that the
cross section area of the fibre does not change along
the spring element, Eq. (1) can be used to obtain the
stiffness matrix for the fibre elements:

ASECT 1 —1
e _ " f
Ky=—x [_1 1]7 3)

where superscript e refers to element properties or
parameters, which can be different for the different
fibres involved.

Due to the random distribution of the fibres, two
major changes occur with respect to the hexagonal
packing used in the original SEM: firstly the distance
between each fibre element differs and secondly not
all fibre elements are connected to other six fibres, as
in the hexagonal packing. The fibres can be connected
to, depending on the fibre arrangement, from to three
to ten fibres. Therefore, the stiffness of the matrix ele-
ments change from element to element, being therefore
necessary to change the approach to obtain the stiffness
matrix of the matrix shear elements.

Fig. 2 Matrix shear element connecting 2 fibres

Consider two fibres (1 and 2) with different radii
(R1 and Ry) that are connected to, respectively, n1 and
ny fibres, and are separated by a distance d. The asso-
ciated area on each fibre of the transverse spring ele-
ment representing the matrix that connects both fibres
is, respectively:

27 R
AD = 2 gnd AR = 2 )
ni nz

The area of the matrix element is considered to vary
linearly between AS,}) and Af,% ).

(a8
An(r)=AD 4 y r. (5)

A schematic representation of the fibres and the
matrix shear element, which connects both fibres, is
shown in Fig. 2.

The shear force on a cross section (at the position r)
in the matrix shear element is

d
fu(r) = GA, (r)d—f, ©6)

where u is the displacement in the longitudinal direc-
tion and r is the distance from the fibre 1 surface to the
cross section, varying from O to d (see Fig. 2). Impos-
ing force equilibrium on a isolated portion of the matrix
shear element of radial dimension dr yields:

dfu(r) _ d du _
Te=0 = & (GAm(r) dr)_o. )

The solution of Eq. (7) gives the relationship
between the shear force on the matrix shear element
and the relative displacement of the fibres
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G (A5 — Al
m=——"—"——"(u2 —uy). (8)
dIn (AS,?/A;,”)

Finally, using Eq. (8) the stiffness matrix for the
matrix shear element reads:

G(aP =)y
K, ——[ ]

. ©)
dln(Af,f)/Aﬁ,})) 11

The previous matrix equation gives a general expres-
sion for the stiffness of a matrix shear element, which
will be particularized in each case depending on the
connected fibres. For example, the stiffness matrix of
the matrix shear element presented in the original SEM
(Okabe et al. 2005) is recovered from Eq. (9) by taking
the limit when A\ — AP,

It is interesting to compare the previous result with
that obtained using a linear Finite Element to estimate
the stiffness matrix of the matrix shear element. Let us
consider anode 1 in the fibre 1 and a node 2 in the fibre
2, then the shape functions are:

Nu(r) = [Ni(r) Na)] =[1-5 5], (10)
and the stiffness matrix is obtained by:

d
AN, AN
/(; WGAdeI‘, (11)

where A,, is given by Eq. (5). Solving Eq. (11) the
stiffness matrix of the matrix shear element using a
FEM approach is obtained:

G(Aff)thfpp) 1 —1

k=== 7] az

Note that Km can be seen as a linearisation of the
stiffness matrix K,, obtained previously around the
A,(nl) — A,(nz) point. If the associated areas (A,(nl) and
Af,% )) on each fibre are not substantially different, Eq.
(12) represents a good approximation of K,,. In any
case, Eq. (9) i.e. K,;;, will be used in this work to obtain
the stiffness matrix for the matrix shear element.

As previously explained, the 3D RVE is generated by
extruding the 2D mesh (see Fig. 1) with fibre elements
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connecting each of the sections. Therefore, the virtual
work of the total spring-element model is

Nf—Nﬁ. Ny
su’ Z K7.+ZK§1 ul|=su’t, (13)
e=1 e=1

where Ny and N, are the total number of fibre and
matrix elements, u and f the displacement and force
vectors and N2 is the number of broken fibre elements,
respectively. Kef is given by expression shown in Eq.
(3), while K¢, is the stiffness matrix of the each indi-
vidual matrix shear element [(see Eq. (9)]. Finally, the
nodal displacements in the proposed modification of
the SEM are obtained by solving

Ku =, (14)
where K is the global stiffness matrix,

Ny—N% Non
K= > K{+) K. (15)
e=1 e=1

2.2 Failure modelling

For the fibre elements a failure criteria associated
with the longitudinal failure mechanism is considered,
which can be written in its general form as

2L _1<0 if of >0, (16)
Xe

T
where o is the fibre stress and X7, is the tensile strength
of the fibre element. As will be seen in the next sec-
tion, the tensile strength of an element i.e. X7 will be
randomly assigned recurring to one of the available sta-
tistical distributions to describe fibre’s strength. In the
present implementation a fibre element will be consid-
ered fully damaged if the failure criteria given by Eq.
(16) is not satisfied. Therefore, when a fibre element
does not verify Eq. (16) it is considered broken and N ;’c
updated accordingly.

