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Abstract The concept of finite fracture mechanics
which assumes the spontaneous formation of a small,
yet finite, crack and employs as stress-based as well
as an energetic criterion is applied to the problem of
indentation fracture initiation in brittle solids. In evalu-
ating the energetic part of the fracture criterion a semi-
analytical and a numerical approach, the latter involv-
ing detailed finite element simulations, are compared.
The functionality of the hybrid (two-part) criterion in
application to indentation fracture is analyzed in prin-
ciple and, moreover, its predictive capabilities are illus-
trated by comparison with experimental findings.

Keywords Indentation fracture · Finite fracture
mechanics · Hybrid fracture criterion

1 Introduction

Since the early experimental work by H. Hertz at the
end of the nineteenth century (and later named after
him; see, e.g., Fischer-Cripps 2007; Lawn 1993) frac-
ture caused by the compression of a hard indenter on the
surface of a brittle solid has been subject to intense and
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ongoing experimental and theoretical studies. Besides
of their beauty, the perfectly cone-shaped cracks pro-
duced in case of axisymmetric indenters (spherical or
flat punch) have been of interest, for instance, as a
means for determining the fracture toughness of brittle
materials, particularly in the ceramics and glass com-
munity, e.g. Lawn (1998) andKocer (2003). The evolu-
tion of these cracks proceeds essentially in two stages
(Fig. 1):

– the spontaneous formation of a ring crack (some-
what outside the contact region)which extends over
a short length almost perpendicular from the sur-
face towards the interior of the solid and

– its subsequent stable propagation (i.e. with increas-
ing load) as a cone-shaped crack of almost constant
angle.

Both stages have been subject of numerous experimen-
tal and theoretical studies, and the propagation stage
(with the angle of the evolving cone-crack being a
major point of interest, e.g. Kocer and Collins 1998)
meanwhile appears to be rather well understood. For
instance, the experimentally observed dependence of
the cone angle on Poisson’s ratio could be well repro-
duced using, e.g., finite element (Lawn et al. 1974),
boundary element (Selvadurai 2000), weight function
(Fett et al. 2004) and phase field (Strobl et al. 2016)
methods. It also could be shown by means of numer-
ical simulations—correcting earlier semi-analytical
approaches solely based on the pre-fracture indentation
stress field, e.g. Frank and Lawn (1967)—that it is nec-
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Fig. 1 Axisymmetric boundary value problem of isotropic half-
space subjected to indentation by rigid cylindrical punch

essary for properly computing the angle of crack propa-
gation to account for changes of the stress field induced
by the presence of the crack, e.g. Lawn et al. (1974).

Less well understood, still to date, appears to be
the initiation stage, i.e. the sudden formation of the
cylindrical ring crack at some critical load. From a
fracture mechanics point of view this is not surpris-
ing since, while the propagation of an existing crack
in an isotropic brittle solid can reliably be predicted
by established criteria (e.g. maximum energy release
rate), crack formation lies beyond the scope of classi-
cal fracture hypotheses. Previous studies have tackled
this shortcoming of classical fracture mechanics in the
initiation phase of indentation fracture by two differ-
ent ways of thought. It was either assumed the pre-
existence of a statistical distribution of surface flaws
of a certain size, e.g. Fischer-Cripps (1997), or the
axial extension of the spontaneously formed ring crack
was taken as a free parameter in an analysis involv-
ing crack propagation stability arguments, e.g. Moug-
inot and Maugis (1985) and Wang et al. (2008). A
detailed discussion of these approaches is not aimed in
the present work and may be found, for instance, in the
reviewarticle (Kocer 2003).Yet, it should bementioned
that various researchers have conjectured a likelihood
of the formation of shorter cracks closer to the con-
tact region from the strong variation of the indentation
stress field with distance from the indenter and depth
from the free surface, e.g. Lawn et al. (1974), Moug-
inot and Maugis (1985) and Fischer-Cripps (1997). It
was also emphasized the prerequisite of a sufficiently
strong tensile loading acting on flaws of a certain size
in order to cause fracture; a sound criterion, however,
remained lacking.

The quest for the size of the crack (“critical flaw”)
initially created in the course of indentation fracture

can be solved by the concept of finite fracture mechan-
ics (FFM). In the formulation by Leguillon (2002) it is
based on a hybrid (two-part) fracture criterion that con-
sists of an energetic and a stress statement and involves
two well-defined material properties, i.e. strength and
(fracture) toughness, e.g. Weissgraeber et al. (2016).
Applied to indentation fracture initiation (in the present
work apparently for the first time) FFM provides a
unique determination of the size (axial length) and loca-
tion (radius) of the spontaneously formed ring crack as
well as the critical load. The dependence of these quan-
tities on the indenter radius includes a size effect com-
monly referred to as Auerbach’s law in the literature on
indentation fracture, e.g. Fischer-Cripps (2007), which
is shown to be also captured by FFM.

