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Abstract A rate-independent damage constitutive
law is proposed to describe the fracture of plain con-
crete under tensile loading. Here, the target scale is
the individual crack. In order to deal with localised
damage, the model is inherently nonlocal: the gradi-
ent of the damage field is explicitly involved in the
constitutive equations; it is parameterised by a nonlo-
cal length scale which is interpreted as the width of
the process zone. The model is defined so that its pre-
dictions are close to those of a cohesive law for van-
ishing nonlocal length scales. Therefore, the current
model is plainly consistent with cohesive zone model
analyses: the nonlocal length scale appears as a small
parameter which does not need any specific identifica-
tion. And four parameters—among which the tensile
strength and the fracture energy—enable to adjust the
softening cohesive response. Besides, a special atten-
tion has been paid to the shape of the initial damage
surface and to the relation between damage and stiff-
ness. The damage surface takes into account not only
the contrast between tensile and compressive strengths
but also experimental evidences regarding its shape in
multiaxial tension. And the damage–stiffness relation
is defined so as to describe important phenomena such
as the stiffness recovery with crack closure and the
sustainability of compressive loads by damaged struc-
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tures. Finally, several comparisons with experimental
data (global force/opening responses, size dependency,
curved crack paths, crack opening profiles) enable to
validate qualitatively and quantitatively the pertinence
of the constitutive law in 2D and 3D.
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1 Introduction

Predicting the fracture of concrete structures has been
the subject of many works in the past 40 years. Here,
the focus is put on modelling the different stages of
fracture under tensile loading, from crack initiation up
to potentially large crack propagation. For that purpose,
the models at hand can be broadly split in two families:
cohesive zone models and continuum damage models.

The former ones have also been named “fictitious
crack models” in the pioneering work of Hillerborg
et al. (1976) who applied successfully to concrete some
ideas introduced by Barenblatt (1959) and Dugdale
(1960) for metallic materials. These models explicitly
introduce a displacement discontinuity across the (fic-
titious) crack as a function of the stress applied on the
crack faces (the cohesive law). They depend on macro-
scopic quantities such as the ultimate strength and
the fracture energy which are accessible by standard-
ised experiments. Their capabilities have been demon-
strated with respect to crack initiation and crack prop-
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agation, see for instance Bazant and Planas (1998) and
Elices et al. (2002). However, predicting crack paths in
3D still appears as a complex issue in terms of relia-
bility and robustness: a crack orientation criterion has
to be stated in complement to the cohesive law while
numerical difficulties may arise from the requirement
to ensure the geometrical continuity of the cracks. It
remains the purpose of on-going work, see Gasser and
Holzapfel (2006), Jäger et al. (2008) and Oliver et al.
(2014).

On the other hand, continuum damage models are
advocated for predicting crack path since they describe
the local degradation of concrete through a damage
field, hence implicitly giving access to crack pat-
terns whatever their topology, see the seminal articles
(Marigo 1981; Bazant and Oh 1983; Mazars 1986).
However, strain-softening constitutive relations lead
to ill-posed boundary value problems which numeri-
cally result in pathological mesh-dependency as soon
as damage localisation arises, see for instance Benal-
lal et al. (1993). It has been related to high strain and
damage gradients which admittedly appear in fracture
process zones and thus preclude using local constitutive
laws because the latter are based on a length scale sep-
aration assumption which does not hold anymore. Two
main classes of enhanced models have been proposed
in the literature to control strain and damage gradients.
The first one is based on introducing rate-dependency
into the constitutive law, see Needleman (1988), Sluys
and de Borst (1992) and Suffis et al. (2003). The gradi-
ents are indeed limited in the case of dynamic loading
thanks to the interaction of viscositywithwave velocity
which results in a length scale, but uncontrolled gradi-
ents and mesh-dependent localisation are retrieved in
the quasi-static limit (de Borst et al. 1993; Forest and
Lorentz 2004). In the second class of models, a spa-
tial coupling of the behaviour of neighbour material
points of the structure is introduced; the approach is
cast under the generic name “nonlocal laws”. Many
variants ensure such a coupling:

– The thick level set method where a given damage
profile is enforced inside narrow bands the bound-
aries of which obey a propagation law, see Moës
et al. (2011).

– Smoothing local variables through regularisation
operators, also known as localisation limiters,
usually convolution operators, e.g. Bazant and
Pijaudier-Cabot (1988), or differential operators,

e.g. the implicit gradient model in Peerlings et al.
(1996).

– The introduction of additional kinematic variables
the gradient of which are penalised, see Pijaudier-
Cabot and Burlion (1996) for micro-void dilation,
de Borst and Sluys (1991) and Steinmann and
Willam (1991) for Cosserat media or Forest (2009)
for a generalisation to micromorphic media.

– The introduction of higher order gradients of dis-
placements (Triantafyllidis and Aifantis 1986; Fer-
nandes et al. 2008).

– The introduction of internal variable gradients
(Mühlhaus and Aifantis 1991; Fremond and Ned-
jar 1996; Svedberg and Runesson 1997; Lorentz
and Andrieux 1999; Liebe et al. 2001; Benallal and
Marigo 2007; Pham et al. 2011).

Some of these variants are strongly related, see Lorentz
and Andrieux (1999, 2003) and Forest (2009). And all
of them introduce at least one additional parameterwith
the dimension of a length, the so-called internal length
scale which weights the strength of nonlocal coupling.
Because of the latter, the relation between the parame-
ters of themodel and experimental measurements—the
fracture energy in particular—is not straightforward.
Moreover, such models are usually not well adapted
to capture the ultimate stage of damage as a crack. It
motivates on-going work dedicated to the quite deli-
cate transition from a damage field to a cohesive (or
free-surface) crack during the numerical computation,
see Simone et al. (2003), Mediavilla et al. (2006),
Comi et al. (2007) and Cuvilliez et al. (2012). Despite
these drawbacks, acceptable predictions are neverthe-
less obtained with damage nonlocal models, at least for
relatively limited crack propagations, see for instance
Pamin (2011) for selected illustrative applications.

As can be seen, the respective qualities of cohesive
zone models and continuum damage models are com-
plementary. This article aims at showing in the context
of concrete how a nonlocal damage model of the inter-
nal variable gradient type may also benefit from the
attractive properties of fictitious crack models, that is:
(i) describing large crack propagations which includes
the access to the current crack opening and the fulfil-
ment of a total degradationwith zero residual stress; (ii)
controlling the dissipated fracture energy per crack sur-
face unit; (iii) avoiding any specific identification of an
internal length. To this end, the key property is the con-
sistency of the damage model with a cohesive law for
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A nonlocal damage model for plain concrete 125

vanishing internal lengths (i.e. the predictions of both
models are close to each other). Numerical simulations
and their confrontation with experimental results will
assess the robustness and the accuracy resulting from
the theoretical properties of the model and the phe-
nomenological choices that have been made to address
salient physical characteristics of concrete.

More precisely, the outline is the following. In the
next section, a class of gradient damage models is pre-
sented and its consistencywith cohesive zonemodels is
showed. Then, specific phenomenological refinements
are proposed in order to deal with the shape of the soft-
ening response in tension, the contrasted behaviour of
concrete in tension and compression and the coupling
between cracking and directional stiffness. Finally, sev-
eral numerical simulations are compared to experi-
mental results in order to validate the global force–
displacement response, the crack opening distribution
and the crack path prediction.

2 Theoretical framework for quasi-brittle damage

A framework for quasi-brittle damage is presented in
this section. It is based on nonlocal constitutive equa-
tions into which the gradient of damage is explicitly
introduced. Such a setting has been given a variational
basis in Lorentz and Andrieux (1999) and it has been
specialised to damage in Lorentz and Godard (2011).
Then the nonlocal constitutive equations are showed to
be consistent with a cohesive law under some condi-
tions. Some of the results have already been expressed
in Lorentz et al. (2011, 2012) and will be recalled
shortly. Here, they are extended to a wider class of
constitutive laws in order to encompass the constitu-
tive novelties of the Sect. 3 required by the physical
characteristics of concrete.

2.1 Modelling assumptions

The class of constitutive relations considered in this
nonlocal setting are restricted to isotropic damage so
that the acknowledged anisotropy of concrete fracture
results from the localisation of damage at the struc-
ture level which implies to model actually each single
crack. As stated in Fichant et al. (1999), the assump-
tion of isotropy may prove acceptable for a wide range
of applications, provided that stiffness recovery with

crack closure is taken into account which is the objec-
tive of the Sect. 3.3.

In addition, no damage mechanism in compression
is considered in this study which focuses on tensile
damage. Therefore there is no need to describe a pre-
peak hardening regime. Nevertheless, the dissymmetry
between tensile and compressive strengths is modelled
so that elastic compressive states are sustained with-
out triggering spurious damage (they may result from
self-weight load or prestressing for instance). And the
reduction of the tensile strength under partially com-
pressive states should also be taken into account. This
calls for a dedicated failure surface in the stress space
as introduced in the Sect. 3.2.

Besides, damage-induced inelastic strains are not
considered in the model either. Such an assumption is
reasonably acceptable when focusing on tensile dam-
age. But complex loading paths such as cyclic loading
lay out of the scope of the model.

In addition, only rate-independent dissipativemech-
anisms are considered in the analysis: coupling creep
and damage would need further enhancements. This
precludes long lasting load histories.

Finally, as the damage model aims at providing a
description of fracture which is consistent with a cohe-
sive zone model, it is not intended to reflect accurately
the cracking behaviour at a fine scale and it retains only
the macroscopic characteristics of the cohesive law.
In practice, a single scalar field—the damage field—
parameterises the local stiffness degradation and pro-
vides a spatial regularisation of an actual cohesive
crack. It can be noticed that this is in strong relationwith
the framework of phase-field models, already applied
in Bourdin et al. (2000, 2008), Del Piero et al. (2007),
Miehe et al. (2010) and Sicsic and Marigo (2013) to
predict Griffith type crack initiation and propagation
according to the formulation in Francfort and Marigo
(1998).

2.2 A class of gradient damage models

2.2.1 State equation

Accordingly to the set of assumptions enumerated
above, the damage field consists of a single scalar field
a which ranges from 0 to 1, the former corresponding
to the sound initial state while the latter stands for a
complete loss of stiffness in tension. In agreement with
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the assumption of no inelastic strain, the elastic strain
energy W formally reads:

W (u, a) =
∫

�

w (ε(u), a) d� (1)

where� denotes the body domain, u the displacement,
ε the infinitesimal strain and w the elastic strain energy
density. As there is no viscous effects, the stress simply
derives from this energy leading to the state equation:

σ = ∂w

∂ε
(ε, a) (2)

The stress field hence retains its usual interpretation,
thanks to the fact that the nonlocal interactions do not
explicitly involve the strain field. Consequently, this
holds true for the equilibrium equations as well.

According to Pham and Marigo (2013), the energy
density function w should fulfil the following proper-
ties:

– it is continuously differentiable in order to get a
continuous stress–strain response;

– it is positive and decreasing with respect to damage
leading to stiffness degradation;

– it is positive homogeneous of degree 2 with respect
to the strain so that the stress is positive homoge-
neous of degree 1which corresponds to linear radial
elasticity;

– it is strictly convex with respect to the strain as
long as a < 1 so that the solution to the elasticity
problem (for frozen bounded damage) exists and is
unique.

In addition, we restrict our attention to isotropic elas-
ticity, so that w should be isotropic with respect to the
strain tensor. In particular, the elastic energy density
for the sound material is the usual quadratic isotropic
elastic energy we (ε):

w (ε, 0) = we (ε) = 1

2
ε : E : ε

= 1

2

[
λ (trε)2 + 2μ ε : ε

]
(3)

withE the Hooke tensor, λ andμ the Lamé coefficients
(we denote also E theYoungmodulus and ν the Poisson
ratio when needed). Finally a complete loss of stiffness
in tension is expected for ultimate damage in order to
avoid residual cohesive forces across the crack. This
requirement is expressed as:

[∀ i εi ≥ 0] ⇒ σ (ε, 1) = 0 (4)

where εi stands for the eigenvalues of the strain ten-
sor. Note that the expression (4) relies on a minimalist
interpretation of tensile states as the strain states for
which the extension ratio is positive in any direction
(n · ε · n ≥ 0 ∀ n). Complementary analyses are
developed in the Sect. 3.3.

2.2.2 Evolution equation

Next to the definition of the strain energy and the cor-
responding stress–strain relation, a damage evolution
law is stated. The evolution equation is expressed at
the scale of the structure, as proposed in Germain et al.
(1983) for generalised standard materials:

− ∂G
∂a

(ε, a) ∈ ∂D (ȧ) (5)

where the following potentials have been introduced:

G (ε, a) =
∫

�

� (ε, a) d� +
∫

�

c

2
∇a · ∇a d� (6)

D (ȧ) =
∫

�

k ȧ d� + IR+ (ȧ) (7)

In (5), a dot denotes time-differentiation, ∂D stands for
the subgradient of the dissipation potential D (which
extends the notion of derivatives to constitutive laws
with thresholds) and the left-hand side term is the driv-
ing force associated to damage. IR+ in (7) is the indica-
tor function which is equal to zero for positive damage
rate field and else equal to + ∞. Before commenting
the expressions of G and D, it should be noted that
according to (Lorentz and Andrieux 1999) the evolu-
tion equation (5) can be given an equivalent interpre-
tation in terms respectively of a damage threshold g, a
consistency condition, a boundary condition along ∂�

(the boundary of the body �, with n denoting its nor-
mal) and two interface conditions across any surfaceϒ

of normal ν (where [[·]] denotes the discontinuity across
ϒ):

g (ε, a) =
de f.

− ∂�

∂a
(ε, a) + div (c∇a) − k (8)

g (ε, a) ≤ 0; ȧ ≥ 0; g (ε, a) ȧ = 0 in � (9)

∇a · n = 0 along ∂� (10)

[[a]] = 0; [[c ∇a]] · ν = 0 across ϒ (11)

Strictly speaking, the second equality in (11) should
be an inequality, see Sicsic et al. (2014). However, the
equality holds indeed as soon as the initial damage state
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is itself consistent with (11), thanks to the positivity of
the damage evolution in (9). Therefore, only the equal-
ity is retained in (11).