The matrix behaviour plays an important role in the
tensile failure of composite materials, since this is the
element that allows stress redistribution to occur after
a fibre breaks. This stress-redistribution is affected by
both matrix plasticity and damage, as well as fibre-
matrix decohesion (Nishikawa et al. 2008; Tavares et al.
2016). The matrix was considered to be linear elastic
and perfectly plastic. This behaviour was implemented
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Fig. 3 Saw-shape matrix behaviour using sequentially linear
analysis, in black, and analytical behaviour in grey

in the model using sequentially linear analysis (DeJong
et al. 2008; Rots and Invernizzi 2004).

The sequentially linear approach approximates the
constitutive stress-strain relationship using a series of
saw-teeth that maintain a positive tangent stiffness. Lin-
ear analyses are repeated, each with a reduced positive
stiffness, until the global analysis is complete. Thus,
the negative or null tangent stiffness, which is charac-
teristic of softening curves, that can be detrimental to
convergence, is entirely avoided.

In a sequentially linear strategy, the stress-strain dia-
gram can be reproduced by a consecutively reducing
the shear stiffness (G;) as well as changing the yield
stress of each critical element (tl."). The shear stiffness
is reduced in a discrete manner according to:

Gipg = L, (17)

Um

where o, is a parameter larger than one and that can be
controlled by the user, ensuring a control in accuracy
versus computational time. The behaviour of the matrix
is dominated by an envelope curve that determines
when each stiffness reduction occurs and the new yield
stress of the material is defined. In this paper, the
behaviour considered is a linear elastic perfectly plas-
tic behaviour, characterized by a constant yield stress
(t"). Both the accurate and the approximation using
the sequentially linear analysis of the matrix behaviour
considered are shown in Fig. 3.

Although being used only to simulate elastic and
perfect plastic model in this work, this is a versa-
tile implementation that allows the behaviour to the
matrix to be changed to consider any type of constitu-
tive behaviour. It should be noted that, while there is a
reduction of the stiffness of the matrix elements during
the sequentially linear analysis procedure, the number
of connections in each fibre (n1 and n») is not changed.

In this model the stresses on the fibre elements in
the ineffective length are not imposed, but are obtained
from the overall equilibrium of the system together with
the failure criterion proposed for the matrix shear ele-
ments.

2.3 Numerical implementation

The flowchart of numerical implementation of the
model proposed is shown in Fig. 4. The model was

[Generate random 2D fibre packing]

|

[Generate 3D RVE with PBCs]

!

[Asign fibre element strength: X%]

|

[Asl = min ();—%) , lN‘? =0, 'Nb = 0]

i=1,j=1

Fig. 4 Flowchart of the the model implemented
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implemented commercial  software
MATLAB®.

Firstly, the RVE geometry is generated with a 2D
random fibre distribution, which is then extruded to
generate the 3D periodic RVE. For all the fibre ele-
ments and according to an adequate fibre strength dis-
tribution a random strength is assigned to each of the
fibre elements.

An evolutive strain incrementation procedure is con-
sidered to ensure that a strain increment only forces one

fibre to fail, given generally by:

X¢ —of
Ag = min (Q) s (18)

using the

Ee

where U]‘Z is the stress in the fibre element from the
previous strain increment. The global stiffness matrix
of the model with the updated number of broken fibre
elements and updated matrix shear stiffness is deter-
mined. Displacement control is considered in the model
and the applied displacement is calculated based on
the strain increment given in Eq. (18) and the RVE
dimension. The external force vector f/’f is obtained
based on the current stiffness matrix and the applied
displacement. Solving the system of equations (14) the
unknown displacement vector is calculated. From the
displacement vector the strains and stresses in all the
elements are determined. Periodic Boundary Condi-
tions (PBCs) (Otero et al. 2015) are considered when
solving the system of equations, which is possible due
to the material periodicity of the RVE. The implemen-
tation of the PBCs is done through the elimination of
the redundant degrees of freedom on the RVE bound-
ary.

A failure criteria for the fibres as well as a elastic
and perfectly plastic model for the matrix were imple-
mented. If any of the fibre elements fail or if the shear
stress in the matrix elements exceeds ri”, the number
of broken fibre elements is updated as well as the stiff-
ness of the matrix elements. Then a new global stiff-
ness matrix is computed and the system of equations
is solved once more. This iterative process continues
until no fibre or matrix element fail and equilibrium
has been achieved. If equilibrium is achieved and the
termination criterion is not met, a new strain increment
is determined and the iterative process continues. If
the termination criterion is met, then the simulation
finishes. The termination criterion used stops the algo-
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Fig. 5 Influence of matrix properties on the stress recovery pro-
file of a broken fibre

rithm once the norm of the external force vector in the
current iteration is lower than ¢ times the maximum
norm of the external force vector from all the previous
increments, where c is a value between zero and one.
The numerical results shown in this work are obtained
using a value of ¢ equal to 0.2.