The paper is organized as follows. Section 2 is
devoted to the problem description, including the stress
field in an isotropic linear elastic half-space caused by
indentation loading as well as the formulation of the
hybrid criterion of FFM in general. In Sect. 3 the appli-
cation of this criterion to the present problem is dis-
cussed in detail; this involves a comparison of different
(i.e. semi-analytical vs. numerical) ways of its eval-
uation. A quantitative analysis with a comparison to
experimental results from the literature is subject of
Sect. 4. Conclusions on the suggested and analyzed
approach to indentation fracture initiation are finally
discussed in Sect. 5.

2 Problem formulation

The problem investigated here is that of an isotropic
linear elastic half-space with Young’s modulus E
and Poisson’s ratio ν, subjected to indentation (nor-
mal) loading by a rigid cylindrical punch of radius a
(Fig. 1). The contact between punch and half-space is
assumed frictionless, and axisymmetry of the bound-
ary value problem is exploited in the following. Load-
ing is specified in terms of indenter force F or dis-
placement d. With increasing load we consider—in
accord with experimental observation—the formation
of a ring-shaped cylindrical crack of some radius r0 ≥
a and length z0 (Fig. 1). The question to be ana-
lyzed here is when (i.e. at which critical load) and
where (r0) this spontaneous crack formation (of like-
wise unknown length z0) takes place, while the sub-
sequent cone crack growth is outside the scope of this
study.
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2.1 Indentation stress field

Analogous to previous work on the above problem,
e.g. Fischer-Cripps (1997), Frank and Lawn (1967)
and Mouginot and Maugis (1985), the stress field in an
uncracked half-space under indentation loading plays
a key role in the following analysis. While the com-
plete axisymmetric stress and displacement field may
be found, e.g., in the textbooks (Fischer-Cripps 2007;
Kachanov et al. 2003) only those components relevant
for the present work are briefly recapitulated here. For
instance, the force F on the flat punch and its displace-
ment d are related by

F = 2Eda

1 − ν2
. (1)

Due to linearity of the boundary value problem the
radial stress can in a cylindrical coordinate system
(Fig. 1) be written as

σr (r, z) = E
d

a
ψ

( r
a

,
z

a
, ν

)
(2)

where ψ(...) is a dimensionless function. In particular,
at the free surface z = 0 outside the contact area r > a
the radial stress reads

σr (r, z = 0) = E

π

d

a

(
1 − 2ν

1 − ν2

) (a
r

)2
. (3)

Note, that the variation of σr with the coordinates r and
z aswell as its dependence on the indenter displacement
d in (2) and (3) scales with the indenter radius a which
is prior to fracture the only characteristic length in the
boundary value problem. According to (3) the radial
stress at the free surface is positive (for ν < 0.5) and
thus understood to be responsible for the formation of
the ring crack observed in experiments. Some details
of the axisymmetric radial stress distribution outside
the contact region (r ≥ a) where crack initiation is
expected are presented in Fig. 2 in terms of the dimen-
sionless function ψ introduced in (2). Figure 2a shows
the radial variation of the radial stress at the free sur-
face (z = 0) and at a small distance below (inside the
half-space). It can be seen that, except for z = 0, a local
stress maximum exists and that the stress level strongly
depends on Poisson’s ratio with σr (r, z = 0) = 0 for
ν → 0.5 according to (3). The rapid decay of the radial
stress with distance z from the free surface, especially
close to the contact radius r = a, is depicted in Fig. 2b.
It should be noted that σr (∼ψ) decreases almost lin-
early with increasing z in the range where σr is posi-
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Fig. 2 Normalized radial stress: a versus r/a for different z/a,
b versus z/a for different r/a and ν = 0.22

tive; this fact will be exploited below (Sect. 3.2.1) in
the semi-analytical calculation of the energy release
rate.

2.2 Hybrid fracture initiation criterion

Indentation fracture initiation from a defect-free sur-
face solely due to the presence of a stress concentration
belongs to a class of problemsnot accessible to classical
fracture mechanics which requires the pre-existence of
awell established crack.Other examples from this class
are crack initiation from holes or from sharp notches
with finite opening angle; see, e.g., Gross and Seelig
(2011). As a remedy and an alternative to the classical
idea of infinitesimal crack growth controlled by a stress
intensity factor or (equivalently) by the energy release
rate, several researchers have suggested to instead con-
sider the spontaneous formation of a crack of small,
yet finite, length; e.g. Hashin (1996), Leguillon (2002),
Taylor et al. (2005) and Weissgraeber et al. (2016).
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Bringing this approach, which is sometimes referred
to as finite fracture mechanics (FFM), into a rigor-
ous form Leguillon (2002) proposed a two-part frac-
ture initiation criterion that involves two well-defined
material parameters, the (tensile) strength σc and the
specific (i.e. per area) fracture energy Gc (toughness).
This hybrid criterion states that over the prospective
finite crack increment a certain stress measure, typi-
cally the maximum principal stress σ1, as well as the
released energy must exceed critical values. As a con-
sequence, the criterion encompasses the two limiting
cases of crack initiation at a well-defined pre-crack and
crack formation in a uniform stress field (Gross and
Seelig 2011). While a thorough discussion and various
applications may be found in the recent review article
(Weissgraeber et al. 2016), it is noteworthy with regard
to the present work that the hybrid fracture criterion is
also capable to predict size effects; see, e.g., Leguillon
et al. (2007). In the context of indentation fracture, one
such size effect manifests itself in the so-called Auer-
bach law (Sect. 4).
Following Leguillon (2002) we here assume that