With this more practical expression of the evolu-
tion equation at hand, we can now come back to the
definitions (6) and (7). First, the indicator function in
the dissipation potential enforces that ȧ ≥ 0, that is
damage irreversibility; it is retrieved in the consistency
condition (9).

The second term in the potential G controls the non-
local interactions and results in the term div(c∇a) in
(8). The strictly positive parameter cweights the nonlo-
cal interactions: the larger c, the smoother the damage
field. Moreover, it enforces the regularity of the dam-
age field: a ∈ H1 (�). In particular, damage discon-
tinuities are precluded, as stated in (11). This has an
important consequence: only the gradient of bounded
variables should be introduced in (6), as done here since
0 ≤ a ≤ 1. Indeed, consider a variable that goes to
infinity when a true crack (with displacement disconti-
nuity) appears, for instance the strain or an unbounded
damage measure. Were its gradient introduced in (6), it
would never reach the infinite value corresponding to
a true crack because of the H1 (�) regularity. Worse,
because of the gradient regularisation, the localisation
of strain and damage would spread along the initial
localisation band, leading to an increasing (and erro-
neous) band width. This shortcoming is observed with
most models based on strain regularisation, see Peer-
lings et al. (2002), and requires specific treatments such
as a varying regularisation weight or an explicit transi-
tion to a crack.

Note also that the interface and boundary condi-
tions are stated on the damage field itself and not on its
rate, contrarily to other gradient models, e.g. Mühlhaus
and Aifantis (1991). Thus, the boundary conditions do
not require distinguishing whether the damage/elastic
interface reaches the body boundary or not.

The positive parameter k and the function � (ε, a)

defines the current damage threshold via (9). In par-
ticular, the domain of reversibility in the strain space
should increase with increasing damage for the sake
of local stability, see again Pham and Marigo (2013),
which implies that ∂�/∂a is an increasing function of
damage, i.e. that the potential � is a convex function
of damage.

Finally, it appears that damage initiation is ruled by
a local criterion. Indeed, before damage occurs, a = 0
and div (c∇a) = 0 everywhere in the structure, so that

no damage initiates as long as:

∀ x ∈ � ε(x) ∈ E0 with

E0 =
{
ε s.a. − ∂�

∂a
(ε, 0) ≤ k

}
(12)

where E0 denotes the initial domain of reversibility in
the strain space. In particular, it is independent of the
gradient term and its weight factor c. Note that the
locus where damage initiates and the corresponding
load level are governed by the local criterion, on the
contrary of other nonlocal models for which the nonlo-
cal interactions play a role before inception of damage,
see Simone et al. (2004).

2.2.3 Energy balance

In this presentation, there is no relationaprioribetween
the strain energy w and the potential � in order to
enable some degrees of freedom when coping with the
physical characteristics of concrete (Sect. 3). Neverthe-
less, it can be noticed that the constitutive law belongs
to the class of generalised standard materials as soon
as w = � for any strain and damage values, see Ger-
main et al. (1983) and Lorentz and Andrieux (1999),
which automatically ensures thermodynamic admissi-
bility. Here, the positivity of the rate of fracture energy
can also be assessed. Indeed, in isothermal conditions,
the elastic Helmholtz strain energy W plus the energy
required to damage thematerial, sayF , should be equal
to the energy provided to the structure. In rate forms, it
reads:

Pext = Ẇ + Ḟ (13)

wherePext denotes the power of external forces. As the
equilibrium equations are left unchanged compared to
a local model, the rate of fracture energy is given by:

Ḟ = Pext − Ẇ =
∫

�

(
− ∂ w

∂a
ȧ

)
d� (14)

The density of elastic strain energy is decreasing with
respect to damage so that ∂w/∂a ≤ 0. In addition, the
evolution of damage is irreversible: ȧ ≥ 0. Therefore,
no energy is retrieved through the damage process, as
expected: Ḟ ≥ 0.

2.3 Consistency with a cohesive law

The application of a gradient damage model as intro-
duced in the Sect. 2.2 is expected to lead to the con-
centration of damage in zones of small (but non zero)
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Fig. 1 Derivation of the asymptotic cohesive law

thickness. The notion of consistency with a cohesive
law should then be understood as follows, see also the
Fig. 1 for an illustrative explanation.

First, the response of the model in terms of damage
and strain distribution along ligaments (lines) trans-
verse to the damage zone (i.e. along its thickness) is
idealised as a one-dimensional problem. It consists of
a bar subjected to a prescribed displacement at its ends
and laterally confined. The progressive development of
a damage band is expected up to the ultimate failure of
the bar.

Then, the final width of the damage band is inter-
preted as a length scale which results from the nonlocal
effects. And for a given value of this nonlocal length
scale, the response of the model can be characterised in
a global way through the history of the (homogeneous)
stress in the bar versus the opening or separation dis-
placement through the damage band (i.e. the displace-
ment gap between both boundaries of the final damage
band).

Finally, it will be showed analytically that the limit
of the global responses for vanishing nonlocal length
scales is actually the response of a cohesive law in terms
of stress versus separation displacement. The conver-
gence is assessed for a nonlocal length scale that goes
to zero while macroscopic quantities derived from the
model parameters stay constant (e.g. the peak stress
and the fracture energy). As will be seen below, such

a property is established under additional constitutive
assumptions on the form of the elastic energy density
w (ε, a) and the potential � (ε, a) in (8).

2.3.1 One-dimensional setting: definition of the
degradation function

Consider a straight bar of direction t and of length suf-
ficiently large, i.e. larger than the forthcoming damage
band width. It is subjected to a tensile loading while
the displacement along its lateral faces is prescribed to
remain parallel to t (confinement), see again the Fig. 1.
The strain field can be assumed as:

ε (x) = ε (x) t ⊗ t with ε ≥ 0 (15)

where ε denotes the strain magnitude and x the (longi-
tudinal) position along the bar. The damage field also
depends only on x and we assume that it concentrates
inside a single band which does not cross the ends of
the bar, say the interval [−b b] without loss of gener-
ality. The band spreads (i.e. b increases) until the dam-
age field reaches its critical value a = 1 somewhere
inside the band, which corresponds to breaking the bar
in two pieces. The current damage band is then denoted
[−D D] where D is taken as the nonlocal length scale.
And the separation displacement δ is defined during the
load history as:
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δ =
D∫

− D

ε (x) dx (16)

Consider now the strain energy. For zero damage, the
elastic strain energy density is defined according to the
Eq. (3):

w (ε t ⊗ t, 0) = we (ε t ⊗ t)

= Ec

2
ε2 with Ec = λ + 2μ (17)

where Ec is the initial one-dimensional confined stiff-
ness. Besides, thanks to the property of positive homo-
geneity of degree 2 with respect to ε, the elastic strain
energy density reduces to:

w (ε t ⊗ t, a) = A (a)
Ec

2
ε2 (18)

It defines a functionA (a)which quantifies the progres-
sive stiffness reduction and is referred to as the degra-
dation function. It does not depend on t thanks to the
isotropy of w and it should depend on the sign of ε but
the latter is considered positive in (15) (tension). Since
the elastic strain energy is positive and decreasing with
damage, it implies that A is a positive and decreasing
function. And the continuity of w at a = 0 implies that
A (0) = 1.

Finally, the state Eq. (2) leads to the expression of the
longitudinal stress field σ = t · σ · t in tension through
the application of Euler’s identity:

2w (ε, a) = ε :∂w
∂ε

(ε, a) = (ε t ⊗ t) :σ = ε σ ⇒
σ = A (a) Ec ε (19)

Moreover, thanks to the isotropy of the strain energy,
the stress tensor admits the same eigen-directions as
the strain tensor, in particular the direction t. The shear
components σxy and σxz are hence equal to zero. In
addition, as the stress components in the plane y − z
normal to t depend only on x (because the strain and
the damagedependonly on x), the equilibriumequation
reduces to:
∂ σ

∂x
= 0 (20)

Regarding the degradation function, an additional con-
dition is provided through (4). Indeed, thanks to the
confinement boundary conditions, all the strain eigen-
values are positive (or equal to zero). This is the condi-
tion stated in (4) under which the stress should vanish
for ultimate damage (no stiffness recovery in tension).
The Eq. (19) then implies that A (1) = 0.

Finally, the solution of the 1D problem is governed
by the evolution equation (9) in one dimension, the
interface conditions (11), the stress–strain relation (19)
and the equilibrium equation (20) which states that the
longitudinal stress component is constant in the bar.

2.3.2 One-dimensional solution in terms of stress:
separation response

The solution of the one-dimensional problem and its
convergence towards the solution of a cohesive zone
model have been established in (Lorentz and Godard
2011; Lorentz et al. 2012) under additional constitutive
assumptions. Indeed, the former publications are based
on a gradient damage model which belongs to the class
of generalised standard materials: it corresponds to the
framework of the Sect. 2.2with the special casew = �.
In the present 1D case, such a condition would result
in:

� (ε t ⊗ t, a) = A (a)
Ec

2
ε2 (21)

We propose here to relax the constraint w = � for gen-
eral strain tensors while preserving the equality (21).
To that end, only the following class of potentials �

are considered from now on:

∀ (ε, a) � (ε, a) = A (a) � (ε) (22)

where the function � is positive, isotropic, positive
homogeneous of degree 2 and fulfils � (t ⊗ t) = Ec/2
because of (21). Note that as � should be convex with
respect to a, the function A (a) should be convex too.

Thanks to the constitutive choice (22), the results
formerly established in 1D for a generalised stan-
dard material remain applicable. The main points are
recalled hereafter. First, a closed-formexpression of the
strain field gives access to the separation displacement
δ through (16). In particular, its critical value δc when
the damage reaches a = 1 inside the damage band is
finite and not equal to zero if and only if the degradation
function A (a) behaves as (1 − a)2 in the neighbour-
hood ofa = 1. In this case, the strain at failure is aDirac
distribution. Such a form for the degradation function
is assumed from now on, as has been done for instance
in (Comi 1999; Bourdin et al. 2000; Amor et al. 2009):

A (a) ∝ (1 − a)2 when a → 1 (23)

Moreover, three characteristics of the response of the
bar can be calculated: the nonlocal length scale D
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130 E. Lorentz

which is defined as half the final damage band width,
the confined peak stress σc which is actually reached at
damage inception (no initial hardening) and the frac-
ture energy per unit area GF obtained by integration of
(14) with respect to the time:

D =
√
2c

k
; σc =

√
− 2Eck

A′ (0)
; GF = 4

3
kD (24)

This enables conversely the expression of the internal
parameters of the model in terms of these more con-
venient characteristic values of the fracture process,
including in particular the nonlocal length scale D:

k = 3

4

GF

D
; c = 3

8
DGF ; A′ (0) = − 3

2

EcGF

σ2c D
(25)

The degradation function A (a) itself hence appears as
an internal characteristic of the model. We choose to
rewrite it without loss of generality as:

A (a) = (1 − a)2

(1 − a)2 + 3
2
EcGF
σ2c D

aĀ (a)

⇔ Ā (a) = 2

3

σ2c D

EcGF

(1 − a)2

a

[
1

A (a)
− 1

]
(26)

where Ā (a) is a continuously differentiable, strictly
positive and bounded function so that A (a) indeed
behaves as (1 − a)2 in the neighbourhood of a = 1 and
with Ā (0) = 1 so as to fulfil the condition on A′ (0) in
(25). It is referred to as the reduced degradation func-
tion. The separation displacement and the stress in the
bar admit the following parametric expressions, where
a0 denotes the current maximal damage in the bar and
the normalised functions δ̄ (a0) and σ̄ (a0) only depend
on the function Ā:

δ (a0)

GF/σc
= δ̄ (a0) + D

2σ2c
EcGF

σ̄ (a0) ;
σ (a0)

σc
= σ̄ (a0) (27)

δ̄ (a0) = 3

2
σ̄ (a0)

a0∫

0

Ā(a)
√
a

(1 − a)2

[
1 − Ā (a) (1 − a0)2

Ā (a0) (1 − a)2

] − 1
2

da ;

σ̄ (a0) = 1 − a0√
Ā (a0)

(28)

2.3.3 Asymptotic cohesive law

The convergence study corresponds to a vanishing
nonlocal length scale D with frozen confined stiff-
ness Ec, peak stress σc and fracture energy GF . This

choice affects the type of the asymptotic model: for
instance,Bourdin et al. (2000) did notmaintain the peak
stress constant in their analysis and obtained a conver-
gence towards aGriffith fracture law (with infinite peak
stress). In the present case, the response (δ, σ) provided
in (27) evidently admits a cohesive limit (δczm, σczm)

for vanishing values of D. This response is given in a
parametric format, with the functions δ̄ (a0) and σ̄ (a0)
defined in (28):

δczm (a0) = GF

σc
δ̄ (a0) ;

σczm (a0) = σcσ̄ (a0) with 0 ≤ a0 ≤ 1 (29)

If the function Ā does not depend on σc neither on
GF , then the cohesive law is deduced from a “master
response” or normalised response

(
δ̄, σ̄

)
which charac-

terises the shape of the cohesive response.
The graph of such a cohesive response is plotted in

red in theFig. 1 for a given typeof function Āwhichwill
be detailed later in the Sect. 3.1. It highlights the proper-
ties of the cohesive law: perfect adhesion (δ = 0) below
the initial stress threshold σc (extrinsic cohesive law,
i.e. without initial compliance), then a decrease of the
stress with increasing separation displacement when
damage occurs (no snap-back) and at last failure with
zero stress and a finite critical separation displacement
corresponding to a true crack. Thanks to the closed-
form expressions (28), the initial softening slope and
the final separation δc can be calculated; they respec-
tively read:

dσczm

dδczm

∣∣∣∣
a0=0

= 2

3π

(
Ā

′
(0) + 2

)3/2 σ2c

GF
;

δc = 3π

4

√
Ā (1)

GF

σc
(30)

At last, note that several constraints should be fulfilled
by the degradation function A (hence also by the func-
tion Ā) in order to ensure its convexity, an increas-
ing damage band width b (a0) and a decreasing stress
σ (a0), the latter being a condition of objectivity for the
cohesive law (Bazant 2002). These constraints restrict
the choice of the function Ā. In particular, two neces-
sary conditions can be derived whatever the expression
of Ā:

Ā
′
(0) ≥ 1; D ≤ 3

2
(
Ā

′
(0) + 2

) EcGF

σ2c
(31)

The latter sets an upper bound to the nonlocal length
scale (half the damage band width) relatively to the
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Fig. 2 Diversity of the stress states in a three-point bending SENB

cohesive length EcGF/σ2c introduced in Hillerborg
et al. (1976) for concrete and related to the length of
the process zone.

