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Abstract A theoretical model is established to des-
cribe the effect of cooperative grain boundary (GB)
sliding and migration on dislocation emission from
the tip of branched crack in deformed nanocrystalline
solids. The explicit solutions of complex potentials
are obtained by means of complex variable method
and conformal mapping technique. The critical stress
intensity factors (SIFs) for the first lattice dislocation
emission from the tip of branched crack are calculated.
The effects of the lengths of branched crack and main
crack, and the angle between their planes on the critical
SIFs for dislocation emission are evaluated in detail.
The results indicate that the emission of lattice dis-
locations from the tip of branched crack is strongly
influenced by cooperative GB sliding and migration.
When main crack approaches the branched crack, dis-
location emission from the tip of branched crackwill be
suppressed. The main crack tends to propagate while
shorter branched crack is prone to be blunted by emit-
ting lattice dislocations from its tip. As a special case,
when the planes of main crack and the branched crack
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are flattened out into one, the present results are in good
agreement with previously known results.
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1 Introduction

Nanocrystalline materials display unusual mechanical
and physical properties that have attracted a wide range
of technological applications (Xu et al. 2013; Feng
et al. 2013a; Ovid’Ko and Sheinerman 2010; Aifan-
tis 2011; Zhou et al. 2008; Zhu et al. 2012; Wolf
et al. 2005; Sergueeva et al. 2009; Mukhopadhyay
and Basu 2007; Meyers et al. 2006; Zhu and Zheng
2010; Wu et al. 2007; Farrokh and Khan 2009; Barai
and Weng 2009; Bobylev et al. 2009; Xia and Wang
2010). In most cases, they are generally characterized
by high strength, strong hardness and excellent wear
resistance but low tensile ductility and low fracture
toughness at room temperature, which severely nar-
rows their practical applications (Yinmin et al. 2002;
Youssef et al. 2005; Dao et al. 2007; Ovid’Ko and
Sheinerman 2012). Nevertheless, some recent exam-
ples of nanocrystalline materials showing considerable
tensile ductility at room temperature or superplasticity
at elevated temperature and improvement of fracture
toughness have been detected and reported (Ovid’ko
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and Sheinerman 2007; Zhao et al. 2004; Bhaduri and
Bhaduri 1997; Youssef et al. 2006; Ovid’Ko et al.
2008). They evoke high interest of many scholars and
practitioners in exploring the fundamentals of special
toughening mechanisms in nanocrystalline materials.
Subsequently, many theoretical models such as GB
sliding, GB migration, rotational deformation, twin-
ning and triple junction diffusion creep, have been
extensively developed to account for the toughen-
ing mechanisms of nanocrystalline materials (Bobylev
et al. 2010, 2011; Gutkin andOvid’Ko 2005; Juan et al.
2012; Morozov et al. 2010).

In recent years, rapidly growing attention has been
concentrated on cooperative GB sliding and stress-
driven migration in nanocrystalline materials, which
represents a new toughening mechanism and a special
deformation mechanism compared to pure GB sliding
(Bobylev et al. 2010). This view is supported by large
numbers of experimental observations (Dao et al. 2007;
Sergueeva et al. 2006, 2007) and theoretical results
(Gianola et al. 2006; Cheng et al. 2010). The spe-
cial deformation mode for cooperative GB sliding and
migration has been built up by Bobylev et al. (2010),
which theoretically revealed that the new deforma-
tion mode can improve the ductility of nanocrystalline
solids in wide ranges of their structural parameters.