σ1 ≥ σc on entire crack ΔAc

and (4)

Ḡ := − Δ�

ΔAc
≥ Gc

must hold for a finite crack of area ΔAc to form. That
means that the maximum principal stress must exceed
the tensile strength at every point of the hypothetical
finite crack surface as well as the released energy per
area of this crack must exceed the fracture toughness.
The quantity Ḡ in (4)2 is referred to as the average
energy release rate in the following, and � is the total
potential energy. In an alternative version (see, e.g.,
Weissgraeber et al. 2016) the stress criterion may be
satisfied only in the mean, i.e.

σ̄1 ≥ σc where σ̄1 := 1

ΔAc

ΔAc∫

0

σ1 dA. (5)

Fulfillment of both parts of the criterion generally deter-
mines the critical load for fracture initiation and—at
the same time—the size, position and orientation of
the finite crack increment.

3 Analysis of indentation fracture initiation

In applying the above hybrid criterion to the indentation
problem (Fig. 1) in the following, we look for the min-

imum load in terms of indenter displacement d which
satisfies both (i.e. stress and energy) parts for the same
radius r0 and length z0 of the ring crack. This deter-
mines these geometric entities of spontaneous crack
formation as well as the critical load at which it takes
place. Based on experimental observations, the crack
orientation thereby is assumed normal to the free sur-
face (cylindrical crack), though this is a principal stress
direction only at the free surface. In the following, both
parts of the criterion are at first analyzed separately
before they are combined in Sect. 3.3.

3.1 Stress criterion

In the stress criterion (4)1 or (5) we replace σ1 by the
radial stress σr which at the free surface is indeed the
maximum principal stress. From Fig. 2b it can be seen
that σr decreases monotonically with increasing z at
fixed r in the range where σr is positive. It is hence
sufficient for satisfying the stress criterion (4)1 at some
radius r = r0 that σr (r0, z0) ≥ σc where z0 denotes
the length of the fictitious ring crack measured from
the free surface (z = 0). Using the representation (2),
the stress criterion (4)1 can be written as

E
d

a
ψ

(r0
a

,
z0
a

, ν
)

≥ σc

or (6)
d

a
≥ σc

E ψ
(r0
a

,
z0
a

, ν
) .

Equality in (6)2 determines the load (indenter displace-
ment) dσ (r0, z0) necessary to form a cylindrical crack
of length z0 at radius r0 according to the stress criterion.
The dependence of dσ on the radius r0 and the length
z0 of the crack is shown in terms of the dimensionless
quantity

d∗
σ := dσ E

a σc
= ψ−1 (7)

in Fig. 3a. The analogous evaluation using ψ̄−1(σ̄1)

based on the average stress criterion (5) is shown in
Fig. 3b for the same set of crack lengths (z0/a). Both
versions of the stress criterion yield qualitatively sim-
ilar results and indicate that the critical load to cause
fracture according to the stress criterion increases with
increasing length of the fictitious crack. It should also
be noted that the critical load as a function of crack
radius r0 displays local minima well outside the con-
tact region r = a. The value of Poisson’s ratio ν = 0.22
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Fig. 3 Dimensionless functions ψ−1 (a) and ψ̄−1 (b) for
ν = 0.22

is chosen here already in correspondence to real mate-
rial data for borosilicate glass considered in Sect. 4. In
the evaluation of the hybrid fracture criterion in Sect.’s
3.3 and 4 the stress criterion in the version (4)1 with
results depicted in Fig. 3a will be used while the effect
of utilizing the average stress criterion (5) is discussed
in “Appendix 1”.

It should be mentioned that the idea of a critical
tensile stress acting over the entire length of some (fic-
titious) flaw being necessary for initial ring crack for-
mation was already suggested inMouginot andMaugis
(1985) as an explanation for the observation that the
ring crack forms at some distance (r0 > a) outside
the contact region where the stress gradient (see, e.g.,
Fig. 2) is less severe.

3.2 Energy release criterion

In applying the energy criterion (4)2 to the present
problem of indentation fracture we analyze two dif-
ferent approaches. Firstly (Sect. 3.2.1), we compute

the energy release semi-analytically by imposing the
fictitious ring crack to the pre-existing stress field
(Sect. 2.1) in the uncracked half-space. Secondly
(Sect. 3.2.2), in order to overcome (and study) the
simplifying assumptions made in the semi-analytical
approach, we perform detailed finite element analy-
ses of the boundary value problem of the half-space
including the ring crack (Fig. 1) and compute the energy
release numerically.