2.3.4 Extension to the 2D and 3D cases

The demonstration of convergence towards a cohesive
law is rigorous in the confined uniaxial case. However,
the distribution of the stress field in a 2D configura-
tion illustrates why the convergence property does not
plainly transfer to 2D or 3D cases. Indeed, consider a
single-edge notched beam (SENB) subjected to three-
point bending. Anticipating the forthcoming develop-
ments, the damage model specialised to concrete and
summarised in the Sect. 3.4 is applied under a plane-
strain assumption. The stress field history is analysed
in terms of two quantities: the component of the stress
tensor in the direction parallel to the notch σyy and an
indicator of biaxiality ξ which is defined as follows
through the eigenvalues of the stress tensor σI ≥ σII in
the plane of the simulation:

σI =
√

σ2I + σ2II cos
[
(ξ−1)

π

4

]
;

σII =
√

σ2I + σ2II sin
[
(ξ −1)

π

4

]
(32)

With this definition, bi-compression (CC), uniaxial
compression (C), pure shear (CT), uniaxial tension (T)
and biaxial tension (TT) correspond respectively to ξ

equal to –2, –1, 0, 1 and 2. And the confined uniaxial
state corresponds to ξ ≈ 1.3 when the Poisson ratio
ν is equal to 0.2. The results are plotted in the Fig. 2
where each point in both graphs corresponds to a given
geometrical point of the beam with position x and at
a given time t : the x-axis indicates the corresponding
level of damage a (x, t) while the y-axis is σyy (x, t) in
the right-hand side graph and the biaxiality indicator
ξ (x, t) in the left-hand side graph. In order to focus on
the damage zone, only the points where damage occurs
are actually plotted. Besides, the evolution undergone
by the geometrical point P located 10 mm ahead of the
notch tip is highlighted in red in the graphs.

This stress history illustrates two limitations which
preclude an extension of the convergence property from
1D to 2D or 3D configurations:

– The 1D case should be representative of the real
behaviour across the damage band. However, a
lateral boundary condition has been stated (lon-
gitudinal displacement only) which appears quite
arbitrary: why should there be some confinement
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instead of a free boundary condition, for instance?
In fact, the stress history in the Fig. 2 shows that
the stress components follow various and complex
paths which do not correspond to a single lateral
boundary condition in the 1D case. Note however
thatmost damaging points of the beamare close to a
“mainstream”pathwhich goes to a value of 1.3with
increasing damage, i.e. a stress state which corre-
sponds indeed to the confined boundary condition.
And the mainstream path lies always away from
the value 1 which corresponds to a free boundary
condition.

– The damage criterion encompassed in the potential
� should depend not only on the strain component
across the crack (i.e. along t in the 1D case) but also
on the strain components parallel to the crack plane,
as stated in Bazant (2002). They are not negligible,
see for instance the Fig. 2 for the component σyy ,
in agreement with the results of Linear Fracture
Mechanics where the mode I singular stress field in
the wake of the crack has the following expression:

σxx= KI√
2π r

; σyy = KI√
2π r

; σzz= 2 ν KI√
2π r

(33)

where ν is the Poisson ratio, x denotes the crack
direction, y the load direction normal to the crack,
z the crack front direction, KI the stress intensity
factor and r the distance to the crack tip. Although
the in-plane components are not negligible, their
influence is not included in classical cohesive zone
models which hence cannot be the rigorous limit
of the damage model in 2D or 3D configurations.
Nevertheless, this is true mostly at the beginning of
damage, with impact on the tensile strength. When
damage growths, the strain component transverse
to the crack becomes far larger than the in-plane
components (since it tends to a Dirac distribution)
and a relatively confined strain state is retrieved.

Therefore, even though both limitations preclude an
extension of the convergence property to 2D and 3D
cases, there is some hope for a reasonable agreement
between the asymptotic cohesive law and the nonlo-
cal damage model. It can be assessed numerically in
the case of mode I loading in terms of global force–
displacement response, crack initiation and crack open-
ing. To this end, a virtual mock-up is considered which
consists of a containment wall enclosing a pressurised
internal chamber as depicted in theFig. 3. The thickness

of the wall is set to (unusually) large values of 4 m on
the left side and 2 m on the right side so that large crack
propagations and large crack opening are enabled. In
addition, the elliptical shape of the cavity (on the right
side) leads to a tensile stress concentration which trig-
gers the crack propagation along the symmetry plane.
As a result, the crack path is predictably rectilinear
(hence enabling an easy comparison with the cohesive
zone model) but the crack history is quite rich: initia-
tion on the right side then on the left side of the cavity,
crack propagation on both sides then crack arrest on
the left side until the right side crack reaches (unsta-
bly) the external boundary of the wall and finally stable
crack propagation towards the left side wall boundary.
The numerical comparison between cohesive crack and
nonlocal damage is conducted again with the model
specialised to concrete that will be described in the
Sect. 3.However, its precise expression is not necessary
here and can be temporarily skipped for the sake of sim-
plicity; just notice the relevant numerical values used
in the simulations: GF = 0.1 N/mm, σc ≈ 3 MPa,
δc = 0.135 mm and D = 50 mm (for nonlocal dam-
age).

The main results are provided in the Fig. 3 for both
the nonlocal damage model and the cohesive zone
model. First, it can be observed that damage is mostly
localised inside a band of constant width 2 × D and
does not spuriously spread with increasing crack open-
ing. Besides, the global responses in terms of the inter-
nal pressure vs. the variation of the cavity volume are
indeed close to each other; in particular, the crack his-
tories are qualitatively the same. Moreover, the crack
opening displacements are compared for a given load-
ing stage (pointA of the global response) where one of
the crack has emerged on the external boundary while
the other one is still propagating. Again, the displace-
ments are close to each other even inside the active
process zone (0 ≤ δ ≤ δc).

In conclusion, the nonlocal damagemodel takes into
account all the strain and stress components contrarily
to the cohesive zone model which ignores the compo-
nents parallel to the crack plane. Therefore, the con-
vergence of the nonlocal model toward the cohesive
law for vanishing nonlocal length scales seems out of
reach, even though mathematical approaches based on
the tools and techniques from the calculus of varia-
tions will maybe lead in the future to a class of damage
models fulfilling this convergence property in 3D (in
the sense of �-convergence), see Bourdin et al. (2008)
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Fig. 3 Numerical mock-up: pressurised internal chamber

and references therein, or more recently (Freddi and
Iurlano 2017). Nevertheless, it can be observed in the
Fig. 3 that the numerical responses of both damage and
cohesive models remain reasonably close to each other
not only with respect to a global force–displacement
response but also regarding the crack opening profiles,
at least formode I loading. Both formulations are hence

consistent with each other. In addition, it confirms that
the nonlocal damage model may give access to reliable
crack opening in a straightforward way (displacement
discontinuity across the crack surface measured at the
distance of ±D), a property which is not straightfor-
ward with any nonlocal model, see for instance Dufour
et al. (2008).
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3 Specialisation to concrete behaviour

In the previous section, a general setting for quasi brittle
materials has been presented under the assumptions of
isotropic, rate-independent and tension-driven damage.
At this stage, three degrees of freedom remain to be
defined: the reduced degradation function Ā (a), the
strain dependence � (ε) in (22) and the elastic strain
energy density w (ε, a). These inputs of the damage
framework characterise respectively:

– The softening response in radial tensile loading
– The shape of the damage threshold in the strain
space

– The effect of partial crack closure on the stress–
strain relation

Specific expressions for these functions are proposed
in the forthcoming subsections in order to account for
the phenomenological characteristics of concrete.

3.1 Softening response

3.1.1 Design of softening functions with respect to
experimental softening curves

The choice of a reduced degradation function Ā and
the resulting softening stress—separation response is a
trade-off between simplicity and realism with respect
to concrete behaviour. It is subjected to several con-
straints among which Ā (0) = 1 and Ā′ (0) ≥ 1. The
simplest choice consists of an affine function with a
single parameter p:

Ā (a) = 1 + pa with p ≥ 1 (34)

Experimental softening curves have been obtained by
Peterson (1981) on the basis of (delicate) tensile experi-
ments. Some results are gathered in the Fig. 4; they con-
cern different types of concrete which differ through
their age, their water-cement ratio and the size of their
aggregates. A curve fitting is performed with the affine
function (34) in order to evaluate the best parameter p
for each class of concrete: the softening curves corre-
sponding to the affine function roughly fit the experi-
mental ones, see the dashed lines in the Fig. 4.

However, the identification of p clearly results from
a trade-off between the initial and the final stage of the
softening response since this single parameter char-
acterises the whole normalised softening response.

According toHoover andBazant (2014), amodelwhere
the beginning and the final stage of the softening curve
cannot be controlled independently may have limited
accuracy when predicting structural responses. Even
though the softening law (29) is not covered by their
analysis, it hints at somewhat enhancing the expression
(34). Therefore, an extended expression is proposed for
the function Ā (a) where an additional parameter q is
introduced:

Ā (a) = 1 + p a exp
(
q2a2

)
with p ≥ 1 (35)

This specific form results from investigations on poly-
nomial expansions and their effects on the softening
curve and the fulfilment of the convexity and damage
band enlargement constraints stated in the Sect. 2.3. In
particular, q should not be greater than an upper bound
qmax (p) plotted in the Fig. 5. As q = 0 coincides with
the former expression (34), the comparison against the
data provided in Peterson (1981) is necessarily better
than previously, see indeed the Fig. 4 (plain lines): the
simulations are now in satisfactory agreement with the
experimental measurements.

3.1.2 Comparison with SENB experimental responses

Even though the use of the more complex degradation
function (35) necessarily leads to a better agreement
with experimental softening responses, it is interest-
ing to assess how much the burden of calibrating a
new parameter q is worth with respect to structural
responses. To this end, the quantitative influence of the
parameter q is evaluated on a single edge notch beam
(SENB), see the Fig. 6 where the experimental results
are taken again from Peterson (1981).

The geometry and the material parameters of the
beam—including the tensile strength and the fracture
energy—are provided by Peterson (1981) and recalled
in the Fig. 6. Therefore, only the parameters p and q
remain to be calibrated. The first step is focused on the
peak force. A parametric computation the results of
which are depicted in the Fig. 6 gives the dependence
of the computed peak force with respect to p and q.
In particular, it appears that both parameters affect the
peak force. As the average experimental value of the
latter is equal to 0.763 kN, it narrows the possible com-
binations of p and q: it corresponds to the black thick
line in the left hand side graph in the Fig. 6. For the
simple degradation function (q = 0), this is enough
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Fig. 4 Experimental versus predicted softening curves for different concretes

to identify p = 1.30. However, the simulated force–
displacement response for the beam (red curve in the
right hand side graph of the Fig. 6) lies slightly out-
side the experimental range. When using the enhanced
degradation function, a second calibration step is neces-
sary to obtain the best combination of p and q, leading
to a peak force of 0.763 kN and the closest numerical
response to the average experimental response. After
optimisation, it results in the pair p = 1.03 and q = 1.47.

Now the corresponding simulated force–displacement
response (the black curve in the Fig. 6) lies inside the
experimental range.

In conclusion, using the enhanced degradation func-
tion somewhat improves the results, as expected since
it is an extension of the affine degradation function.
Nevertheless, the numerical responses with both func-
tions remain relatively close to each other so that the
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Fig. 5 Upper bound for the parameter q

affine degradation function (34), i.e. setting q = 0, is
probably sufficient for a first guess.

3.2 Damage threshold

Up to now, the evolution of damage has been stated
in the context of uniaxial tensile loading only, in rela-
tion with the degradation function Ā (a) involved in
the stress–strain relation. Thus, the dependence of the
damage evolutionwith respect to the load direction still
remains to bedefined.Thanks to the split between radial
evolution and direction dependency introduced in (22),
the knowledge of the initial domain of reversibility in
the strain space—denoted E0 and introduced in (12)—
provides the information required to complement the
definition of the damage evolution law as shown here-
after. The quantitative consequences of the shape of
E0 on the crack propagation are then highlighted and

Fig. 6 Effect of the softening law on the response of a SENB (Peterson 1981)
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finally a phenomenological criterion for damage incep-
tion is proposed.

3.2.1 Introducing a directional dependency into the
damage evolution law

The damage evolution law is characterised by the
potential� according to (6).An attractive choicewould
have consisted in casting the model into the framework
of generalised standard materials by setting� (ε, a) =
w (ε, a). In that way the strain energy density w would
have governed the radial evolution of damage and the
dependency on the strain direction. Unfortunately, it
appears difficult to define a function w (ε, a) consis-
tent with an acceptable stress–strain relation and at the
same time leading to a sufficient contrast between the
compressive strength fc and the tensile strength ft , say
fc/ ft ≈ 10 for concrete. Therefore, we had to depart
from the standard generalisedmaterial framework,with
practical consequences such as the loss of the tangent
operator symmetry or the emergence of challenging
questions regarding possible definitions of stability as
introduced for instance in Nguyen (1994) and Benallal
and Marigo (2007).

A compromise has been introduced in (22) with
� (ε, a) = A (a) � (ε): the strain energy still governs
the damage evolution in confined uniaxial tension in
order to preserve the consistency with a cohesive law
for vanishing nonlocal length scales while the direc-
tional dependency is taken into account through the
separate and independent function� (ε). We recall that
the latter is required to be positive, isotropic, posi-
tive homogeneous of degree 2 and normalised through
� (t ⊗ t) = Ec/2 for any unit vector t. According to
(12), (22) and (25), the initial elastic domain E0 is then
characterised by:

E0 = {ε s.a. � (ε) ≤ �c} with �c = 1

2

σ2c

Ec
(36)

where the threshold value �c is consistent with the fact
that the strain ε = σc/Ect ⊗ t lies on the boundary of
E0 by definition of σc. As ε = 0 belongs to E0 since
�(0) = 0, (36) defines actually the function � in every
strain direction, its values along a given radial direction
being set by the condition of positive homogeneity of
degree 2.