3 Mechanisms of longitudinal failure
3.1 Local fields around a broken fibre

To verify if the model is capable of correctly capturing
the stress profile of a broken fibre, several simulations
were performed using an RVE with a transverse section
of 87.5x87.5 um composed of 132 fibres with alength
of 350 um. The fibres used for these simulations are
the AS4 carbon fibres (Curtin and Takeda 1998), whose
properties are: E ¢ = 234 GPa, Ry = 3.5 um.

The ineffective length of a broken fibre in this model
is not only controlled by the shear modulus of the
matrix (G) but also by the yield stress (z"). Figure
5 shows the influence of the matrix shear modulus
and yield stress in the stress recovery profile of a bro-
ken fibre. For comparison purposes the Kelly—Tyson
(Kelly and Tyson 1965) and modified Cox (Landis and
McMeeking 1999) shear-lag models are shown, using
a fibre-matrix interfacial strength of 70 MPa and a
matrix shear modulus of 1 GPa. The results shown
were obtained considering an applied strain of 2%.

It can be observed in Fig. 5 that the stress recovery
profile of a broken fibre is captured by the model, Z
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Fig. 6 Stress concentrations as a function of the distance to the
broken fibre

is the distance from the break plane in the longitudinal
direction. While there are some differences between the
stress profile obtained by the SEM and the simplified
shear-lag models, the profile is considered to be accu-
rate and therefore there is no need to superimpose the
shear-lag profile in the modelling strategy. In this fig-
ure, it is also possible to see that limiting the maximum
stress in the matrix shear elements affects the recov-
ery profile and therefore the ineffective length, which
is increased. This is discussed in more detail at the end
of this section.

When a fibre breaks there is not only an ineffective
length in the broken fibre, but the stress previously car-
ried by this fibre is redistributed among the surround-
ing intact fibres, increasing the stress carried by these
fibres and thus increasing their failure probability. The
increase of stress can be quantified by a Stress Con-
centration Factor (SCF), considered here to be the ratio
of the actual stress in the fibre over the stress in the
fibre if there were no breaks, given by E re, where ¢ is
the applied strain. This SCF is affected by the matrix
and fibre properties as well as by the fibre arrangement.
Figure 6 shows the SCF as a function of the distance
between the centre of a given fibre and the centre of
the broken fibre (d), in the fracture plane. The results
are shown for matrix shear modulus of 1 GPa, with
' = 00, " = 70 MPa and " = 50 MPa and 2 GPa
with " = oo.

The SCF decreases away from the broken fibre,
being this decrease continuous if no matrix yield stress
is considered, i.e., the matrix is considered linear elas-
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Fig. 7 Stress concentrations in the intact fibre surrounding a
broken fibrea G = 1GPaand t" = cobG = 2GPaand " = 0o
¢G = 1GPaand t" = 70MPad G = 1GPa and t" = 50MPa e
Hexagonal packing with G = 1GPa and t" = co

(&)
Q)
6

9
&)

tic. If matrix yield stress is considered the stress redis-
tribution is more complex as there is a maximum matrix
shear stress in the matrix shear elements, causing the
stress redistribution to be less uniform and more depen-
dent on the actual fibre arrangement. To better visualize
this stress redistribution the stress concentration factor
in each intact fibre that surrounds the broken one is
plotted in Figure 7. Figure 7a, b show the predictions
for different values of the matrix stiffness, maintaining
™ = oo. It is observed that the stress concentrations
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Fig. 8 Stress concentrations in the intact fibres as a function of
the distance to the fibre break plane

are higher in the surrounding fibres for the higher shear
stiffness of the matrix. When a matrix limit stress is con-
sidered the analysis of the stress redistribution becomes
more complex (Fig. 7c, d): for the fibres closer to the
broken one the SCF is reduced, while for the remain-
ing ones the SCF increases to maintain the equilib-
rium. Therefore, the in-plane stress recovery region is
increased while the maximum SCF is decreased. This
stress redistribution is not trivial to predict, not only on
the fracture plane but along the broken fibre’s ineffec-
tive length, being this dependent on the matrix prop-
erties as well as on the fibre distribution. Nonetheless,
this stress redistribution process is not imposed in the
model, as in several available models (Swolfs et al.
2015a), but it is directly obtained from the equilibrium
equations. For comparison purposes the stress concen-
tration factors of an hexagonal packing are shown in
Fig. 7e, from which is possible to see that the max-
imum SCF is lower than that obtained using random
packing.