3.2.1 Semi-analytical evaluation

Similar to earlier approaches, e.g. Frank and Lawn
(1967), Mouginot and Maugis (1985) and Fischer-
Cripps (1997), the calculation of the energy released
by the formation of the ring crack is here based on the
key assumption that the stress field prevailing in the
uncracked half-space (Sect. 2.1) can be considered as
an imposed external loading and is not altered by the
presence of the crack. This allows to compute themode
I stress intensity factor approximately from the relation

KI (z) = 2

√
z

π

z∫

0

σr (z̄)√
z2 − z̄2

f (z̄) dz̄ (8)

where f (z̄) ≈ 1+ 0.3(1− z̄/z) for a crack of length z
emanating from a free surface and subjected to a spa-
tially varying normal load σr (z̄), e.g. Tada et al. (2000).
In earlier approaches (mentioned above) the factor f (z̄)
is taken equal to 1which corresponds to half an internal
crack of length 2z, thus neglecting the effect of the free
surface.

The average energy release rate for a crack of length
z0 according to (4)2 is then computed as

Ḡ(z0) = 1

ΔAc

ΔAc∫

0

G dA = 1 − ν2

E

1

z0

z0∫

0

K 2
I (z) dz

(9)

whereG = − d�/dA = K 2
I (1−ν2)/E is the standard

energy release rate and dA = 2πr0dz and ΔAc =
2πr0z0 are the increment of cylindrical crack area at
radius r0 and the total crack area, respectively.

As depicted in Fig. 2b the radial stress decreases
almost linearly with z from the surface value given by
(3) to σr (z = z∗) = 0 at some depth z∗(r0) which
depends on the radial position r0. Exploiting this by
approximatingσr (z) by a linear function allows to eval-
uate the integrals in (8) and (9) in closed form and the
average energy release rate can be written as
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Ḡ = E a

(
d

a

)2

φana

(r0
a

,
z0
a

, ν
)

(10)

where φana(...) is a dimensionless function. Only
z∗(r0) needs to be determined numerically. Results are
shown in Fig. 5 along with those obtained from finite
element analyses discussed in the following.

3.2.2 Numerical evaluation

The average energy release rate due to formation of
the cylindrical ring crack (Fig. 1) can alternatively be
calculated from the change of the total potential energy
�between the uncracked and the cracked configuration
at the same load. With the latter specified in terms of
prescribed indenter displacement d and due to linearity
of the boundary value problem we have

Δ� = d

2
ΔF = d

2
(Fcrack − F0) (11)

where Fcrack is the indentation force on the cracked
half-space and F0 that on the uncracked half-space
according to (1). In both (linear elastic) configurations
the force is proportional to E, a and d so that Fcrack =
E a d F̃crack(r0/a, z0/a, ν) and F0 = E a d F̃0(ν)

where F̃crack(...) and F̃0(...) are dimensionless func-
tions. The average energy release rate according to (4)2
can thus be written as

Ḡ = − Δ�

ΔAc
(12)

= E a

4π

(
d

a

)2 a2

r0 z0

[
F̃0(ν) − F̃crack

(r0
a

,
z0
a

, ν
) ]

or in compact form analogous to (10) as

Ḡ = E a

(
d

a

)2

φnum

(r0
a

,
z0
a

, ν
)

(13)

where φnum(...) is a dimensionless function to be deter-
mined numerically (e.g. by finite element analyses)
from the force difference ΔF on the cracked and the
uncracked half-space.

For the numerical evaluation of the axisymmet-
ric boundary value problem including the ring crack
(Fig. 1), the finite element package ABAQUS 6.13
(ABAQUS 2013) was used and the half-space was
approximated by a finite domain of height H and radius
R. Some aspects of the model consisting of about 105

four-node linear displacement elements [type CAX4R
(ABAQUS 2013)] are shown in Fig. 4. The discretiza-
tion was highly refined in the region comprising the

da

r

z

H

R

Fig. 4 Axisymmetric finite element model with magnification
of contact region

contact edge (r = a) and the ring crack (r = r0 ≥ a).
There, a regular mesh was used (see Fig. 4 bottom)
in order to accurately represent the crack by introduc-
ing double nodes over a length z0 extending perpen-
dicular to the free surface. Generation of the variety
of finite element meshes containing a thus modeled
crack with a wide range of radii r0 and lengths z0
as well as the computations were automatized using
Python scripting (Puri 2011). Frictionless loading by
the indenter displacement d was modeled by prescrib-
ing constant vertical displacements to nodes inside the
contact region (r ≤ a, z = 0). Convergence studies
were performed to ensure that numerical results were
not affected by the finite domain size and a dimension
of H = R = 100 a was finally used in the simulations.
Nevertheless, for consistency the indenter force F0 on
the uncracked domain was—instead of using the ana-
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lytical relation (1)—also computed numerically (using
the same discretization as for the cracked domain, yet
without double nodes).