In practice, consider that E0 is classically described
by a damage threshold function fE (ε), continuous and
isotropic, through the conditionE0 = {ε ; fE (ε) ≤ 0}.

Fig. 7 Derivation of χ(ε) from a damage surface

As in Besson et al. (2001), we introduce a strain mea-
sure χ (ε) which depends only on E0; it is defined by
the following implicit relation:

∀ ε fE
(

ε

χ (ε)

)
= 0 (37)

χ is positive, isotropic and positive homogeneous of
degree 1. A graphical interpretation is provided in the
Fig. 7 which shows that χ (ε) quantifies how large ε is
with respect to the amplitude of the damage threshold
in the direction of ε. According to the results detailed
in the “Appendix A”, the definition (37) of χ is well-
posed provided that E0 is closed, convex and contains a
neighbourhood of the point ε = 0. And E0 corresponds
to the set of strain tensors such that:

E0 = {ε ; χ (ε) ≤ 1} (38)

A comparison of (38) with (36) indicates finally that
the function � should be defined as follows:

� (ε) = �c χ (ε)2 (39)

The knowledge of the damage threshold function fE
hence enables the definition of the function � (ε). If fE
is continuous, convex and fE (0) < 0, then E0 is closed,
convex and contains a neighbourhood of the point ε =
0, so that χ and � are also convex and continuous with
respect to ε, according to the “Appendix A”.

This construction can be easily extended to the case
where the initial elastic domain is defined in the stress
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space instead of the strain space (it is then denoted S0).
Indeed, as stressed by the word “initial”, the definition
of the domain is prior to any damage. According to (3),
the stress–strain relation hence simply reads σ = E :ε
which provides the following relation between E0 and
S0:

S0 =
{
E :ε ∀ ε ∈ E0

}
(40)

In particular, if S0 is defined through a function fS
such that S0 = {σ ; fS (σ) ≤ 0}, then E0 is equiv-
alently defined by a function fE such that E0 =
{ε ; fE (ε) ≤ 0}, where both functions are linked by:

fE (ε) = fS (E :ε) (41)

It is then possible to build χ (ε) and � (ε) from (37)
and (39).

As an illustration of how to derive the strainmeasure
χ (ε) from fE , consider for instance the damage crite-
rion introduced by de Vree et al. (1995) known as the
modified von Mises criterion. It relies on a threshold
value κ and the ratio r = fc/ft :

fE (ε) = ε̃MM (ε) − κ

with ε̃MM (ε) = r − 1

2r (1 − 2 ν)
I1 (ε)

+ 1

2r

√(
r − 1

1 − 2 ν
I1 (ε)

)2

+ 12r

(1 + ν)2
J2 (ε) (42)

where ν is the Poisson ratio, I1 the first strain invariant
and J2 the second deviatoric strain invariant. Thanks
to the character positive homogeneous of degree 1 of
ε̃MM (ε), the function χ simply reads in that case:

χ (ε) = 1
κ
ε̃MM (ε) since fE

(
ε

χ (ε)

)

= ε̃MM

(
ε

χ (ε)

)
− κ = ε̃MM (ε)

χ (ε)
− κ = 0 (43)

3.2.2 Influence of the shape of the damage surface on
crack propagation

It has been shown in the previous subsection how the
nonlocal damage setting of the Sect. 2 can be spe-
cialised to a given damage threshold function fE . The
choice of the latter is ruled by several considerations.
First, the boundary of the initial elastic domain is the
surface where damage initially occurs. As the model
does not describe a preliminary hardening stage, it
also coincides with the failure surface. In particular it

should reflect the contrast between tensile and com-
pressive strengths. For instance, the criterion intro-
duced in Mazars (1986) is not adapted in our frame-
work since it leads to a contrast fc/ft of only 3.5 for a
Poisson ratio ν = 0.2.

Moreover, in the context of damage propagation, the
local stress state does not reduce to uniaxial tension
and a wide range of biaxial stress states are observed,
as already pointed out in the Sect. 2.3.4. This fact was
also noticed by Jirasek and Bauer (2012) who observed
that damage criteria which coincide in uniaxial ten-
sion but differ elsewhere in the tensile regime quadrant
lead to quantitatively different responses for a struc-
ture. In order to assess whether this observation still
holds true with the present nonlocal formulation, the
modified vonMises damage criterion recalled in (42) is
applied to the simulation of a SENB subjected to three-
point bending (the other characteristics of the model
remain those summarised in the forthcoming Sect. 3.4).
The interest—or shortcoming depending on the point
of view—of this criterion is the fact that its shape in the
tensile quadrant is strongly influenced by the compres-
sive strength even though the tensile strength remains
unchanged, see the Fig. 8 for an illustration in plane-
stress. The simulation is performed for two values of
the ratio fc/ft , 1.5 and 10. The significant difference
observed in the force–deflection curve in the Fig. 8
results from the different shapes of the damage surface
in the tensile quadrant (damage in compression with
r = 1.5 is not responsible for the gap between the
curves since it happens sufficiently late, cf. the dashed
curve in the figure). By the way, note also that the mod-
ified von Mises criterion is not able here to reproduce
the experimental results when using the realistic ratio
fc/ft = 10.
Finally, the previous observations appeal for a rea-

sonably accurate criterion in multiaxial tension while
preserving the contrast between compressive and ten-
sile strengths.

3.2.3 An accurate damage criterion for tensile
cracking

A damage criterion was proposed by François (2008)
which meets both requirements established in the
Sect. 3.2.2: reasonably agreeing with experimental
observations in multiaxial tension and preventing from
early damage in compression. In the stress space, the
initial elasticity domain S0 reads:
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Fig. 8 Effect of the shape of the damage criterion on a structural response

S0 = {σ ; fS (σ) ≤ 0} with

fS (σ) =
∥∥∥∥σD + β0 tr (σ) Id

σ0

∥∥∥∥ +
∥∥∥∥exp σ

σ0

∥∥∥∥ − γ0

(44)

The tensorial function exp is the exponential of a sym-
metric tensor and ‖·‖ is the usual Euclidean norm
(‖T‖2 = T : T). The threshold function depends on the
parametersσ0 > 0 (dimensionof a stress) andγ0 >

√
3

(dimensionless). According to François (2008), the
function fS fulfils the required conditions: it is con-
tinuous, isotropic, convex and fS (0) < 0. Compared
to the original expression in François (2008), a third
parameter β0 is introduced so that the elasticity domain
is bounded – even for hydrostatic compression. Even
though such stress states lay outside the scope of the
study, the boundedness of the domain is convenient on
a numerical ground: the function χ (ε) is then coercive
and the implicit Eq. (37) always admits a unique solu-
tion, cf. the “AppendixA”. In practice, β0 is set to 0.1 so

that the weight of the hydrostatic stress remains small
except for high triaxialities in compression.

On the contrary of more refined threshold functions,
see for instance Willam and Warnke (1975), the crite-
rion here relies on a single tensorial expression and
results in a regular convex domain with counterpart
a less accurate description in multiaxial compressive
states, as can be seen in the Fig. 9 where the exper-
imental results are taken from Lee et al. (2004). This
shortcoming is not troublesome for the present purpose
since the focus lies on tensile cracking without damage
in compression and, if necessary, a slight overestima-
tion of the compressive strength would lead to a better
global agreement in multiaxial compression. Besides,
a comparison with the modified von Mises criterion
(de Vree et al. 1995) and the Mazars criterion (Mazars
1986) is also reported in the Fig. 9 and confirms the
interest of the criterion in (François 2008) regarding
multiaxial tension and the prevention of early damage
in compression. These good properties enable realistic
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Fig. 9 Damage criteria in biaxial plane-stress

quantitative predictions of structural behaviours, see
the results in the Fig. 6 and in the forthcoming valida-
tion cases in the Sect. 4.

The identification of the parametersσ0 andγ0 in (44)
may rely on the knowledge of the tensile and compres-
sive strengths. More precisely, it can be noticed from
(44) that γ0 and σ0/ ft depend only on the ratio fc/ ft ,

which should necessarily be greater than 2.8 with this
criterion in order to ensure the existence of solutions
to the identification procedure. For the sake of conve-
nience, the values of γ0 and σ0/ ft are plotted in the
Fig. 10 as functions of the ratio fc/ ft .

3.3 Stress transfer across damage bands and
damage/stiffness coupling

When considering the simple strain energy expres-
sion w (ε, a) = A (a)we (ε), the completely damaged
material (a = 1) does no more sustain any stress: its
stiffness is equal to zero in any loading direction. This is
a shortcoming when compressive load should be trans-
mitted across damaged areas. For instance, a pressur-
ized cavity as depicted in the Fig. 3 should sustain inter-
nal pressure beyond the development of damage along
the inner wall, damage areas should accommodate self-
weight loading, etc. Even though anisotropic damage
models a priori provide an adequate setting, relaxing
the isotropy assumption of the current model would
result in deep impacts on all its properties. Therefore,
another direction is followed, less accurate but which
should be sufficient for the above-mentioned stakes:
damage keeps its former description as a scalar field
and the distinction between tensile and compressive
states is achieved through the expression of the elastic

Fig. 10 Parameter identification for the damage criterion in François (2008)
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energy density w (ε, a) introduced in (1). One speaks
then of stiffness recovery.

3.3.1 Isotropic energy split

Several authors considered a split of the initial elastic
energy density we into a tensile part wt and a compres-
sive part wc and assessed that only the tensile part is
affected by damage:{
we (ε) = wt (ε) + wc (ε)

w (ε, a) = A (a)wt (ε) + wc (ε)
(45)

As the degradation function A goes from 1 to 0 with
increasing damage, the effect of damage consists of a
progressive transition from a soundmaterial with strain
energy we to a fully damaged one (a broken one) with
strain energy density wc:

w (ε, a) = A (a)we (ε) + [1 − A (a)] wc (ε) (46)

The expression of w is subjected to several constraints
already stated above which result in turn in constraints
on wc:

– w is positive, isotropic, strictly convex with respect
to ε for a < 1 and continuously differentiable if
and only if wc is positive, isotropic, convex and
continuously differentiable;

– w decreases with damage if and only if we ≥ wc

since the degradation function A is decreasing;
– w is positive homogeneous of degree 2 with respect
to the strain if and only if it holds for wc too.

3.3.2 Residual elastic energy

Actually, distinguishing a tensile state from a com-
pressive one is not straightforward in case of nonzero
Poisson ratio. An intuitive and simple distinction can
be introduced according to the sign of the strain trace
(Comi and Perego 2001; Amor et al. 2009), which is
also equal to the sign of the stress trace:

wc (ε) = 1

2
λ 〈tr ε〉2− (47)

where the McAuley brackets with minus subscript
denote the negative part of a scalar or a symmet-
ric tensor. However, the completely damaged material
hence behaves in compression like a perfect fluid and it
does not sustain non-hydrostatic stress states. That may
result in poor stress transfer, as will be seen hereafter.

Another approach proposed by Fichant et al. (1999)
consists in relying on the sign of the stress eigenvalues.

They worked at the level of the stress–strain relation
which they wrote for the broken material as:

σ = 〈E :ε〉− (48)

Unfortunately, the elastic law does not derive from an
energy anymore (since there is no symmetry of the
tangent operator), a situation which is not handled by
the present formalism, see (2). Note also that such a
choice raises some questions regarding the existence
and uniqueness of elastic solutions and the positivity
of the energy dissipation.

This calls for a more complex expression of the ulti-
mate strain energy density wc. First, we have stated in
(4) that a strain state where all the strain eigenvalues
are positive corresponds to a tensile state for which wc

should be equal to zero; this is thought to be a mini-
mal requirement for tensile strain states. Therefore, it
seems interesting to begin with a focus on the set T of
strain states with zero residual energy, named tensile
strain states:

T = {
ε ; wc (ε) = 0

}
(49)

According to the properties stated in the “Appendix B”,
T is a convex cone and its dual convex cone is the set
of admissible stress states A:

A = {σ ; ∀ ε ∈ T σ:ε ≤ 0} (50)

Non-admissible stress states are not sustainable by the
material, i.e. the stress energy density is infinite. For
instance, if tensile strain states are defined as the strain
tensors with positive trace as in (47), then the admissi-
ble stress states are indeed reduced to hydrostatic com-
pressive tensors −p Id (p ≥ 0) as said above. Actu-
ally, the larger T , the smallerA. Nowwemake another
assumption in order to ensure the sustainability of com-
pressive loading: any stress tensor with all eigenvalues
negative should be admissible. In that case, because of
(50), there is only a single choice for T and A:

T = {ε ; ∀ i εi ≥ 0} ;
A = {σ ; ∀ i σi ≤ 0} (51)

At this stage, the domains of tensile strains and com-
pressive stresses are defined. We can now focus on
actual expressions for the ultimate energy density wc.
A natural choice would consist in assuming that there
is a complete stiffness recovery for any admissible
stress state. In terms of stress energy density, this reads
wc∗ (σ) = we∗ (σ) for any σ ∈ A, with we∗ (σ) =
σ: E−1:σ/2 the elastic stress energy. As wc∗ is equal
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Fig. 11 Kinematics inside a damaged layer

to + ∞ outside A, it is hence completely defined and
wc could be obtained through a Legendre transform
of wc ∗. Unfortunately, the corresponding expression
is poorly convenient for numerical applications so that
we prefer to rely on the following approximation pro-
posed in (Badel et al. 2007):

wc (ε) = 1

2

[
λ 〈trε〉2− + 2μ 〈ε〉− : 〈ε〉−

]
(52)

This expression fulfils (51) and the requirements of the
Sect. 3.3.1. It provides a complete stiffness recovery for
any strain state such that εi ≤ 0 for any i . In terms of
stress states, the latter is a smaller set thanA and that’s
why (52) is considered as an approximation of what
could have been an optimal wc. Nevertheless, when
considering stress transfer, the definition of the admis-
sible stress states is thought to be more important than
the actual value of the residual energy density.