As mentioned before, the effect of limiting the max-
imum shear stress in the matrix elements not only
changes the stress concentrations in the plane of the
fracture, but also the stress redistribution within the
ineffective length. To better understand this redistri-
bution process, the stress along the intact fibres that
surround a broken one are shown in Fig. 8, for both
the cases with and without matrix yield stress and with
G = 1 GPa. When no yield stress is considered, it
is possible to see that the SCF is maximum in the
fracture plane and steadily decreases until the far field
stress is reached. The differences in stress concentra-
tions between the intact fibres is a consequence of the
fibre arrangement and its effect on the shear stiffness of
the matrix elements connecting the broken to each of
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the intact fibres. When t" = 50 MPa is considered, it is
possible to see that the shape of the stress profile in the
intact fibres changes, being now linear in the regions
closer to the broken fibre. This is due to the fact that
the matrix elements that connect these fibres to the bro-
ken one are within the plastic zone and, therefore, their
stress is independent of the applied strain, being equal
to 50 MPa. Although the maximum stress concentra-
tion is reduced when a yield stress is considered, the
intact fibres have an higher SCF away from the break
plane, which may increase the failure probability of
these fibres. In addition, the in-plane stress recovery
region is also increased. In spite of the differences in
stress redistribution being small, these effects may be
amplified when more than one fibre breaks in a single
cluster, being that there are more than one interacting
fibre fractures. These differences in stress redistribution
may affect the fracture process in composite materials
leading to differences in cluster formation.

3.2 Influence of the fibre strength distribution

The tensile failure of composite materials is a fibre
dominated process, therefore, it is necessary to accu-
rately capture the fibre’s stochastic strengths. Fibres
exhibit weakest-link characteristics and their strength
is flaw dominated. The most used statistical distribu-
tion to describe the strength of the fibres is the Weibull
distribution (Weibull 1951):

L o \*
ro=t-en(-(£) (7)) o

where P is the failure probability at the applied stress
o, L is the characteristic gauge length, L is the ref-
erence gauge length, op the scale parameter and p the
shape parameter or Weibull modulus (Weibull 1951).
Although being the most used statistical distribution for
fibre strength, it has been shown that the Weibull distri-
bution is not the best suited for carbon and glass fibres
(Beyerlein and Phoenix 1996; Curtin 2000; Gulino
and Phoenix 1991). To better capture the experimental
data different distributions have been proposed, usually
based on the Weibull distribution such as the Power-
Law Accelerated Weibull (PLAW) (Curtin 2000; Pad-
gett et al. 1995; Watson and Smith 1985):
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where « is an additional parameter for the distribu-
tion. A consequence of this exponent «, which is lower
than one, is that for lengths smaller than the reference
L the strength distribution shifts to lower strengths.
This drastically changes the behaviour of the models,
as usually, very small element lengths are considered
and if the length scaling is not accurately captured by
the statistical distribution, the element’s strength can
be largely over predicted.

Curtin (2000) proposed another model entitled
Weibull of Weibulls (WOW) that conforms with Eq.
(20) but with more solid physical background. This
model assumes that the strength distribution along a
fibre is a Weibull distribution with modulus p’ and that
the characteristic strength of each fibre follows a differ-
ent Weibull distribution with modulus m. The different
characteristic strengths of the fibres are attributed to the
processing and handling of the fibres. This distribution
yields Eq. (20) if the following relations are met:

/

p=— @
(m2 +p/2)
and
m
0= —. (22)
(m? +p/2)1/2

The difference between the PLAW and WOW models
is that, in the WOW model the strength along an indi-
vidual fibre is highly correlated, leading to very weak
and very strong fibres, while in the PLAW model there
is no direct correlation in the strength of the elements
within a single fibre.

Several simulations using different random distri-
butions were performed using each of the presented
strength distributions. The models used have approxi-
mately 1100 fibres, with a length of 1.05 mm, divided
into 150 elements along its length. The transverse
dimension of the RVEs is 260 x 260 um. AS4 fibres
have been considered with the properties shown in
Table 1, obtained from Curtin (2000). The fibre volume
fraction was considered to be 60%, the shear modu-
lus of the matrix 1 GPa and the matrix elements were
considered linear elastic (7" = 00). For each distribu-
tion, five simulations were performed. For each simu-
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Table 1 AS4 carbon fibre properties (Curtin 2000)
00 4275 MPa
o' 10.7
Lo 12.7 mm
P 6.4
o 0.6

8

lation a new random microstructure was generated as
well as know random element strengths. For the WOW
strength distribution, five simulations with a periodic
hexagonal fibre arrangement was also simulated. A
summary of some relevant results of the simulations are
shown in Table 2, which include the maximum cluster
size that will be defined in Sect. 3.4.

Figure 9 shows the results of the simulations per-
formed using all the three strength distributions pre-
sented above. The traditional Weibull distribution leads
to a higher composite strength prediction when com-
pared with PLAW and WOW distributions. This is due
to the large difference between Lo and L = /%, which
leads to a higher individual tensile strength of the fibre
elements. Using the PLAW or WOW model leads to
lower tensile strengths, as the length scaling is affected
also by the o parameter, leading to a reduction of the
elements individual tensile strength and, therefore, to
a reduction of predicted composite tensile strength.