Numerical results for the average energy release rate
along with those from the semi-analytical approach
(Sect. 3.2.1) are collectively shown in Fig. 5 in terms
of the dimensionless functions φnum and φana intro-
duced in (13) and (10), respectively. For clarity, results
are depicted only for a small number of crack lengths
(z0/a) given in the figure caption. Obviously, the
deviations between φnum and φana are rather small
which indicates that the assumption made in the semi-
analytical approach, that the presence of the ring crack
does not much affect the pre-fracture indentation stress
field, is not very severe.As expected, however, the devi-
ations become larger for larger crack lengths. In this
case the semi-analytical approach (employing the stress
field unaffected by the crack) leads to a small overes-
timation of the energy release (see maxima of curves
in Fig. 5). The local maxima in the energy release rate
with respect to crack radius r0—present for all crack
lengths z0, yet at different r0—indicates a propensity
to crack formation at the respective radii.

3.2.3 Critical load from energy criterion

With the average energy release rate given by (10) or
(13) the energetic criterion Ḡ ≥ Gc in (4)2 can be
written as
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d

a
≥

√√√√ Gc

Eaφ
(r0
a

,
z0
a

, ν
) . (14)

Equality in (14) determines the load (indenter displace-
ment) dπ (r0, z0) necessary to form a cylindrical crack
of length z0 at radius r0 according to the energy crite-
rion. Analogous to (7) this critical load can be repre-
sented in dimensionless form as

d∗
π := dπ E

a σc
=

√
Gc E

a σ 2
c

1√
φ

. (15)

The dependence of this critical load on the radius r0
and the length z0 of the crack is shown in terms of
the dimensionless quantity 1/

√
φ in Fig. 6. Note, that

in view of the small difference between the semi-
analytical and the numerical evaluation of the aver-
age energy release rate (Fig. 5) these are taken equal
φana ≈ φnum and φ = φana is used in the following.
From Fig. 6 it can be seen that the critical load to cause
fracture according to energy criterion decreases with
increasing length z0 of the fictitious crack (contrary to
the effect of the stress criterion, Fig. 3) and that local
minima of this critical load exist with respect to the
crack radius r0.

For typical values of the material parameters E,Gc

and σc (see Sect. 4) and an indenter radius of a =
1mm the pre-factor of 1/

√
φ in (15) is approximately√

Gc E/a σ 2
c ≈ 0.3. Considering this in conjunction

with Fig. 6 and comparison with Fig. 3 indicates that
the critical loads (indenter displacements normalized in
the same way) according to the stress criterion and the
energy criterion are of similarmagnitude; a quantitative
evaluation is subject of Sect. 4.
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3.3 Combined (hybrid) criterion

The hybrid fracture initiation criterion (4) formulated
by means of the critical indenter displacements dσ and
dπ satisfying the stress and the energy criterion, respec-
tively, can be expressed as

dc = min{r0,z0}
max { dσ (r0, z0), dπ (r0, z0)} (16)

where dc is the indenter displacement that actually cau-
ses fracture. By taking the maximum of dσ and dπ

in (16) it is guaranteed that both criteria are fulfilled,
while minimizing over the whole range of r0 and z0
determines the critical load as well as the radius and
the length of the crack.

Prior to a quantitative evaluation of the criterion for
real material data and a comparison with experiments
in Sect. 4, it appears worthwhile to look at the mode
of operation of the hybrid criterion in principle when
applied to the present situation of indentation fracture.
Therefore, we write (16) in dimensionless form [anal-
ogous to (7) and (15)]

d∗
c := dcE

a σc
= min{r0,z0}

max

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

ψ
,

√
Gc E

a σ 2
c︸ ︷︷ ︸√

lc/a εc

1√
φ

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(17)

where ψ and φ depend only on r0/a, z0/a and ν.
The characteristic length lc := Gc/σc introduced in
(17) can be taken as a measure of toughness while
εc := σc/E is a measure of strength, so that the
dimensionless parameter

√
lc/a εc can be interpreted

as the ratio of toughness to strength for a certain inden-
ter radius a. The normalized critical load d∗

c hence
depends on material properties and indenter geometry
only through the parameter

√
lc/a εc.