3.3.3 Stress transfer through damage bands under
shear loading

When defining the residual (or compressive) part of the
Helmholtz free energy wc, the focus has been put on
the definition of tensile strain states (with zero resid-
ual stiffness) and compressive stress states (i.e. admis-
sible ultimate stress states). One can wonder to what
extent such a choice is representative of the macro-
scopic behaviour of a real crack. In order to answer
the question, consider a thin layer of totally damaged
material which should be representative of a macro-
scopic crack. Locally, the damaged layer is subjected to
a separation displacement as depicted in the Fig. 11, say
u = δnn + δt t where δn and δt denote respectively the

components normal and tangential to the “crack”. The
“macroscopic discontinuity” results in a strain distri-
bution inside the damaged layer an average estimation
of which reads:

ε ∼ 1

h
u

s⊗n = δn

h
n ⊗ n + δt

h
n

s⊗ t (53)

where h is the layer thickness and
s⊗ is the symmetrised

dyadic product. The minimal strain eigenvalue can be
easily calculated :

εmin = δn −
√

δ2n + δ
2
t

2h
(54)

We recall that a negative value implies some stiffness
recovery because of the definition (51) of the tensile
strains. As expected, it is strictly negativewhen δn < 0:
some stiffness is recovered when closing the crack. A
more questionable property concerns shear mode load-
ing: the minimal strain eigenvalue is also strictly neg-
ative under sliding or tearing, i.e. when δt �= 0, what-
ever the opening displacement δn . It means that stiff-
ness recovery and hence stress transfer are observed
as soon as a tangential separation of the crack faces
occurs. This is the limitation of an isotropic law when
trying to locally reflect the anisotropic behaviour of a
crack and it may lead to some locking phenomenon
(even though not observed in the forthcoming numer-
ical simulations). Nevertheless, the stiffness recovery
and the resulting stress transfer could also somewhat
reflect the aggregate interlock as long as the opening
displacement remains small, even though we do not
claim to actually model the interlock (it is only an arte-
fact of the isotropic modelling).

3.3.4 Stiffness recovery regularisation

It is acknowledged that the brutal stiffness recovery
resulting from (52) when a strain eigenvalue becomes
negative may raise numerical difficulties, cf. Jefferson
and Mihai (2015) which corroborates our own expe-
rience. Therefore, we recommend to introduce a pro-
gressive stiffness recovery. Even though the motivation
here is the numerical robustness, a progressive stiffness
recovery with crack closure also stems from experi-
mental evidences (Reinhardt 1984) and micromechan-
ical investigations (Vassaux et al. 2015).

More precisely, the discontinuity of the second order
derivative of wc is smoothed by the following positive,
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convex and C∞ scalar function, with γ > 0 an addi-
tional parameter:

S (x) =
{
x2 exp

(
1

γ x

)
if x < 0

0 if x ≥ 0
(55)

It exhibits a progressive transition from x2 to zero,
the smoothing range being parameterized by γ, and
thus provides a regularisation of the function 〈x〉2−. The
compressive strain energy density is then defined as a
smooth extension of the potential (52) while the strain
energy keeps the expression (46) which implies that the
tensile strain energy is also smoothed, see (45):

wc (ε) = 1

2

[
λ S (tr ε) + 2μ

∑
i

S (εi )

]
(56)

And the stress–strain relation still derives from (2) :

σi = A (a) (λtr ε + 2μ εi )

+1

2
[1 − A (a)]

[
λ S′ (tr ε) + 2μ S′ (εi )

]
(57)

The required properties should now be checked. wc

is positive and isotropic. It is convex: the first term is
indeed convex (composition of a convex function with
a linear one), the second one is also convex because it
is a convex function of the eigenvalues, see Piccolroaz
and Bigoni (2009). As S is C∞ (hence C8), wc is C2

according to Carlson and Hoger (1986), so that there is
no more stiffness discontinuities. Besides, the energy
in tension wt is also positive since x2 − S(x) ≥ 0.
Finally, the only issue is the fact that wc is nomore pos-
itive homogeneous of degree 2, but only asymptotically
positive homogeneous of degree 2: the stress–strain
response is not radially linear in compression. Nev-
ertheless, it remains quadratic for tensile strain states,
so that the consistency with a cohesive law established
in Sect. 2.3 is preserved. The condition of homogeneity
of degree 2 can thus be relaxed and the proposal (56)
is satisfactory on a theoretical ground.

Finally, when returning to the initial objective that is
transferring compressive stresses across damage bands,
the choice of the parameter γ may be ruled by practical
considerations. For instance, one can demand that 90%
of the stiffness be retrieved when the strain magnitude
reaches about fc/E ; this is the value that will be used
in the forthcoming validation numerical simulations,
without further precision.

Fig. 12 Pressurised cavity: impact of the stiffness recovery
model

3.3.5 Illustration: pressurised cavity

A numerical study now illustrates the importance of
ensuring satisfactory stress transfers. It consists of the
containment wall enclosing a pressurised internal cav-
ity already introduced in the Sect. 2.3.4 and depicted
in the Fig. 3. Three different types of stiffness recov-
ery are considered: (i) no stiffness recovery wc = 0,
(ii) selection of the tensile states through the sign of
the trace according to (47) which corresponds to a per-
fect fluid-type broken material and (iii) selection of the
tensile states through the sign of the strain eigenvalues
according to our final proposal (56).

The results are presented in the Fig. 12. It appears
thatwithout stiffness recovery, the structure cannot sus-
tain any internal pressure as soon as a point of the
inner wall is broken: there is not any stress trans-
fer since A = {0}. With a perfect fluid-type bro-
kenmaterial, only hydrostatic compressive stress states
are admissible: A = R

−Id. When the damaged zone
reaches the outer wall, no more pressure can be sus-
tained (the fluid flows outside). At last, the choice of
energy such that any compressive stress states is admis-
sible, i.e. A = {σ ; ∀ i σi ≤ 0}, enables a reload-
ing of the cavity pressure beyond the first crack going
through the wall, in agreement with what is physically
expected.
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Box 1 Summary of the constitutive relation

3.4 Summary of the constitutive equations

To sum up, the class of nonlocal damage models pre-
sented in the Sect. 2 is specialised to concrete through
the expression of the reduced degradation function

Ā (a), the damage surface strain dependency � (ε) and
the strain energy density w (ε, a). The resulting consti-
tutive equations are gathered in the Box 1. They depend
on 6 (optionally 7) material parameters that need to be
identified:
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– The elasticity Lamé coefficients λ and μ

– The tensile and compressive strengths ft and fc
– The fracture energy GF

– The softening parameters p and optionally q

In addition, a nonlocal length scale D is required;
in practice, it is suggested to set it small relatively to
the characteristic lengths of the structure. At last, two
numerical parameters are introduced (with suggested
values): β0 which ensures that the elasticity domain
E is bounded and γ which regularises the transition
between the stiffness in tension and compression.

4 Validation

The predictive capacities of the model presented in the
Sects. 2 and 3 are now assessed by means of several
validation test cases with respect to the following char-
acteristics of concrete fracture:

– Prediction of the global force–displacement
response with focus on size effects and the trans-
ferability from notched to unnotched specimens.

– Prediction of the crack opening profile inside and
outside the process zone.

– Prediction of the crack path for rectilinear, then
curved and at last nonplanar cracks.

The numerical simulations are led with the finite ele-
ment software Code_Aster (for the sake of repro-
ducibility, the open-source distribution is available on
the official web site www.code-aster.org). Here, we
choose to skip the numerical details and to focus on
the simulation and experimental results. We just men-
tion that the implementation of the model follows the
numerical approach described in Lorentz and Godard
(2011) for constitutive laws with gradient of internal
variables. When the crack path is unknown a priori, an
adaptive mesh refinement strategy is applied according
to Lorentz (2010) in order to limit the computation bur-
den: typically, themesh size is adjusted so that the dam-
age band width (2× D) is discretised by five quadratic
elements (size 0.4 × D, a recommendation based on
spatial convergence analyses performed in Lorentz and
Godard (2011). And at last, a path-following technique
based on the maximal increment of damage is used
to adjust the load intensity in order to catch the pro-
gressive propagation of the cracks with satisfactory
numerical convergence of the solution algorithms, see
Lorentz and Badel (2004) for further information. On

a practical ground, note that with the target of five ele-
ments across the damage bandwidth, the solution algo-
rithms used in Code_Aster (chosen for their robust-
ness rather than their efficiency) and a small degree of
parallelism (less than 10 CPUs), the 2D simulations
lasted less than an hour while the 3D simulation in the
Sect. 4.5 was far longer (several days, the final mesh
resulting in about 5 millions of nodal degrees of free-
dom).

4.1 From notched to unnotched specimen

Hoover et al. (2013) provided a comprehensive set of
experimental data based on three point bending of sin-
gle edge notched beams made of the same concrete.
Several beam sizes and crack depths were considered.
Here, we focus on three beam sizes and three notch
lengths including unnotched specimens, which makes
nine combinations. The validation test consists of two
steps: first, four of these combinations (2 beam sizes
× 2 notch lengths) enable to fit the parameters of
the model; then the behaviour of the five remaining
combinations is predicted, including all the unnotched
cases. The simulations are compared to the experimen-
tal results in terms of force vs. crack mouth open-
ing displacement (CMOD) with a focus on the peak
force.

The geometry of the homothetic beams is given in
the Fig. 13. The three considered beam depths H are
93 mm (small beams), 215 mm (medium beams) and
500 mm (large beams). And the notch lengths a are
equal to 0 (unnotched beams), 0.15 × H (intermedi-
ate notches) and 0.3 × H (deep notches). Only the
small and medium beams with intermediate and deep
notches are used to fit the parameters, as highlighted
in the Fig. 13. More precisely, the elasticity constants
and the compressive strength are provided in (Hoover
and al. 2013) on the basis of independent experiments:
E = 41,000 MPa, ν = 0.17 and fc = 56 MPa. The
nonlocal length scale D is not identified but set to one
twentieth of the ligament length, i.e. 0.05 × (H − a):
as mentioned above, it is not considered as an addi-
tional material parameter but taken sufficiently small
compared to the structure size in order to be close to
the asymptotic CZM model. Finally, only the tensile
strength, the fracture energy and the softening param-
eters p and q need to be estimated. The identification
procedure results in the following values: ft = 5 MPa,
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Fig. 13 Size and notch effects on three point bending SENB (Hoover et al. 2013)
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G f = 75 N/m, p = 1.84 and q = 1.81. The value
for ft may seem large but it lies in the range proposed
by the fib Model Code (2010), i.e. ftm ± 30% with
ftm = 0.3 × ( fc − 8)2/3 ≈ 4 MPa.
The results are plotted in the Fig. 13 where the

numerical simulations of the force vs.CMODresponses
(black thick lines) are compared to the experimental
results (orange lines, one for each test). Regarding the
four configurations used to adjust the four parameters,
the simulations are close to the experimental results.
Even though it could have been expected thanks to
the identification procedure, it should be pointed out
that the agreement covers the whole response. And
still more convincing, the blind prediction for the five
other configurations also leads to a satisfactory agree-
ment between experimental and numerical responses.
In particular, the identification with notched specimen
enables realistic predictions for unnotched ones. Actu-
ally the worst prediction concerns the peak force of the
small unnotched beam (underestimation of the average
peak force of about 20%). However, it should be noted
that Hoover and Bazant (2014) also encountered some
difficulties to fit this particular configuration with a
CZMmodel but succeededwith still smaller specimens
which hints maybe at some experimental specificities.

4.2 Opening displacement profile along a crack

Three point bending experiments with different-sized
concrete beams are reported inAlamet al. (2013)with a
focus on the crack opening profile measured by means
of digital image correlation. These experiments pro-
vide an opportunity to estimate the accuracy of the
present nonlocal model when predicting crack open-
ing displacements.

The geometries of the single edge notched beams
are reproduced in the Fig. 14 where three beam depths
are considered: 100, 200 and 400mm. The elasticity
constants and the compressive strength are provided in
Alam et al. (2013). The nonlocal length scale D is set
to 10% of the notch length. At last, the other parame-
ters of the model are identified on the basis of the force
vs crack mouth opening displacement curves for the
three beam sizes, see again the Fig. 14 for a comparison
of the resulting numerical simulation with the experi-
mental curves. In contrast, the measured crack opening
profiles are not used in the identification procedure;
the corresponding experiment vs. simulation compar-

isons result from a blind prediction where the opening
profiles are computed according to the definition (16)
of the separation displacement, i.e. the displacement
discontinuity across the crack surface measured at the
distance of ± D. They are compared with the experi-
mental observations—still in the Fig. 14—for two load
levels: when the peak force is reached and when the
bending force has decreased up to 60% of the peak
force in the softening regime. It appears that the agree-
ment is reasonably satisfactory and better for larger
beams. The trend may be explained by the fact that for
the smallest beam, the width of the physical process
zone is no more negligible with respect to the beam
depth, in contradiction with the assumption we made
when suggesting that the nonlocal length scale D could
be chosen arbitrarily small with respect to the charac-
teristic length of the structure (here 2% of the beam
depth). A better agreement could possibly be obtained
by adjusting the nonlocal length scale but this lies out-
side the scope of the present study which focuses on
structure sizes for which cohesive zone models yield
acceptable predictions.

4.3 Rectilinear crack path prediction

The crack line wedge loaded double cantilever beam
experiment (CLWL-DCB) performed by Kobayashi
et al. (1984) exhibits a rectilinear crack path which
deviates from the initial notch directionwhen subjected
to non-proportional biaxial loading. Such a specimen
thus constitutes a first validation case to check the abil-
ity of the damage model to predict crack paths.

The specimen is a thick square plate of concrete
the dimension of which is about 50 cm. Its geometry
is depicted in the Fig. 15 along with the loading con-
ditions. The latter result from two distinct forces, P1
which opens the crack and reflects the penetration of
the wedge and P2 which is compressive in the diag-
onal direction; they provide a biaxial stress state. In
a first stage, both forces evolve proportionally with a
ratio P2/P1 = 0.62 up to P2 = 3.65 kN. Then the
force P2 is kept constant while P1 is adjusted so as to
result in an increasing crack mouth opening displace-
ment (CMOD).