However, for nanocrystalline solids containing crack
defects, if the stress in the vicinity of a crack tip is large
enough, the crack will induce plastic shear through
the emission of lattice dislocations from the crack tip.
The emission of lattice dislocations along a slip plane
can result in blunting of the crack tip, further to ham-
per crack growth and enhance fracture toughness of
nanocrystalline solids. Therefore, it is of great impor-
tance to investigate the influence of the cooperative GB
sliding and migration on the dislocation emission from
a crack tip. In order to do that, Ovid’Ko et al. (2011)
theoretically described the operation of cooperativeGB
sliding and migration process near a tip of growing
crack, and analyzed its effect on fracture toughness of
nanocrystalline solids. Their results showed that the
new deformation mechanism can increase the critical
SIF for crack growth and thus enhance the fracture
toughness of nanocrystalline solids. Within the model,
Feng et al. (2013b) discussed the impact of cooperative
GB sliding andmigration on dislocation emission from
a sharp crack tip by developing a theoretical model in
deformed nanocrystalline solids. Thereafter, Feng and
her groups (Zhao et al. 2014; Yu et al. 2014) succes-

sively presented the effect of cooperative GB sliding
and migration on dislocation emission from an ellip-
tically blunt nanocrack tip and a semi-elliptical blunt
crack tip.

In general, the researchers mentioned above have
been discussing the effect of cooperative GB sliding
and migration on dislocation emission from different
crack tips, which are usually supposed to be straight or
flat. However, real cracks in nanocrystalline solids are
relatively complicated and their shapes are various. In
fact, an internal crack consisting of a main crack and
a branched crack is one usual form of the shapes, and
is a more exact description of real cracks compared to
straight or flat cracks in nanocrystalline solids. In this
paper, we mainly aim to study the effect of cooperative
GB sliding and migration on the dislocation emission
from the tip of branched crack in deformed nanocrys-
talline solids.

2 Model and basic problems

The current problem is briefly depicted in Fig. 1a.
A deformed nanocrystalline specimen containing an
internal crack composed of amain crack and a branched
crack with finite length is subjected to mode I loadings
and mode II loadings from infinity. The lengths of the
main crack and branched crack are denoted by a and b,
respectively, and the interior angle between their planes
is (1−m)π .Without loss of generality, we suppose that
the length of branched crack is equal to or smaller than
that of main crack, namely, b ≤ a. For simplicity, we
make the assumption that the defect structure of the
solid remains unchanged along the coordinate axis z
perpendicular to the x − y plane, so that the current
problem can be dealt with in a two-dimensional plane.
At the same time, the key aspects of the problem are
capable of being captured in virtue of the described
two-dimensional model.

GB sliding and migration near a crack tip can be
initiated by the external load and high local stress in the
vicinity of a crack tip (Bobylev et al. 2010; Ovid’Ko
et al. 2011). The geometry features of the deformation
mechanism are schematically shown in Fig. 1b. The
cooperative GB sliding and migration can give rise to
generation of the sliding distance x and the migration
distance y from its initial position BC to a new position
DE accompanied by the formation of two disclination
dipoles DB1, CE, which are characterized by the same
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strength of opposite signs σyy−iσxy = �(ζ)+�(ζ)+
ω(ζ )

ω′(ζ )
�′(ζ )+�(ζ) and the arm |x− y|, y, respectively.

In the framework of the theoretical model, we assume
that the branched crack tip reaches a triple junction of
GBs, and the vertical GB BC is normal to the crack
propagation direction and makes an angel δ with the
GB AB. The triple junction B lies at a vertical distance
p and a horizontal distance q from the branched crack
tip A, and the initial length of all grain boundaries is
set as d.

For convenience of analysis, the nanocrystalline
specimen is supposed to be elastic and isotropic with
the shear modulus μ and Poisson’s ratio ν. Then, we
introduce two Cartesian systems (x1, y1), (x2, y2) and a
polar coordinate (r , θ ) with their origins positioned at
o1, o2, A, respectively. Meanwhile, we let the branched
crack lie along x2 axis. In this case, the coordinates of
four disclinations located at the points B, B1, E and C
can be obtained as z1(= b+ q + r1eiθ1), z2(= b+ q +
r2eiθ2), z3(= b+q + r3eiθ3) and z4(= b+q + r4eiθ4),
respectively. Here, r1(y) = √

y2 + p2 − 2py cos δ,

r2(x) =
√
x2 + p2 − 2px cos δ,

r3(y) =
√
y2 + (p + d)2 − 2(p + d)y cos δ,

r4 = p + d,

θ1(y) = − arccos(y sin δ/r1),

θ2(x) = − arccos(x sin δ/r2),

θ3(y) = − arccos(y sin δ/r3), θ4 = −π/2.