It also seems instructive to look at the ratio of critical
loads according to the energy and stress criteria

dπ

dσ

=
√

lc
a εc

ψ√
φ

(r0
a

,
z0
a

, ν
)

(18)

which determines the range in which either of the two
criteria controls crack initiation. For dπ/dσ > 1 the
energy criterion is dominant (and vice versa) so that
relation (18) predicts for larger values of

√
lc/a εc

(toughness/strength) a stronger influence of the energy
criterion—as expected. In addition, for fixed material
properties the energy criterion is favored by smaller

d 
  /

d
π

σ

0.02
0.035

0.08

0.11
0.14
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 1.2 1
 0

 1.4  1.6  1.8
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0.005z  /a=0

r  /a0

Fig. 7 Ratio of critical loads dπ/dσ from energy and stress cri-
terion for

√
lc/a εc = 0.3 and ν = 0.22

indenter radii a. The ratio dπ/dσ of critical loads
vs. crack radius r0/a shown in Fig. 7 for various crack
lengths z0/a indicates that at a fixed crack radius the
formation of short cracks ismore prone to be controlled
by the energy criterion (dπ/dσ > 1) whereas longer
cracks are likely to be controlled by the stress criterion
(dπ/dσ < 1).

The application of the hybrid fracture criterion in
principle is illustrated in the following by considering
for clarity a limited set of only three different crack
lengths z0/a = {0.02, 0.05, 0.08}, whereas its exact
evaluation in Sect. 4 involves a continuous variation of
z0/a over a wide range. Figure 8 shows the normalized
critical loads (indenter displacements) according to the
stress criterion (dashed lines) and the energy criterion
(solid lines) separately for values of

√
lc/a εc = 0.3

(Fig. 8a) and
√
lc/a εc = 0.6 (Fig. 8b). Points A

(z0/a = 0.02), B (z0/a = 0.05) and C (z0/a = 0.08)
in Fig. 8a indicate the minimum load by which both
criteria are satisfied for each of the crack lengths con-
sidered here. They also determine the corresponding
radius r0/a of the ring crack. Among the three crack
lengths considered in Fig. 8a the lowest critical load
is found for z0/a = 0.05 (point B). That means that
according to the hybrid fracture criterion, crack initi-
ation would take place by the formation of a crack of
length z0 = 0.05 a and radius r0 ≈ 1.3 a, i.e. well
outside the punch contact zone (r = a) which is in
qualitative agreement with experimental observations
(asmentioned in the Introduction, see Fig. 1). Note, that
in case of the two longer cracks (z0/a = 0.05, 0.08)
considered in Fig. 8a the critical loads (pointsB andC)
are found at intersection points of thed∗

σ - andd
∗
π -curves
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Fig. 8 Normalized critical loads (indenter displacements) from
stress (dashed lines) and energy (solid lines) criterion for a√
lc/a εc = 0.3 and b

√
lc/a εc = 0.6; (ν = 0.22)

(there having slopes of different sign) whereas the crit-
ical load in case of the shorter crack (z0/a = 0.02) is
found at a local minimum of the d∗

π -curve (point A).
At this latter point the stress criterion is clearly over-
satisfied and crack initiation hence would be controlled
solely by the energy criterion, while intersection of the
d∗
σ - and d∗

π -curves means that both criteria are active.
Increasing the parameter

√
lc/a εc from 0.3 to 0.6

leads to the situation depicted in Fig. 8b where now the
minimum critical load (indicated by the arrow) is found
for the largest of the three considered crack lengths
(again at the intersection point of the d∗

σ - and d∗
π -

curves). Comparison of Fig. 8a, b shows that increasing
the parameter

√
lc/a εc leads to ring crack formation

with a larger (normalized) radius r0/a and length z0/a
at higher critical loads.

4 Comparison with experiments

For a quantitative evaluation of the hybrid fracture ini-
tiation criterion we adopt material data for borosilicate

=50MPaσc

d 
 /a c

 0.05

 0.03

 0.04

 0.02

 0.01

 0
 0  0.5  1  1.5  2

a [mm]

σc

σc

=150MPa

=100MPa

Fig. 9 Variation of normalized critical indenter displacement dc
with indenter radius a

glass from Mouginot and Maugis (1985) where inden-
tation fracture tests are reported for a wide range of
indenter radii. The provided material data are E =
80GPa, ν = 0.22 and Gc ≈ 9J/m2. The fracture
strength σc of glass is not considered in Mouginot and
Maugis (1985) and is generally known to be rather
unclear. For that reason the range of σc values between
50 and 150 MPa (Lawn 1993) is considered in the fol-
lowing.

The critical load in terms of normalized indenter dis-
placement dc/a thus computed from the criterion (16)
is depicted in Fig. 9 as a function of indenter radius a.
Obviously, the fracture strength σc becomes irrelevant
for small indenter radii (a ≤ 0.5mm), i.e. in the range
where solely the energetic criterion controls fracture
initiation as discussed above. This can also be antic-
ipated from (17) resolved for dc/a where σc cancels
out when the energy criterion (φ−1/2-term) is domi-
nant.