Regarding the concrete characteristics, the com-
pressive strength fc is provided in Kobayashi et al.
(1984). Representative values of the stiffness, the frac-
ture energy and the mean tensile strength are deduced
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Fig. 14 Crack opening in three point bending SENB (Alam et al. 2013)
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Fig. 15 CLWL-DCB: description and results

through formulas in the fib Model Code (2010), where
E , fc and ftm are in MPa and GF in N/m:

E = 21,500 ×
(

fc
10

)1/3

; GF = 73 × f 0.18c ;
ftm = 0.3 × ( fc − 8)2/3 (58)

The tensile strength in (58) is given with a variability
of ±30%. A better agreement with the experimental
force–opening response is obtained by a coarse iden-
tification of the tensile strength ft inside the inter-
val [0.7 × ftm 1.3 × ftm]. The identification also pro-
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vides the values of the parameters p and q. The mate-
rial characteristics are finally gathered in the Fig. 15.
Note that the nonlocal length scale D is chosen equal
to 10 mm, which is considered sufficiently small with
respect to the specimen size.

The computation is performed under a plane-strain
assumption. The results are in good agreement with
the experimental values, see the Fig. 15. Thanks to the
identification, the force–opening response is close to
the experimental points, even though the initial (elastic)
slope is underestimated by the simulation, a fact also
reported in Rots (1988). And the crack path is well
predicted: the damage zone is almost superimposed to
the experimental crack path.

4.4 Curved crack path prediction

Concrete four-point-shear specimens are known for
exhibiting curved crack paths which distinctly differ
from what would be obtained with a pure brittle mate-
rial such as PMMA, see Schlangen (1993) for a review.
The crack path is hence influenced by the develop-
ment of the process zone. And according to Geers et al.
(2000), the prediction of the crack path is also highly
sensitive to the definition of the damage surface. There-
fore, four-point-shear specimens appear to be demand-
ing validation tests. Such an experiment conducted by
Schlangen (1993) is studied here to assess the ability of
the damage model to predict curved crack path. It con-
sists of a single-edge notched beam (SENB) of height
200 mm and subjected to four-point-shear. The geom-
etry and the loading conditions are summarized in the
Fig. 16.

Thematerial parameters are also given in the Fig. 16.
More precisely, the Young modulus, the Poisson ratio,
the compressive and the tensile strengths are obtained
through standard experiments in Schlangen (1993).
The fracture energy GF and the softening parameters
p and q are calibrated on the basis of a separate uniax-
ial tension test, also detailed in Schlangen (1993). As
the tensile strength observed in the uniaxial tension test
(3.44Mpa) differs from the tensile strength measured
in the Brazilian test (3.1Mpa), the identification is per-
formed with a normalized stress–stretch curve only,
where the stress is normalised by the peak stress value.
It appears that the uniaxial tension test is not very dis-
criminating so that several combinations of parame-
ters (GF , p, q) would lead to comparable responses:

in practice, GF is set here to 100 N/m. At last, consid-
ering the characteristic dimensions of the specimen,
the nonlocal length scale is set to D = 2.5mm. It
should be noticed that none of the material parameters
are adjusted with respect to the target four-point-shear
experiment: the simulation of the latter is hence predic-
tive, not only in terms of crack path (the purpose of the
validation test) but also in terms of quantitative global
responses.

The numerical predictions for the four-point-shear
test are compared to the experimental measurements,
drawn in grey in the Fig. 16. On a quantitative ground,
the applied force, the crack-mouth opening displace-
ment (CMOD) and the bending displacement δ2 are
analysed. The latter is depicted in red in the Fig. 16:
it is measured as the relative vertical displacement of
the right part of the beam (vertical red arrow) com-
pared to a straight stem (red dashed line) glued in two
points (red circles) on the left part of the beam. The pre-
dicted force—CMOD and force–deflexion curves are
close to the experimental ones; in particular, the peak
force is slightly over-estimated by 5%. On a qualitative
ground, the predicted crack path is also close to the
experimental ones the range of which is drawn in grey
in the Fig. 16. In particular, the curved crack is nicely
retrieved even though the model is isotropic.

4.5 Curved and nonplanar crack path prediction

The last validation test consists of a notched torsion
specimen proposed in Brokenshire (1996). The geom-
etry and the loading conditions are depicted in the
Fig. 17. The initial orientation of the notch and the
mixed-mode loading result in afinal curved andnonpla-
nar crack path. The simulation is performed on the basis
of thematerial parameters introduced in (Jefferson et al.
2004) according to the experimental programme and
recalled in the Fig. 17. In addition, the values of the
softening parameters p and q have been arbitrarily set
to 2 and 0. At last, the nonlocal length scale D has been
set to one twentieth of the ligament length, i.e. 2.5mm.

The results of the computation are showed in the
Fig. 17. On a quantitative ground, one can notice that
the peak force is nicely predicted by the simulation.
Moreover, the agreement with the experimental crack
mouth opening displacement (CMOD) is satisfactory,
lying in the experimental range. Considering the crack
mouth sliding displacement (CMSD), a single experi-
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Fig. 16 SENB subjected to four-point-shear: description and results

mental curve is available, hence unfortunately preclud-
ing an estimation of the scattering. Therefore, one can
only conclude that the predicted CMSD does not fully
agree with the experimental one but the gap between
them is not larger (relatively) than the magnitude of the
scattering for the CMOD.

On a qualitative ground, the predicted crack path
exhibits the same feature than the experimental one
(Jefferson et al. 2004): a progressive deviation from
the initial crack orientation (slant crack path). How-
ever, considering the available experimental data, a
photograph of the two broken pieces of the speci-
men, it is difficult to compare more precisely the crack
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Fig. 17 Brokenshire torsion test
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path, including the shape of the crack front (straight or
curved).

5 Conclusion

In conclusion, a constitutive law for plain concrete has
been proposed which focuses on rate-independent ten-
sile damage. Because of the assumed isotropy of dam-
age, the model is dedicated to the analysis of structures
at the scale of individual cracks. It is built from the
beginning as a nonlocal law with the explicit introduc-
tion of the gradient of the damagefield into the constitu-
tive equations. A special attention has been paid to the
consistency with cohesive zone models which explains
why the model is focused on localised damage only
(i.e. cohesive cracks). This enables to benefit from the
amount of validation already available in the literature
for concrete cohesive laws and gives access to attrac-
tive properties such as a straightforward extraction of
the crack opening displacement or the parameteriza-
tion through standard “engineer” characteristics (ten-
sile strength, fracture energy). In addition, the internal
length which results from the nonlocal coupling term is
interpreted as the width of the process zone. In our pro-
posal, it plays the role of a “small parameter” and hence
it does not need a specific identification. Indeed, it is
sufficient to set it smallwith respect to the characteristic
sizes of the structure, thanks to the asymptotic consis-
tency of the model with a cohesive law. Of course, in
this case, one cannot expect results at a finer scale than
the process zone width.

Several specificities of the behaviour of concrete
have been taken into account: the shape of the (cohe-
sive) softening response, the shape of the initial dam-
age surface (which has been showed to play an under-
estimated though crucial role) and the nature of the
coupling between damage and loss of stiffness with a
straightforward impact on stiffness recoverywith crack
closure and more generally the capacity of a damaged
structure to sustain compressive loads. The pertinence
of these features has been validated through several
comparisons with experimental results, including non-
planar three dimensional crack propagation: global pre-
dictions (peak force, dissipated energy, crack path, size
dependency) and local predictions (crack opening pro-
file) show a reasonably good agreement with the avail-
able experimental data.
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A Appendix: Introduction of a distorted norm
relative to a closed set

Consider a normed vector space E and a closed set
D ⊂ E which contains the point 0. For any x ∈ E ,
we introduce the following subset of R

+: I (x) ={
t ∈ R

+ ; t x ∈ D
}
. As 0 ∈ D, I (x) is nonempty since

0 ∈ I (x) and we denote t∗ (x) ∈ R̄ the supremum of
I (x), which is evidently positive. Then, we define the
following function χ that we named the distorted norm
relative to D:

Definition χ is the function from E to R
+ defined as

χ (x) = t∗ (x) − 1. In particular, it can be noticed that
χ (0) = 0.

At this stage,χ is not necessarily defined everywhere
in E since t∗ (x) may be equal to 0. Therefore, we
introduce the condition that 0 is an interior point of D
(there exists an open set containing 0 and contained in
D).

Property Under the condition that 0 ∈ int (D), the
domain of the function χ denoted dom(χ) is equal to
E and there exists a constant CU > 0 such that:

∀ x ∈ E 0 ≤ χ (x) ≤ CU ‖x‖
Demonstration Since 0 ∈ int (D), there exists η > 0
such that ∀ x ∈ E ‖x‖ ≤ η ⇒ x ∈ D. There-
fore, ∀ x ∈ E\{0} one has η x/‖x‖ ∈ D so that
η /‖x‖ ∈ I (x) and, by definition of t∗, t∗ (x) ≥
η /‖x‖ > 0. Therefore, χ (x) = 1/t∗(x) is well
defined and x ∈ dom (χ). In addition χ (0) = 0. The
conclusion follows: ∀ x ∈ E χ (x) ≤ CU ‖x‖ with
CU = 1/η.

Property The function χ is positive homogeneous of
degree 1:

∀ x ∈ dom (χ) ∀ λ ∈ R
+ λx ∈ dom (χ) and

χ (λx) = λ χ (x) .

Demonstration The property holds for λ = 0 since
χ (0) = 0. Now, consider any λ > 0 and any x ∈
dom (χ). One has:

t ∈ I (λx) ⇔ [t ≥ 0 and tλx ∈ D]

⇔ [λt ≥ 0 and λt x ∈ D] ⇔ λt ∈ I (x)
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Therefore, the relation on the supremum reads t∗ (x) =
λt∗ (λx) so that λx ∈ dom (χ) and χ (λx) = λ χ (x).

In order to exhibit a relation between the set D
and the lower level sets Dα of χ, defined as Dα =
{x ∈ dom(χ) ; χ (x) ≤ α}, an additional condition
should be introduced: D is star convex with respect
to the point 0, that is for any x ∈ D the segment [0 x]
is included in D.

Property Under the condition that D is star convex
with respect to 0, the lower level sets of χ are homoth-
etic toD: ∀ α > 0 Dα = {α x ; x ∈ D}. In particular,
the set D is equal to the lower level set D1.

Demonstration First, let us demonstrate that D = D1.
If x ∈ D, then 1 ∈ I (x) and hence t∗ (x) ≥ 1. There-
fore, x ∈ dom (χ) and χ (x) = 1/t∗ (x) ≤ 1 so that
x ∈ D1. Reciprocally, consider that x ∈ D1. Then
χ (x) ≤ 1 and t∗ (x) ≥ 1. We distinguish two cases:
t∗ (x) = 1 and t∗ (x) > 1. In the first case, there exists
a sequence (tn) ∈ I (x)N which converges towards 1.
The sequence (tnx) hence belongs toDN and converges
towards x . As D is a closed set, x ∈ D. In the second
case, there exists t1 ∈ I (x) with t1 ≥ 1. Thanks to
the condition that D is star convex with respect to 0,
[0 t1x] ⊂ D and in particular x ∈ D which concludes
the demonstration that D = D1.

Now, consider α > 0. Thanks to the property that χ
is positive homogeneous of degree one, one has:

Dα = {x ∈ domχ ; χ(x)/ α ≤ 1}
= {x ∈ domχ ; χ(x/ α) ≤ 1} = {α y ; y ∈ D1}

As D = D1, this concludes the demonstration.

Property Under the condition that D is star convex
with respect to 0, one has x/χ (x) ∈ bd (D) the
boundary of D for any x ∈ dom (χ) such that χ (x) �=
0. In particular, if χ (x) = 1 then x ∈ bd (D).

Demonstration First, consider the case χ (x) = 1.
Then t∗ (x) = 1 which implies that x ∈ D as
demonstrated previously. Moreover, for any ε > 0,
1 + ε /∈ I (x) by definition of the supremum, so that
(1 + ε) x /∈ D. In any neighbourhood of x , one can
find a point that belongs to D (the point x itself) and a
point that does not belong to D. This is a characterisa-
tion of the boundary of D: x ∈ bd (D).

Consider now the general case χ (x) �= 0. Then
χ (x) > 0 and χ (x/χ(x)) = 1, thanks to the positive

homogeneity of degree one of χ. We can apply the first
part of the demonstration and conclude that x/χ(x) ∈
bd (D).

Unfortunately, the converse of the previous prop-
erty does not hold in general: a point x ∈ bd (D) is
not necessarily characterised by χ (x) = 1 so that
x/χ(x) ∈ bd (D) does not necessarily characterises
the function χ. Some additional regularity is required
on D. A practical case of interest is a convex set D,
which encompasses the condition of star convexitywith
respect to zero.

Property If the set D is convex and if 0 ∈ int (D),
then the boundary of D is characterised by χ (x) = 1,
i.e. χ (x) = 1 ⇔ x ∈ bd (D).

Demonstration As D is convex, the condition of star
convexitywith respect to 0 is fulfilled and the following
implication has been proven above: χ (x) = 1 ⇒ x ∈
bd (D).

Now, let us demonstrate the converse. If x ∈ bd (D)

then x ∈ D (since D is a closed set) and t∗ (x) ≥ 1
. Now assume (wrongly) that t∗ (x) > 1 so that there
exists ρ > 0 with (1 + ρ) x ∈ D. In this case, we will
show that there exists a neighbourhood of x included
in D, in contradiction with the assumption that x ∈
bd (D).

Indeed, if 0 ∈ int (D), there exists η > 0 such that
∀ z ∈ E ‖z‖ ≤ η ⇒ z ∈ D. Besides, consider the
ball B centred on x with radius η ρ /(1 + ρ). For any
point y ∈ B, let us define:

z = 1 + ρ

ρ
(y − x)

Then ‖z‖ ≤ η so that z ∈ D. Moreover, x, y and z are
also related through the following equation:

y = ρ

1 + ρ
z + 1

1 + ρ
(1 + ρ) x

As z ∈ D and (1 + ρ) x ∈ D then y ∈ D thanks to
the convexity of D. Thus the neighbourhood B of x
is included in D, in contradiction with x ∈ bd (D).
Therefore, the assumption t∗ (x) > 1 is false, which
demonstrates that t∗ (x) = 1 and χ (x) = 1.