Madhukar and Drzal (1991) tested AS4 composites
in an EPON 828 matrix and obtained a tensile strength
for the composite material of 1890 MPa and a fail-
ure strain of 1.45% for a measured fibre volume con-
tent of 67.7%, however, according to Curtin (2000), the
measured Young’s modulus is more consistent with an
effective volume fraction of 59%, which is consistent
with the volume fraction considered in the simulations.
From the results shown in Fig. 9, it is observed that the
Weibull distribution leads to an overprediction in both
tensile strength and failure strain. While, the PLAW
and WOW models give better results. The WOW dis-
tribution gives the results closer to the experimentally
obtained, with an average tensile strength of 1951 MPa
and a failure strain of 1.67%. It should be noted that
size effects are present in composite materials and the
size of the tested coupon and of the RVE are different.

Table 2 and Fig. 9 also show the results from sim-
ulations with an hexagonal arrangement of fibres with
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Table 2 Maximum stress, failure strain and maximum cluster size for the AS4 composite using different strength distributions and

fibre distribution

Sim. 1 2 3 4 5 Avg. STDV

Weibull X1 (MPa) 3365 3436 3370 3369 3366 3381 30.78

er (%) 2.74 2.82 2.64 2.75 2.64 2.72 0.08

Max. cluster 23 29 14 28 19 23 6.27

PLAW X7 (MPa) 2117 2095 2125 2137 2105 2116 16.41

er (%) 1.71 1.76 1.72 1.73 1.71 1.73 0.02

Max. cluster 15 33 24 25 23 24 6.40

wWOow X7 (MPa) 1939 1978 1948 1928 1961 1951 19.61

er (%) 1.65 1.73 1.66 1.68 1.65 1.67 0.03

Max. cluster 20 27 36 19 16 23 8.02

WOW hexag. X1 (MPa) 1934 1958 1938 1930 1947 1941 11.21

er (%) 1.67 1.66 1.61 1.61 1.68 1.65 0.03

Max. cluster 40 34 20 22 45 32 10.96

3500 'wabuu' elastic-perfect plastic behaviour of the matrix. This

3000 | —— PLAW ] has an effect on both stress concentrations and on the

—gg&i—hexagonal ineffective length as shown in Sect. 3.1 and, therefore,

28007 1 should also affect the failure process in a multi-fibre
§ 2000 | . ) composite. ‘

~ X Figure 10 shows the stress-strain curves for an AS4

g 1500 1 composite where the fibre strength is characterized by

2 1000 | | a WOW distribution, for different yield stresses ("),

as well as different matrix shear modulus (G). Table

500 1 3 shows the main properties of the failure process for

o ‘ ‘ ‘ ‘ ‘ ‘ these simulations. From the analysis of these simula-

0 05 1 1.5 2 25 3 35 tions it is possible to conclude that limiting the max-

Strain (%)

Fig.9 Stress-strain curves for AS4 non-hybrid composites using
different strength distributions

the WOW strength distribution. Comparing the ran-
dom and hexagonal fibre distributions it is possible to
see that the stress-strain behaviour is not affected by
the arrangement. An interesting characteristic of the
stress-strain curves is that there is a high non-linearity
previous to the failure of the material, which is usually
not seen in the experimental results. This fact will be
analysed in more depth in Sect. 3.4.

3.3 Influence of the matrix properties

As explained in Sect. 2.2 a material model was imple-
mented for the matrix that allows to simulate and
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imum shear stress in the matrix significantly reduces
the tensile strength of the composite material, leading
to an earlier failure and, therefore, also a lower failure
strain. This change in the stress-strain behaviour is also
accompanied by a change in the fracture process, being
that the maximum cluster size determined was reduced
from 23 to 18 and 14 broken fibres, which relates bet-
ter with the experimental results of Scott et al. (2011)
and the modelling results of Swolfs et al. (2015b). This
can be explained by the lower maximum SCF as seen
in Sect. 3.1 when a yield stress is considered. When
comparing the results for both 7% = 50 MPa and
¥ = 70 MPa it is possible to conclude that the stress-
strain behaviour does not change much, leading to very
similar tensile strengths, only with a slightly smaller
tensile strength and critical cluster size.

The results shown in Fig. 10 and Table 3 enable
the study of the influence of changing the matrix shear
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Fig. 10 Stress-strain curves for AS4 non-hybrid composites
with different matrix properties

modulus from 1 to 2 GPa. It is possible to conclude
that the matrix shear stiffness does not affect the stress-
strain behaviour of the composite, leading to similar
tensile strengths and failure strains. However, it clearly
affects the maximum cluster size, which is increased
from 23 to 72 broken fibres. This means that although
the stress-strain curves are similar, the failure process
is different, with the fibres breaking more closely with
the higher matrix shear stiffness, allowing to the forma-
tion of larger clusters before the specimen dramatically
looses load carrying capability.