For the plane strain problem, stress fields and dis-
placement fields can be described by two Muskhel-
ishvili’s complex potentials ϕ(z) and ψ(z) in the com-
plex plane (Muskhelishvili 1977)

σxx + σyy = 2[ϕ′(z) + ϕ′(z)] (1)

σyy − iσxy = ϕ′(z) + ϕ′(z) + zϕ′′(z) + ψ ′(z) (2)

where z = x + iy, the over-bar means a complex con-
jugate, and the prime denotes derivation with respect
to argument z.

For the purpose of solving the current problemmore
easily, the following mapping function is introduced
(Sih 1965)

z = ω(ζ ) = 2R(1 + cosα)eiπ(1−m)

×
(
ζ − tan α

2

)1+m (
ζ + tan α

2

)1−m

ζ 2 + 1
(3)

where ζ = ξ + iη. Using Eq. (3), the surround-
ing region of the internal crack in the z-plane is
mapped onto the upper half of the ζ -plane, as shown
in Fig. 1c. Furthermore, sin β = m sin α (0 ≤ m <

1), a = 4R [cos(α+β
2 )]1−m[cos(α−β

2 )]1+m , b =
4R [sin(α+β

2 )]1+m[sin(α−β
2 )]1−m (b/a ≤ 1), and R is

a real constant. At the same time, α (orβ) can be deter-
mined by assigning numerical values to b/a and m.

With the aid of the mapping function in Eq. (3), Eqs.
(1) and (2) can be rewritten in the ζ -plane as follows

σxx + σyy = 2[�(ζ) + �(ζ)] (4)

σyy − iσxy = �(ζ) + �(ζ) + ω(ζ )

ω′(ζ )
�′(ζ ) + �(ζ)

(5)

inwhich�(ζ) = ϕ′(ζ )/ω′(ζ ),�′(ζ ) = [ϕ′′(ζ )ω′(ζ )−
ϕ′(ζ )ω′′(ζ )]/[ω′(ζ )]2 and �(ζ) = ψ ′(ζ )/ω′(ζ ).

3 The force on lattice dislocation emission from the
tip of branched crack

For the emission of lattice dislocations from the tip of
branched crack, we consider a typical situation where
the dislocations are of edge character and their Burgers
vectors lie along the slip plane making an angle θ with
x1-axis. The force exerted on the edge dislocation is
composed of three parts: (1) the force due to the coop-
erative GB sliding and migration; (2) the image force
produced by the internal crack; (3) the applied load.

First, we calculate the force acting on the dislocation
produced by the cooperative GB sliding and migration.
According to the works of Romanov and Vladimirov
(1992) and Zhao et al. (2014), the elastic fields due to
two wedge disclination dipoles produced by the coop-
erative GB sliding and migration in an infinite homo-
geneous medium can be evaluated by the following
complex potentials ϕw(z) and ψw(z)

ϕw(z) = Dω

2

4∑

k=1

sk(z − zk) ln(z − zk) + ϕw0(z)

(6)

ψw(z) = −Dω

2

4∑

k=1

sk z̄k ln(z − zk) + ψw0(z) (7)

where D = μ/[2π(1 − ν)], s1 = s4 = 1, s2 =
s3 = −1, ϕw0(z) and ψw0(z) represent the interac-
tion between the two wedge disclination dipoles and
the internal crack in the z-plane.
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Fig. 1 The cooperative GB
sliding and migration in a
deformed nanocrystalline
specimen with an internal
crack consisting of a main
crack and a branched crack.
a General view, b two
disclination dipoles CE and
DB1 produced by
cooperative GB sliding and
migration, and a lattice
dislocation emitted from the
tip of branched crack, c the
ζ -plane after conformal
mapping (a)  (b)
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With the help of the conformal mapping in Eq. (3),
the aboveEqs. (6) and (7) can be obtained in the ζ -plane
as below

ϕw(ζ ) = Dω

2

4∑

k=1

skω
′(ζk)(ζ − ζk)

ln(ζ − ζk) + ϕw0(ζ ), η > 0 (8)