Corollary Assume that the set D is convex and con-
tains a neighbourhood of 0. Now consider the following
problem for any x ∈ E:

(P) find ρ > 0 so that x/ ρ ∈ bd (D)

Then the problem (P) admits at most one solution:
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– If χ (x) > 0, the solution exists and is equal to
χ (x);

– If χ (x) = 0, no solution exists.

Demonstration AsD is convex and 0 ∈ int (D), x/ ρ ∈
bd (D) ⇔ χ (x/ ρ) = 1 ⇔ ρ = χ (x), thanks to the
previous property, the fact that the domain of χ is E
and the positive homogeneity of degree one of χ. As ρ

should be strictly positive, one has to distinguish two
cases: if χ (x) > 0 then ρ = χ (x); else there is no
solution to the problem (P).

The former corollary provides an alternative defini-
tion of the function χ for a convex, set D which con-
tains a neighbourhood of the point 0. Indeed, for a given
point x ∈ E ,χ (x) is equal to the unique solution to the
problem (P) when it exists; else, χ (x) = 0. Moreover,
it can be shown that the function χ is also convex and
continuous in this case.

Property If the set D is convex and such that 0 ∈
int (D), then the function χ is convex.

Demonstration First, as 0 ∈ int (D), χ is defined
everywhere in E . Then, consider two points x ∈ E
and y ∈ E and a real 0 < γ < 1. We should prove that
χ (γ x + (1 − γ) y) ≤ γ χ (x) + (1 − γ)χ (y). Three
cases should be distinguished:

(a) χ (x) �= 0 and χ (y) �= 0

Let us introduce two additional points:

y′ = χ (x)
χ (y)

y

z = γ χ (x)
γ χ (x) + (1 − γ)χ (y)

x

+ (1 − γ)χ (y)
γ χ (x) + (1 − γ)χ (y)

y′

= χ (x) [γ x + (1 − γ) y]
γ χ (x) + (1 − γ)χ (y)

The definition is licit since χ (x) �= 0 and χ (y) �= 0.
Geometrically, the point y′ is collinear to y and belongs
to the same level set of χ as x since χ

(
y′) = χ (x).

And the point z is colinear to γ x+(1−γ)y and belongs
to the segment

[
x y′]. Thanks to the convexity of D,

the lower level set Dχ(x) is also convex because it is
homothetic to D. And as x ∈ Dχ(x) (by definition)
and y′ ∈ Dχ(x), then z ∈ Dχ(x) which implies that
χ (z) ≤ χ (x) �= 0. One can now conclude:

χ (γ x + (1 − γ) y) = γ χ (x) + (1 − γ)χ (y)
χ (x)

χ (z)

≤ γ χ (x) + (1 − γ) χ (y)

(b) χ (x) = 0 and χ (y) �= 0

This covers also the case where χ (x) �= 0 and χ (y) =
0 by permuting x with y. The inequality to be demon-
strated then reads:

χ (γ x + (1 − γ) y) ≤ (1 − γ) χ (y) ⇔
χ

(
γ

(1 − γ)χ (y)
x + 1

χ (y)
y

)
≤ 1

Let us denote:

ρ = γ

(1 − γ) χ (y)
and y1 = 1

χ (y)
y

AsD is convex (hence star convexwith respect to 0) and
χ (y) �= 0, it has been showed above that y1 ∈ bd (D).
Moreover, the lower level set D1 is equal to D so that
the former inequality is equivalent to z = ρ x+ y1 ∈ D
which should be demonstrated for any ρ > 0, y1 ∈
bd (D) and x such that χ (x) = 0.

The demonstration is led in two steps. First, let us
introduce a sequence (tn) ∈]0 1]N which converges
toward 1 and consider the sequence of points zn =
ρ x + tn y1 which converges towards z. The expression
of zn can be reformulated as follows:

zn = (1 − tn)
ρ x

1 − tn
+ tn y1

As χ (x) = 0, I (x) = R
+ and hence ρ x/(1 − tn) ∈

D. Moreover, y1 ∈ D since D is closed. Therefore
zn ∈ D thanks to the convexity ofD.The next step leads
to the conclusion: as zn converges towards z, zn ∈ D
andD is closed, z ∈ D, which demonstrates the former
inequality.

(c) χ (x) = 0 and χ (y) = 0

In this case,weneed to show thatχ (γ x + (1 − γ) y) =
0, which is equivalent to I (γ x + (1 − γ) y) = R

+. To
that purpose, consider any t > 0. Then:

t (γ x + (1 − γ) y) = 1

2
[2 γ t x] + 1

2
[2 (1 − γ) t y]

As both terms of the right hand side belong to D since
I (x) = R

+ and I (y) = R
+, the convexity of D

enables to conclude that the left hand side also belongs
to D for any t > 0, so that I (γ x + (1 − γ) y) = R

+.
Gathering the three cases (a), (b) and (c) finally

shows that the function χ is convex.

Corollary If the set D is convex and such that 0 ∈
int (D), then the function χ fulfils the triangular
inequality: ∀ x, y ∈ E χ (x + y) ≤ χ (x) + χ (y)
.
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Demonstration The triangular inequality is a straight-
forward consequence of the convexity and the positive
homogeneity:

χ (x + y) = 2χ

(
1

2
x + 1

2
y

)

≤ 2

(
1

2
χ(x) + 1

2
χ(y)

)
= χ (x) + χ (y)

Property If the set D is convex and such that 0 ∈
int (D), then the function χ is Lipschitz continuous.

Demonstration Thanks to the triangular inequality,
one has for any x ∈ E and y ∈ E :

χ (y) = χ (x + y − x) ≤ χ (x) + χ (y − x)
χ (x) = χ (y + x − y) ≤ χ (y) + χ (x − y)

}

⇒ −χ (x − y) ≤ χ (y) − χ (x) ≤ χ (y − x)

Moreover, as 0 ∈ int (D), it has been shown above that
there exists a constant CU > 0 such that 0 ≤ χ (z) ≤
CU ‖z‖ for any z ∈ E . In particular, χ (x − y) ≤
CU ‖y − x‖ and χ (y − x) ≤ CU ‖y − x‖. The pre-
vious inequalities hence imply:

∃ CU > 0 ∀x, y ∈ E |χ (y) − χ (x)| ≤ CU ‖y − x‖
At last, one can explained why χ is initially referred

to as a norm, thanks to the following properties:

Property If D is a bounded set, then χ (x) > 0 for
any x �= 0 and there exists a constant CL > 0 such that
∀ x ∈ E χ (x) ≥ CL ‖x‖.
Demonstration As D is bounded, there exists M > 0
such that ∀ x ∈ D ‖x‖ ≤ M . Then, by definition of
I (x), one has for any x ∈ E\ {0} and t ∈ I (x): t ≥ 0
and t x ∈ D. Therefore, ‖t x‖ = t ‖x‖ ≤ M , hence
t ≤ M/‖x‖. The latter inequality holds also true for the
supremum: t∗ (x) ≤ M/‖x‖. And finally, by definition
of χ, one has χ (x) ≥ CL ‖x‖ with CL = 1/M and in
particular χ (x) > 0. At last, the fact that χ (0) = 0
completes the demonstration.

Property Assume that the set D is convex, bounded
and contains a neighbourhood of 0. Assume in addition
that it is symmetric with respect to the point 0, that is
x ∈ D ⇔ −x ∈ D. Then the function χ is a norm.

Demonstration As 0 ∈ int (D), χ is a mapping from
E to R+.

As D is bounded, χ (x) = 0 ⇔ x = 0.

As D is convex and contains a neighbourhood of 0,
the function χ fulfils the triangular inequality.

Finally, for any x ∈ E and λ ≥ 0, one has
χ (λx) = λ χ (x).Moreover,χ (−x) = χ (x) thanks to
the symmetry ofDwith respect to 0. Henceχ (−λx) =
λ χ (x). Both equalities can be gathered so that for any
x ∈ E and any ρ ∈ R, χ (ρ x) = |ρ| χ (x).

This concludes the demonstration that χ is a norm.

Note that if D is not bounded, then the function χ

is only a semi-norm. Besides, if D is not a symmetric
set, χ is not a norm because χ (− x) �= χ (x) a pri-
ori, which refers to Minkowski norms (but without the
required regularity).

B Appendix: Properties of conewise elasticity
potentials

Consider a strain energy density ε �→ w (ε) which is
positive, continuously differentiable, positive homoge-
neous of degree 2 and convex. Now assume that there
exists a set of strain tensors C (not reduced to the point
ε = 0) where the potential w is equal to zero; this
corresponds to a strain domain with zero stiffness.

Property C is a closed convex cone.

Demonstration Since the function w is continuous and
C is the inverse image of the closed set {0} under w, C
is closed. Besides, it is a cone thanks to the property
of positive homogeneity of w. And finally, as C cor-
responds to the minimisers of a convex function, it is
convex.

As the stiffness can be equal to zero, one can expect
that some stress states are not admissible. This corre-
sponds to stress tensors for which the dual potential is
infinite, where the latter is defined as:

σ �→ w∗ (σ) = sup
ε

[σ:ε − w (ε)]

Property The set of admissible stress tensors corre-
sponding to finite values of the dual potential is the
dual cone of C, i.e. C∗ = {σ s.t. ∀ ε ∈ C σ:ε ≤ 0}.
Actually, an additional technical assumption is neces-
sary to show that stress tensors lying on the boundary
of C∗ are admissible: it is detailed in the demonstra-
tion and it refers to a nonzero stiffness in any direction
normal to C .
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Demonstration (a) First, consider the case where σ is
such that there exists ε ∈ C so that σ:ε > 0. Then
the same inequality holds for any λε with λ > 0
leading to:

w∗ (σ) ≥ sup
λ>0

[λσ:ε − w (λε)]

= +∞ since w (λε) = 0

(b) Conversely, consider the case where σ is such that
σ:ε < 0 for any ε ∈ C and decompose ε as ε = λd
where λ = ‖ε‖ and ‖d‖ = 1 (i.e. d ∈ S1 the
unit sphere which is compact since it is closed and
bounded in a space of finite dimension). Then, one
has:

w∗ (σ) = sup
λ≥0

[
λσ: dλ − λ2w (dλ)

]
where

dλ ∈ argmax
d∈S1

[
λσ: d − λ2w (d)

]

dλ is indeed defined because the function d �→
λσ: d − λ2w (d) is continuous and the unit sphere
is compact. Moreover, dλ ∈ S1 so that one can
extract a convergent sequence when λ → ∞, still
named dλ for the sake of simplicity; its limit is
denoted d∞. If d∞ /∈ C then w (d∞) > 0 and by
continuity of w, there exist m > 0 and λ0 so that
for any λ ≥ λ0, w (dλ) > m. Then:

∀ λ ≥ λ0 λσ: dλ − λ2w (dλ) ≤ λ ‖σ‖ − λ2m

≤ ‖σ‖2
4m

⇒ w∗ (σ) < +∞
And if d∞ ∈ C, then σ: d∞ < 0 by assumption.
Hence there exist m > 0 and λ0 so that for any
λ ≥ λ0, σ: dλ < − m. Then:

∀ λ ≥ λ0 λσ: dλ − λ2w (dλ) ≤ λσ: dλ

≤ − λ0m ⇒ w∗ (σ) < +∞
(c) The case where the stress tensor belongs to

the boundary of the dual cone should now be
addressed. With the previous notations, the poten-
tially problematic situation consists of (i) d∞ ∈ C
with (ii) σ: d∞ = 0 (σ is thus an outer normal of
C in d∞) and (iii) there exists a subsequence (still
denoted dλ) such that σ: dλ > 0 (hence dλ /∈ C).
In that case, an additional hypothesis of transverse
stiffness is required to conclude:

∀ d ∈ ∂C ∩ S1 ∃ K > 0 ∃ V ∈ V (d)

∀ d′ ∈ V ∩ S1\C w
(
d′) ≥ K

∥∥d′ − d
∥∥2

where ∂C is the boundary of C and V (d) denotes
the set of neighbourhoods of d; we also recall that

w (d) = 0 and w′ (d) = 0. The condition refers to
a nonzero stiffness in directions normal to C , see
Curnier et al. (1995) for its admissibility.

This additional condition is applied to the sequence
dλ:

∃ K > 0 ∃ λ0 ≥ 0 ∀ λ ≥ λ0 w (dλ)

≥ K ‖dλ − d∞‖2
It leads to the following upper bound for any λ ≥ λ0 :

λσ: dλ − λ2w (dλ) ≤ λσ: dλ − Kλ2 ‖dλ − d∞‖2
= λσ: (dλ − d∞) − Kλ2 ‖dλ − d∞‖2
≤ λ ‖σ‖ ‖dλ − d∞‖ − Kλ2 ‖dλ − d∞‖2
≤ sup

x≥0

(
‖σ‖ x − Kx2

)
= ‖σ‖2/4K

It proves that w∗ (σ) is finite and concludes the demon-
stration.