In Fig. 10 the normalized radius r0/a and length
z0/a of the ring crack predicted from (16) are shown
as functions of the indenter radius a. Both quantities
decrease with increasing indenter radius. This means
that indenterswith a larger radius give rise to the forma-
tion of (relatively) shorter cracks closer to the contact
edge (r = a) which is in qualitative agreement with
experimental observations, e.g. Mouginot and Maugis
(1985) and Chai (2006). For a quantitative comparison,
experimental data from Mouginot and Maugis (1985)
are included in Fig. 10a. Deviations between those and
the predicted values have to be seen in the light of
various idealizations made in the present analysis as
well as the scatter in the experimental data (Fig. 19 in
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Fig. 10 Variation of a normalized crack radius r0/a and b nor-
malized crack length z0/a with indenter radius a. Experimen-
tal findings from Mouginot and Maugis (1985) are indicated by
symbols (filled circle)

Mouginot andMaugis 1985). Rather striking, however,
is the predicted “saturation” value of r0/a ≈ 1.35
for very small indenter radii which underestimates the
experimental data in Mouginot and Maugis (1985)
where r0/a is found to increase monotonically with
decreasing indenter radii.

This saturation regime for small indenter radii—
also seen in Fig. 10b in terms of the relative crack
length z0/a and even more pronounced when the aver-
age stress criterion (5) is employed as depicted in
Fig. 13 of “Appendix 1”—appears to be an artifact
of the hybrid fracture criterion applied here. It cor-
responds to the range where crack initiation is solely
controlled by the energy criterion (with the stress cri-
terion oversatisfied), while otherwise both criteria are
active. The critical load, when solely determined by
the energy criterion, displays a local minimum with
respect to the relative crack radius and length (local
maximum of φ(r0/a, z0/a, ν), Fig. 5) at r0/a ≈ 1.35
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Fig. 11 Variation of apparent critical load Fc/a3/2 with inden-
ter radius a. Experimental findings from Mouginot and Maugis
(1985) are indicated by symbols (filled circle)

and z0/a ≈ 0.08 (also discussed in conjunction with
Fig. 8). These are the saturation values seen in Fig. 10
which depend only on Poisson’s ratio ν. A change of
the indenter radius a or of material parameters (except
ν) in this regime only affects the critical load dc but not
the “optimal” values of r0/a and z0/a.

A measure for comparison of critical loads obtained
from theoretical and experimental analyses is sug-
gested by the experimental findings of F. Auerbach
(see, e.g., Fischer-Cripps 2007) who shortly after Hertz
stated that the critical force to initiate indentation frac-
ture is approximately proportional to the radius ρ of the
(at that time used) spherical indenter, i.e. Fc ∼ ρ. As
calculated by Hertz (see, e.g., Fischer-Cripps 2007) the
contact radius a in case of a spherical indenter scales
with the radius ρ of the latter and the indentation force
according to a ∼ (Fρ/E)1/3. Thus the critical load in
Auerbach’s experiments scales with the contact radius
as Fc ∼ a3/2. In the (experimental) literature hence
the range of indenter radii where Fc/a3/2 ≈ const. is
referred to as the Auerbach range, e.g. Fischer-Cripps
(2007). Using this measure of apparent critical load,
results obtained from the hybrid fracture criterion (16)
are depicted in Fig. 11 as a function of indenter radius
a. Note, that in case of the cylindrical flat punch consid-
ered here (Fig. 1) the indenter radius is identical to the
contact radius in the above considerations, and that the
stress fields outside the contact zone due to spherical
or flat indentation are very similar, e.g. Fischer-Cripps
(2007). Also included in Fig. 11 are experimental data
from Mouginot and Maugis (1985) which (see Fig. 21
in the original paper) display some amount of scatter.
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The stationary value of about 70MN/m3/2 in Fig. 11
predicted for small indenter radii is in reasonable quan-
titative agreement with the experimental findings. This
range of constant Fc/a3/2 which here extends up to 0.5
or 1mm (depending on the fracture strength σc) corre-
sponds to the above mentioned Auerbach range. Also
well predicted according to Fig. 11 is the increase of
the apparent critical load to about 100MN/m3/2 and
above for larger indenter radii up to a = 2.5mm. With
regard to experimentally observed critical loads caus-
ing indentation fracture it should be noted that some
amount of uncertainty also arises from the load increase
between the onset of fracture and its complete encir-
clement of the contact area as reported in Chai (2006).