3.4 Analysis of cluster formation

The model proposed here can also be used to anal-
yse the development of clusters of broken fibres dur-
ing the failure process. A cluster is defined following
Swolfs et al. (2015b): two fibres are considered to be
part of the same cluster if (i) the distance between the
centres of the two fibres is lower than four times the
fibre radius and (ii) the axial distance between break
planes was less than ten times the fibre radius. Swolfs
et al. (2015b) defines two type of clusters: disperse
clusters if the axial distance between the break planes
is higher than a fibre radius and co-planar cluster if this
distance is lower. In this work a cluster is considered
co-planar if the break planes in the axial direction dis-
tance themselves by no more than one axial element
length. The maximum cluster size for each simulation
using the three different strength distributions is shown
in Tables 2. The maximum cluster size does not signif-
icantly change with the different strength distributions,
being this maximum around 23-24 fibres in average.
However, there are simulations where it has gone as
high as 36 fibres and as low as 14 fibres, due to the ran-
domness of the element strength assignment. Although
the cluster size does not change with the strength distri-
bution it changes when comparing the hexagonal and
random fibre packings: the mean maximum cluster size
in the hexagonal packing equal to 32 while for the
random packing is 23. In Sect. 3.3 it was seen that
limiting the shear stress in the matrix elements affects

Table 3 Maximum stress, failure strain and maximum cluster size for the AS4 considering different matrix properties with the WOW

strength model and random fibre distribution

Sim. 1 2 3 4 5 Avg. STDV
t"=00 G=1GPa X7 (MPa) 1939 1978 1948 1928 1961 1951 19.61
er (%) 1.65 1.73 1.66 1.68 1.65 1.67 0.03
Max. cluster 20 27 36 19 16 23 8.02
=00 G=2GPa X7 (MPa) 1941 1918 1946 1945 1937 1937 11.48
er (%) 1.79 1.65 1.68 1.63 1.64 1.68 0.07
Max. cluster 135 50 62 49 64 72 35.87
t"=70MPa G =1GPa X7 (MPa) 1784 1798 1848 1842 1839 1822 29.02
er (%) 1.41 1.40 1.49 1.50 1.52 1.46 0.06
Max. cluster 12 12 25 25 18 18 6.50
" =50MPa G =1GPa X1 (MPa) 1787 1774 1794 1777 1787 1784 8.22
er (%) 1.45 1.44 1.44 1.46 1.45 1.45 0.01
Max. cluster 17 11 21 11 10 14 4.80
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not only the stress-strain behaviour but also the clus-
ter formation, being therefore essential to consider this
behaviour when analysing cluster formation.

On the previous sections the behaviour of an AS4
composite material was analysed, however, to further
analyse the fibre break clustering process and to com-
pare the numerical results and the experimental results
by Scott et al. (2011, 2012) the behaviour of the
T700 carbon composite material is studied. Follow-
ing Watanabe et al. (2014) a bimodal Weibull distri-
bution, which assumes that there are two flaw distri-
butions, is used to represent the fibre strength. This
distribution is characterized by two Weibull modulus
and scale parameters. The parameters used are (Watan-
abe et al. 2014): 091 = 5200 MPa, m; = 4.8, and
o2 = 6100 MPa, mp = 12 at Ly = 10 mm. The
elastic modulus considered was 238 GPa and the fibre
radius used was Ry = 3.5 um. The matrix used in
the experimental results of Scott et al. (2012) was M21
which has a tensile modulus of 1.26 GPa. Considering
Poisson’s ratio of 0.4, the matrix shear modulus used
was G = 0.45 GPa and the matrix yield stress consid-
ered was ™ = 50 MPa. The RVEs used have a fibre
volume fraction of 55% and are of equal dimensions
has the ones used in the previous sections.

Five simulations were performed and the results
were averaged to minimize the effect of the random
fibre strength. As the fibre behaviour was considered
linear elastic up to failure the failure strain is overpre-
dicted and equal to 2.61%, comparing with the 1.89%,
shown in the experimental results. This large difference
can be explained by the typical non-linear behaviour
of T700 carbon fibres, which for an 1% increase in
strain can have a 20% increase in stiffness (Swolfs et al.
2015b; Toyama and Takatsubo 2004). Considering that
the material would fail at the same stress level, if the
non-linearity was considered, the failure strain would
be approximately 2%, which is in better agreement with
the experimental result.