References

Alam YS, Kotronis P, Loukili A (2013) Crack propagation and
size effect in concrete using a nonlocal damage model. Eng
Fract Mech 109:246–261

Amor H, Marigo J-J, Maurini C (2009) Regularized formula-
tion of the variational brittle fracture with unilateral contact:
numerical experiments. J Mech Phys Solids 57:1209–1229

Badel P, Godard V, Leblond J-B (2007) Application of some
anisotropic damage model to the prediction of the failure
of some complex industrial concrete structure. Int J Solids
Struct 44:5848–5874

Barenblatt G (1959) The formation of equilibrium cracks dur-
ing brittle fracture. General ideas and hypotheses. Axially-
symmetric cracks. J Appl Math Mech 23:622–636

Bazant ZP (2002) Concrete fracture models: testing and practice.
Eng Fract Mech 69:165–205

Bazant ZP, Oh BH (1983) Crack band theory for fracture of con-
crete. Matériaux et Construction 16:155–177

Bazant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum dam-
age, localization instability and convergence. J Appl Mech
55:287–293

Bazant ZP, Planas J (1998) Fracture and size effect in concrete
and other quasibrittle materials. CRC Press, Boca Raton

Benallal A, Marigo J-J (2007) Bifurcation and stability issues
in gradient theories with softening. Model Simul Mater Sci
Eng 15:S283–S295

Benallal A, Billardon R, Geymonat G (1993) Bifurcation and
localization in rate-independent materials. Some general
considerations. In: Nguyen QS (ed) Bifurcation and sta-
bility of dissipative systems, vol 327. International Centre
for Mechanical Sciences, Udine, pp 1–44

Besson J, Steglich D, Brocks W (2001) Modeling of crack
growths in round bars and plain strain specimens. Int J
Solids Struct 38:8259–8284

Bourdin B, Francfort GA, Marigo J-J (2000) Numerical exper-
iments in revisited brittle fracture. J Mech Phys Solids
48:797–826

123



158 E. Lorentz

Bourdin B, Francfort GA, Marigo J-J (2008) The variational
approach to fracture. J Elast 91:5–148

Brokenshire DR (1996) A study of torsion fracture tests. PhD
Thesis, Cardiff University

Carlson DE, Hoger A (1986) The derivative of a tensor-valued
function of a tensor. Q Appl Math 44:409–423

Comi C (1999) Computational modelling of gradient-enhanced
damage in quasi-brittle materials. Mech Cohes Frict Mater
4:17–36

Comi C, Perego U (2001) Fracture energy based bi-dissipative
damage model for concrete. Int J Solids Struct 38:6427–
6454

Comi C,Mariani S, PeregoU (2007) An extended FE strategy for
transition from continuum damage tomode I cohesive crack
propagation. Int J Numer Anal Meth Geomech 31:213–238

Curnier A, He Q-C, Zisset Ph (1995) Conewise linear elastic
materials. J Elast 37:1–38

Cuvilliez S, Feyel F, Lorentz E, Michel-Ponnelle S (2012) A
finite element approach coupling continuous gradient dam-
age model and a cohesive zone model within the framework
of quasi-brittle failure. Comput Methods Appl Mech Eng
237:244–259

de Borst R, Sluys LJ (1991) Localisation in a Cosserat contin-
uum under static and dynamic loading conditions. Comput
Methods Appl Mech Eng 90:805–827

de Borst R, Sluys LJ, Mühlhaus H-B, Pamin J (1993) Funda-
mental issues in finite element analyses of localization of
deformation. Eng Comput 10:99–121

de Vree JHP, Brekelmans WAM, van Gils MAJ (1995) Compar-
ison of nonlocal approaches in continuum damage mechan-
ics. Comput Struct 55:581–588

Del PieroG, Lancioni G,MarchR (2007)A variationalmodel for
fracture mechanics: numerical experiments. J Mech Phys
Solids 55:2513–2537

Dufour F, Pijaudier-Cabot G, Choinska M, Huerta A (2008)
Extraction of a crack opening from a continuous approach
using regularized damage models. Comput Concr 5:375–
388

Dugdale DS (1960) Yielding of steel sheets containing slits. J
Mech Phys Solids 8:100–104

Elices M, Guinea GV, Gomez J, Planas J (2002) The cohesive
zone model: advantages, limitations and challenges. Eng
Fract Mech 69:137–163

Fernandes R, Chavant C, ChambonR (2008)A simplified second
gradient model for dilatant materials: theory, and numerical
implementation. Int J Solids Struct 45:5289–5307

fib Model Code for Concrete Structures (2010) Ed fib – Fédéra-
tion Internationale du Béton. Ernst & Sohn, Berlin

Fichant S, La Borderie Ch, Pijaudier-Cabot G (1999) Isotropic
and anisotropic descriptions of damage in concrete struc-
tures. Mech Cohes Frict Mater 4:339–359

Forest S (2009) Micromorphic approach for gradient elasticity,
viscoplasticity and damage. J Eng Mech 135:117–131

Forest S, Lorentz E (2004) Localization phenomena and reg-
ularization methods. In: Besson J (ed) Local approach to
fracture. Presses de l’Ecole des Mines, Paris, pp 311–371

Francfort GA, Marigo J-J (1998) Revisiting brittle fracture
as an energy minimization problem. J Mech Phys Solids
46:1319–1342

François M (2008) A new yield criterion for the concrete mate-
rials. Cr Acad Sci IIb 336:417–421

Freddi F, Iurlano F (2017) Numerical insight of a variational
smeared approach to cohesive fracture. J Mech Phys Solids
98:156–171

Fremond M, Nedjar B (1996) Damage, gradient of damage and
principle of virtual power. Int J Solids Struct 33:1083–1103

GasserTC,HolzapfelGA (2006) 3Dcrack propagation in unrein-
forced concrete. A two-step algorithm for tracking 3D crack
paths. Comput Methods Appl Mech Eng 195:5198–5219

GeersMGD,deBorstR, PeerlingsRHJ (2000)Damage and crack
modeling in single-edge and double-edge notched concrete
beams. Eng Fract Mech 65:247–261

Germain P, Nguyen QS, Suquet P (1983) Continuum thermody-
namics. J Appl Mech 50:1010–1020

Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack
formation and crack growth in concrete bymeans of fracture
mechanics and finite elements. Cem Concr Res 6:773–782

Hoover CG, Bazant ZP (2014) Cohesive crack, size effect, crack
band andwork-of-fracturemodels compared to comprehen-
sive concrete fracture tests. Int J Fract 187:133–143

Hoover CG, Bazant ZP, Vorel J, Wendner R, Hubler MH (2013)
Comprehensive concrete fracture tests: description and
results. Eng Fract Mech 114:92–103

Jäger P, Steinmann P,Kuhl E (2008)Modeling three-dimensional
crack propagation—a comparison of crack path tracking
strategies. Int J Numer Methods Eng 76:1328–1352

Jefferson AD,Mihai IC (2015) The simulation of crack opening-
closing and aggregate interlock behaviour in finite element
concrete models. Int J Numer Methods Eng 104:48–78

Jefferson AD, Barr BIG, Bennett T, Hee SC (2004) Three dimen-
sional finite element simulations of fracture tests using the
craft concrete model. Comput Concr 1:261–284

Jirasek M, Bauer M (2012) Numerical aspects of the crack band
approach. Comput Struct 110:60–78

Kobayashi AS, Hawkins NM, Barker DB, LiawBM (1984) Frac-
ture process zone of concrete. In: Shah SP (ed) Application
of fracture mechanics to cementious composites. NATO-
ARW. Northwestern University, Evanston, pp 25–47

Lee S-K, Song Y-C, Han S-H (2004) Biaxial behavior of plain
concrete of nuclear containment building. Nucl Eng Des
227:143–155

Liebe T, Steinmann P, Benallal A (2001) Theoretical and com-
putational aspects of thermodynamically consistent frame-
work for geometrically linear gradient damage. Comput
Methods Appl Mech Eng 190:6555–6576

Lorentz E (2010) A gradient damagemodel combinedwith adap-
tive mesh refinement. In: IV ECCM, solids, structures and
coupled problems in engineering, Paris

Lorentz E, Andrieux S (1999) A variational formulation for non-
local damage models. Int J Plast 15:119–138

Lorentz E, Andrieux S (2003) Analysis of non-local models
through energetic formulations. Int J Solids Struct 40:2905–
2936

Lorentz E, Badel P (2004) A new path-following constraint
for strain-softening finite element simulations. Int J Numer
Methods Eng 60:499–526

Lorentz E, Godard V (2011) Gradient damage models: toward
full-scale computations. Comput Methods Appl Mech Eng
200:1927–1944

Lorentz E, Cuvilliez S, Kazymyrenko K (2011) Convergence of
a gradient damage model toward a cohesive zone model.
Comptes Rendus Mécanique 339:20–26

123



A nonlocal damage model for plain concrete 159

Lorentz E, Cuvilliez S, Kazymyrenko K (2012) Modelling large
crack propagation: from gradient damage to cohesive zone
models. Int J Fract 178:85–95

Marigo J-J (1981) Formulation d’une loi d’endommagement
d’un matériau élastique. CR. Acad. Sci. Paris II 292:1309–
1312

Mazars J (1986) A description of micro- and macroscale damage
of concrete structures. Eng Fract Mech 25:729–737

Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack
modelling of ductile fracture driven by non-local softening
plasticity. Int J Numer Methods Eng 66:661–688

Miehe C, Welschinger F, Hofacker M (2010) Thermodynami-
cally consistent phase-field models of fracture: variational
principles and multi-field FE implementations. Int J Numer
Methods Eng 83:1273–1311

Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level
set based model for damage growth: the thick level set
approach. Int J Numer Methods Eng 86:358–380

Mühlhaus H-B, Aifantis EC (1991) A variational principle for
gradient plasticity. Int J Solids Struct 28:845–857

Needleman A (1988) Material rate dependence and mesh sen-
sitivity in localization problems. Comput Methods Appl
Mech Eng 67:69–85

Nguyen QS (1994) Bifurcation and stability in dissipative media
(plasticity, friction, fracture). Appl Mech Rev 47:1–31

Oliver J, Dias IF, Huespe AE (2014) Crack-path field and strain-
injection techniques in computational modeling of propa-
gating material failure. Comput Methods Appl Mech Eng
274:289–348

Pamin J (2011) Computational modelling of localized deforma-
tions with regularized continuum models. Mech Control
30:27–33

Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP
(1996) Gradient-enhanced damage for quasi-brittle materi-
als. Int J Numer Methods Eng 39:3391–3403

Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD
(2002) Localisation issues in local and nonlocal continuum
approaches to fracture. Eur J Mech A/Solids 21:175–189

Peterson P-E (1981) Crack growth and development of frac-
ture zones in plain concrete and similar materials. Report
TVBM—1006, Lund Institute of Technology

Pham K, Marigo J-J (2013) From the onset of damage to rup-
ture: construction of responses with damage localization for
a general class of gradient damage models. Contin Mech
Thermodyn 25:147–171

Pham K, Amor H, Marigo J-J, Corrado M (2011) Gradient dam-
age models and their use to approximate brittle fracture. Int
J Damage Mech 20:618–652

Piccolroaz A, Bigoni D (2009) Yield criteria for quasibrittle and
frictional materials: a generalization to surfaces with cor-
ners. Int J Solids Struct 46:3587–3596

Pijaudier-Cabot G, Burlion N (1996) Damage and localisation
in elastic materials with voids. Mech Cohes Frict Mater
1:129–144

Reinhardt HW (1984) Fracture mechanics of an elastic softening
material like concrete. Heron 29:1–42

Rots JG (1988) Computational modeling of concrete fracture.
Thesis report, TR diss 1663, Delft

SchlangenE (1993) Experimental and numerical analysis of frac-
ture processes in concrete. Ph. D. Thesis, Delft University
of Technology

Sicsic P, Marigo J-J (2013) From gradient damage laws to Grif-
fith’s theory of crack propagation. J Elast 113:55–74

Sicsic P, Marigo J-J, Maurini C (2014) Initiation of a periodic
array of cracks in the thermal shock problem: a gradient
damage modelling. J Mech Phys Solids 63:256–284

Simone A, Wells GN, Sluys LJ (2003) From continuous to dis-
continuous failure in a gradient-enhanced continuum dam-
age model. Comput Methods Appl Mech Eng 192:4581–
4607

Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and
propagation of failure in nonlocal and gradient-enhanced
media. Int J Solids Struct 41:351–363

Sluys LJ, de Borst R (1992) Wave propagation and localization
in a rate-dependent cracked medium—model formulation
and one-dimensional examples. Int J Solids Struct 29:2945–
2958

Steinmann P, Willam K (1991) Localization within the frame-
work of micropolar elastoplasticity. In: Brüller O, Mannl V,
Najar J (eds) Advances in continuum mechanics. Springer,
Berlin

Suffis A, Lubrecht TAA, Combescure A (2003) Damage model
with delay effect. Analytical and numerical studies of the
evolution of the characteristic damage length. Int J Solids
Struct 40:3463–3476

Svedberg T, RunessonK (1997)A thermodynamically consistent
theory of gradient regularized plasticity coupled to damage.
Int J Plast 13:669–696

Triantafyllidis N, Aifantis EC (1986) A gradient approach to
localization of deformation. I—hyperelastic materials. J.
Elast 16:225–237

Vassaux M, Richard B, Ragueneau F, Millard A (2015) Regu-
larised crack behaviour effects on continuum modelling of
quasi-brittlematerials under cyclic loading. Eng FractMech
149:18–36

Willam KJ, Warnke EP (1975) Constitutive model for the triax-
ial behavior of concrete. Proc Int Assoc Bridge Struct Eng
19:1–30

123


	A nonlocal damage model for plain concrete consistent with cohesive fracture
	Abstract
	1 Introduction
	2 Theoretical framework for quasi-brittle damage
	2.1 Modelling assumptions
	2.2 A class of gradient damage models
	2.2.1 State equation
	2.2.2 Evolution equation
	2.2.3 Energy balance

	2.3 Consistency with a cohesive law
	2.3.1 One-dimensional setting: definition of the degradation function
	2.3.2 One-dimensional solution in terms of stress: separation response
	2.3.3 Asymptotic cohesive law
	2.3.4 Extension to the 2D and 3D cases


	3 Specialisation to concrete behaviour
	3.1 Softening response
	3.1.1 Design of softening functions with respect to experimental softening curves
	3.1.2 Comparison with SENB experimental responses

	3.2 Damage threshold
	3.2.1 Introducing a directional dependency into the damage evolution law
	3.2.2 Influence of the shape of the damage surface on crack propagation
	3.2.3 An accurate damage criterion for tensile cracking

	3.3 Stress transfer across damage bands and damage/stiffness coupling
	3.3.1 Isotropic energy split
	3.3.2 Residual elastic energy
	3.3.3 Stress transfer through damage bands under shear loading
	3.3.4 Stiffness recovery regularisation
	3.3.5 Illustration: pressurised cavity

	3.4 Summary of the constitutive equations

	4 Validation
	4.1 From notched to unnotched specimen
	4.2 Opening displacement profile along a crack
	4.3 Rectilinear crack path prediction
	4.4 Curved crack path prediction
	4.5 Curved and nonplanar crack path prediction

	5 Conclusion
	Acknowledgements
	A Appendix: Introduction of a distorted norm relative to a closed set
	B Appendix: Properties of conewise elasticity potentials
	References