5 Conclusions

The present study illustrates that the concept of finite
fracture mechanics (in the format suggested by Leguil-
lon 2002) is a reasonable tool for analyzing the prob-
lem of Hertzian indentation fracture initiation. Using a
hybrid fracture criterion comprising a strength (stress)
and a toughness (energy) condition it is hence pos-
sible to reproduce experimental findings without any
assumptions beyond the material properties “stiffness”
(E, ν), “strength” (σc) and “fracture toughness” (Gc).
In particular, the experimentally observed dependence
of the critical load as well as the crack location (radius)
on the indenter radius could be qualitatively and—to
some extent—also quantitatively be reproduced. This
comprises the size effect commonly referred to asAuer-
bach’s law. Quantitative deviations from experimental
findings have to be seen in the light of various assump-
tions made in the theoretical analysis. For instance,
indentationwas idealized as frictionlesswith a rigid and
perfectly sharp-edged punch; effects of rounded inden-
ter edges and friction on the indentation stress field
have been examined, e.g., in Ciavarella et al. (1998).
Interestingly, it has turned out that application of the
hybrid (two-part) criterion of finite fracture mechanics
to indentation fracture gives rise to two regimes: one in
which both the stress and the energy criterion are active,
and a second regime where only the energy criterion is
active while the stress criterion is oversatisfied. The
existence of two regimes with respect to the depen-
dence of the critical load on the indenter radius has
experimentally been shown already by Tillett (1956).
However, its relation to the two regimes predicted by

the present theoretical analysis is not yet fully under-
stood.

The comparison of the semi-analytical determina-
tion of the average energy release rate with its numer-
ical computation from detailed finite element simula-
tions has shown (see Fig. 5, φnum ≈ φana) that the sim-
plification of using the pre-fracture indentation stress
field for analyzing the initial ring crack formation (sim-
ilarly made also in earlier analyses, e.g. Mouginot and
Maugis 1985; Fischer-Cripps 1997) is not very severe.
However, during subsequent cone crack propagation
the alteration of the initial indentation stress field by
the presence of the crack is known to much stronger
and needs to be accounted for, e.g. Lawn et al. (1974).

With regard to the application of the concept of finite
fracture mechanics in general, it appears noteworthy
that the assumption of finite crack formation (or exten-
sion) yields results which depend on the “type” of load-
ing, i.e. prescribed force or displacement.While in case
of (“classical”) infinitesimal crack advance the type of
loading enters only in the analysis of crack propaga-
tion stability, this issue is anticipated in FFM by the
assumed finite crack extension. This effect has tacitly
been neglected in the evaluation of the average energy
release rate Ḡ in the present work by utilizing the pre-
fracture stress field in the semi-analytical approach and
by considering only the case of prescribed indenter dis-
placement in the numerical analysis. As briefly worked
out in “Appendix 2” the average energy release rate of
FFM is generally larger when a prescribed force is con-
sidered than in case of a prescribed displacement.

Appendix 1: Effect of average stress criterion

For completeness of the evaluation, we present here
(analogous to Figs. 9, 10a, 11) results for the critical
indenter displacement dc, the crack radius r0 and the
apparent critical load Fc/a3/2 obtainedwhen instead of
(4)1 the average stress criterion (5) is used. For instance,
Fig. 12 shows that a lower critical loading (indenter dis-
placement dc/a) is predicted by utilizing the average
stress criterion (5) in the range of large indenter radii
where besides the energy criterion also the stress crite-
rion is active. According to Fig. 13 use of the average
stress criterion (5) increases the sensitivity of the ring
crack radius r0 with respect to the tensile strength σc of
thematerial. Figure 14 indicates that the use of the aver-
age stress criterion (5) leads to lower apparent critical
loads (analogous to Fig. 12).
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Appendix 2: Effect of loading type on average
energy release rate

Be C0 the compliance of some uncracked linear elastic
body andC1 (> C0) that of the same body containing a
small, yet finite, crack as considered in the hybrid frac-
ture criterion. When the body is loaded by a prescribed
displacement d, the change of the total potential energy
� upon formation of the crack is

Δ�d = d

2
(F1 − F0) (19)

where F0 and F1 (< F0) are the corresponding forces
on the uncracked and on the cracked body, respectively.
When, instead, the body is loaded by a prescribed force
F (dead loading) we have

Δ�F = F

2
(d1 − d0)

︸ ︷︷ ︸
strain energy

− F(d1 − d0)︸ ︷︷ ︸
potential of F

= − F

2
(d1 − d0) (20)

where d0 and d1 (> d0) denote the displacements at the
point where F acts on the uncracked and the cracked
body, respectively. In terms of the compliances C0 and
C1 we have

d0 = C0F0 and d1 = C1F1. (21)

With d0 = d1 = d in case of a prescribed displacement
the change of the total potential energy (19) can thus
be written as

Δ�d = d

2

(
d

C1
− d

C0

)
= d2

2

(
1

C1
− 1

C0

)
(22)

whereas in case of a prescribed force with F0 = F1 =
F we have from (20)

Δ�F = − F

2
(C1F − C0F) = − F2

2
(C1 − C0) .(23)

In the uncracked configuration, however, we have

d0 = d = C0F0 = C0F. (24)

Inserting this into (22) yields

Δ�d = F2

2
C2
0

(
1

C1
− 1

C0

)

= − F2

2
(C1 − C0)

C0

C1︸︷︷︸
< 1

(25)

which, by comparisonwith (23), shows that the amount
of energy released upon finite crack formation is larger
in case of a prescribed force than in case of a prescribed
displacement, i.e.

− Δ�F > −Δ�d . (26)
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