The average maximum cluster size before the unsta-
ble propagation obtained in the simulations was 12.6
fibres, which is slightly smaller than the 14 observed
experimentally Scott et al. (2012). Figure 11 shows the
experimental and numerical comparison of the fibre
break density. It can be seen that the fibre break den-
sity is clearly overpredicted. The very large discrep-
ancy between the two results can be attributed to the
inaccuracy of the Weibull distribution. Swolfs et al.
(2015b) also attributes this difference to the in situ
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Fig.11 Fibre break density in the fracture process: experimental
and numerical results for bimodal Weibull distribution
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Fig. 12 i-plet growth during the fracture process as a func-
tion of the applied strain: experimental and numerical results
for bimodal Weibull distribution

defect sensitivity reduction of the fibres when sur-
rounded by matrix, altering therefore the actual strength
distribution of the fibres within the composite material.
Another discrepancy between the experimental results
and the numerical ones is that the fibre break density at
failure is much higher in the numerical results. While in
the experimental results, before failure, less than 10%
of the fibres were broken, in the numerical results this
number approximately 30%. These differences in clus-
ter formation process and a higher fibre break density
prior to the failure of the material may explain the non-
linearity seen in the stress-strain curves prior to fail-
ure, which usually are not present in the experimental
results.
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To better understand the differences in fibre break
density between the model and the experimental results
the cluster development needs to be analysed in more
detail. Figure 12 shows the evolution of clusters of dif-
ferent sizes (i-plets) as a function of the applied strain.
From the results it is possible to conclude that the sin-
gular fibre breaks (1-plet) occur at lower strains and
grow rapidly, which are the main contributors for the
higher fibre break density in the numerical results. The
clusters of two fibres (2-plet) start appearing at simi-
lar strains in the numerical and experimental results,
however, the cluster with higher number of fibres (3-
plet and 4-plet) appear at higher strains in the numer-
ical results. In the experimental results up to 50% of
the breaks occurred in clusters (Swolfs et al. 2015b),
however, the model only predicts that 10-20% of the
fibre breaks occur in cluster, being the majority of them
singular breaks. Additionally only 30-40% of the clus-
ters were co-planar in comparison to a value of 70%
found in the experiments. It is interesting to note is that
while in the experiments when a cluster was formed
it remained of constant size, in the numerical results
this was not the case (a cluster increases in size with
the applied strain). These results show that there is an
under prediction of the SCF in the surrounding fibres
when a fibre breaks. Swolfs et al. (2013b) found that
the SCFs are increased if a matrix crack surrounding
the broken fibre is considered. This is not considered
in the model and can be a source of underestimation
of the SCFs. Additionally, it has been shown that when
a fibre breaks there is a dynamic effect that causes an
increase in the SCFs in the intact fibres (Tavares et al.
2016; Xing et al. 1985).

To circumvent some of the issues with the bimodal
Weibull distribution used, Swolfs et al. (2015b) fitted an
unimodal Weibull distribution to the fibre break density
data. A good fit was obtained for o9 = 5200 MPa and
m = 10 at Ly = 10 mm. Using this distribution and
the same matrix properties as in the previous simula-
tions, there was a reduction in the average failure strain
to 2.37%, which is closer to the experimental value but
still above. This fact may result from the non-linearity
of the fibres, but also from the underestimation of the
cluster formation. With the fitted Weibull distribution
the fibre break density observed numerically is in bet-
ter agreement with the experimental results (Fig. 13),
however, it is still observed that failure occurs at higher
failure fibre break densities.
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Fig.13 Fibre break density in the fracture process: experimental
and numerical results for unimodal Weibull distribution
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Fig. 14 i-plet growth during the fracture process as a function
of the applied strain: experimental and numerical results for uni-
modal Weibull distribution

Regarding cluster formation (Fig. 14), the results
show a better agreement with the experimental results,
being the single fibre breaks (1-plet) well predicted,
however, there is still an underestimation of the for-
mation of clusters of broken fibres, that only occur for
higher applied strains, which causes the failure to occur
at higher strains. The reasons for these underestimation
of cluster formation have already been mentioned and
remain valid for the present case.

To better understand the fibre fracture process and
the cluster formation, the fibre break density in each
section of the RVE is plotted in Fig. 15. In this figure it
is possible to see the stress-strain curve as well as the
percentage of broken fibres in each section of the RVE
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Fig. 15 Stress-strain curve of the T700 composite with a unimodal Weibull distribution, accompanied by the fibre break density in
each section of the composite and the microstructures at the critical section at different stages

for all the sections along the fibre direction for three
different applied strains, which are marked in the stress-
strain curve. The microstructures shown represent the
broken fibres within 10 fibre radius in each direction of
the critical section, which was at Z = 0.34 mm. The
critical section and the 10 fibre radius distance in each
direction are plotted in the fibre break density image in
full and dashed lines. In the microstructure in blue it
is possible to see that there are a several broken fibres
forming clusters, which grow with applied strain until
the critical strain is achieved (figure in orange) leading
to the failure of the material. After its failure (in green)
it is possible to see that a large percentage of the fibres
are broken and, therefore, the composite looses the load
carrying capability.

3.5 Effect of fibre hybridization

The model proposed here can also be applied in the
analysis of hybrid composites. It is expected that using
more than one type of fibre will change the failure pro-
cess and stress-strain behaviour of the material. If the
hybridization is correctly designed it is possible to have
a non-catastrophic failure of the material (Swolfs et al.
2014; Tavares et al. 2016). In this section the hybridiza-
tion between the AS4 fibres, using the WOW distribu-
tion asin Sect. 3.2, with the M50S carbon fibres (Tanaka
et al. 2014) whose properties are shown in Table 4 is
analysed. To be able to use the WOW distribution for
the M50S fibres, the value of « was chosen to be equal
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to the value of the AS4 fibre since no experimental data
was available.

The fibre volume fraction considered in this sec-
tion is 50%. Figure 16 shows a randomly generated
microstructure of the AS4-MS50S hybrid composite,
where the AS4 fibres are shown in black and the M50S,
which have a smaller radius, in grey. Figure 17 shows
the stress-strain behaviour of both non-hybrid compos-
ites (AS4 and M50S) with the addition of a hybrid com-
posite with 20% of M50S fibres and 80% of AS4 fibres.

It is shown that the M50S composite has an average
strength of 1811 MPa, while the AS4 has an average
strength of 1520 MPa. Due to the higher stiffness of the
MS50S fibres, the M50S composite has a lower failure
strain than the AS4 one. The hybrid composite shows
a behaviour very dissimilar from the non-hybrid ones,
due to the fact that the hybridized fibres have different
failure strains. This implies that when the M50S fibres
(which are the lower elongation fibres) fail, the material
does not fail due to the AS4 fibres that are still carrying
load. This leads to the progressive failure seen in Fig. 17
in orange. The average strength of the hybrid compos-

Table 4 MS50S carbon fibre properties (Tanaka et al. 2014)

Ry 2.65 um
Ey 480 GPa
00 4600 MPa
] 9

o 0.6
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Fig. 16 Microstructure of a hybrid composite with 80% AS4
fibres and 20% M50S fibres
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Fig. 17 Stress-strain behaviour of AS4 (in blue) and M50S (in
Yellow) non-hybrid composites and AS4-M50S hybridization (in
orange)

ite is 1344 MPa, with an failure strain of 1.22%. This is
areduction of both the strength and failure strain when
compared with the AS4 composite, however, there is an
increase in the stiffness of this material and the failure
of the hybrid is non-catastrophic. A similar behaviour
for this type of hybridization as been shown by Tavares
et al. (2016) using different material models. Further-
more, Czél et al. (2017) has shown that it is possible
to obtain non-catastrophic failure of hybrid composites

using two different carbon fibres with different elastic
and strength properties.

4 Conclusions

A spring element model that takes into account a ran-
dom fibre packing was developed. The model is able
to accurately capture the local stress fields surround-
ing a broken fibre, capturing the ineffective length of a
broken fibre, as well as the stress concentrations in the
intact fibres that surround a broken one. Unlike other
models present in the literature, the stress redistribu-
tion resulting from a fibre break is not enforced and the
corresponding stress concentrations in the surrounding
fibres arise due to the solution of the global system of
equations that governs the problem.

As a fibre dominated failure, the tensile failure of
unidirectional composites largely depends on the accu-
rate representation of the strength of the fibre elements.
Several statistical distributions for fibre strength are
available in the literature. To study their influence on
the tensile behaviour of composites several simula-
tions were performed using the traditional Weibull, the
Power Law Accelerated Weibull and the Weibull of
Weibulls strength distributions. The results were com-
pared with the available experimental data and it was
concluded that the Weibull of Weibulls fibre strength
distribution leads to more accurate results in terms of
the maximum stress. Nonetheless, it should be noted
that size effects are present in composite materials and
the simulated RVE and tested specimens used for com-
parison have different sizes.

As the matrix plays a large role in the stress transfer
procedure, a study on the effect of matrix properties on
the failure process was also analysed. The maximum
shear strength has an influence on the UD strength and
on the failure progression and cluster formation. The
lower the interface strength is, the lower the failure
strength of the composite and maximum cluster size
are.

The fibre fracture and cluster development during
the failure process was also analysed and compared
with existing experimental results. It is concluded that
similarly to other available models there was an over-
prediction of the single fibre breaks while underesti-
mating the formation of clusters of larger sizes, spe-
cially planar clusters. This difference was attributed to
the fact that the model does not consider the dynamic
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effects present in the fracture process nor the effects of
matrix cracking on the stress redistribution. Neverthe-
less, more insight on the cluster development and final
fracture was obtained.

The developed model is also used to explore fibre
hybridization. It is shown that the model is able to pre-
dict the non-catastrophic failure associated with hybrid
composites. The usage of fibre hybrid composites pro-
motes synergetic effects between the constituents that
can lead to interesting material behaviours.
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