ψw(ζ ) = −Dω

2

4∑

k=1

sk z̄k

ln(ζ − ζk) + ψw0(ζ ), η > 0 (9)

Based on the Riemann-Schwarz symmetry theory, we
introduce a new auxiliary function χw(ζ ) as

χw(ζ ) = ω̄(ζ )
ϕ′

w(ζ )

ω′(ζ )
+ ψw(ζ ), η > 0 (10)

Substituting Eqs. (8) and (9) into Eq. (10) yields

χw(ζ ) = Dω

2

4∑

k=1

sk [ω̄(ζ ) ln(ζ −ζk) − z̄k ln(ζ − ζk)]

+χw0(ζ ), η > 0 (11)

Referring to Muskhelishvili’s treatments, the traction-
free boundary condition along the real axis is satisfied
by

ϕw(ζ ) + ω(ζ )

ω′(ζ )
ϕ′

w(ζ ) + ψw(ζ ) = 0 (12)

To deal with the boundary condition on the interface in
Eq. (12), it is convenient for us to introduce the analytic
function as follows

�w(ζ ) = −χ̄w(ζ ) = Dω

2
4∑

k=1

sk[−ω(ζ ) ln(ζ − ζ̄k) + zk ln(ζ − ζ̄k)]

+�w0(ζ ), η < 0 (13)

In combination Eqs. (12) with (13), we can get

ϕ+
w(t) = �−

w(t) (14)

where t denotes the point on the real axis in the ζ -plane.
The superscripts “+” and “−” refer to the boundary
value as approached from the respective regions occu-
pied by S+ and S+.
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In viewofEqs. (8) and (13), Eq. (14) can be rewritten
as

ϕ+
w0(t) − �−

w0(t)

= Dω

2

4∑

k=1

sk
[−ω(t) ln(t − ζk) + zk ln(t − ζk)

−ω′(ζk)(t − ζk) ln(t − ζk)
]

(15)

Applying the Plemeij formula, ϕw0(ζ ) and �w0(ζ )can
be calculated by integral along the real axis in the ζ -
plane

ϕw0(ζ ) = Dω

2

4∑

k=1

sk [−ω(ζ )

ln(ζ − ζk) + zk ln(ζ − ζk)
]

(16)

�w0(ζ ) = Dω

2

4∑

k=1

skω
′(ζk)(ζ − ζk)

ln(ζ − ζk) (17)

Inserting Eq. (16) into Eq. (8), we can get

ϕw(ζ ) = Dω

2

4∑

k=1

sk
[
ω′(ζk)(ζ − ζk)

ln(ζ − ζk) − ω(ζ )

ln(ζ − ζk) + zk ln(ζ − ζk)
]

(18)

FromEqs. (13) and (17), the complex potentialχw(ζ )is
given as

χw(ζ ) = Dω

2

4∑

k=1

sk[ω(ζ ) ln(ζ − ζk) − ω′(ζk)(ζ − ζk)

ln(ζ − ζk) − zk ln(ζ − ζk)] (19)

Substituting Eqs. (18) and (19) into Eq. (10), we can
obtain

ψw(ζ ) = Dω

2

4∑

k=1

sk
[
−ω′(ζk)(ζ − ζk)

ln(ζ − ζk) − zk ln(ζ − ζk)
]

+ ω(ζ )

ω′(ζ )

Dω

2

4∑

k=1

sk
[
ω′(ζ ) ln(ζ − ζk)

+ ω(ζ )

ζ − ζk
− zk

ζ − ζk

]
(20)

The force acting on the edge dislocation produced by
two wedge disclination dipoles describing the coop-
erative GB sliding and migration can be calculated

by using the Peach–Koehler formula (Hirth and Lothe
1982)

fw = fxw − i fyw = [
σ̂xy(ζ0)bx + σ̂yy(ζ0)by

]

+ i
[
σ̂xx (ζ0)bx + σ̂xy(ζ0)by

]

= μ(b2y + b2x )

4π(1 − ν)
[

�∗
w(ζ0) + �w∗(ζ0)

γ
+ ω(ζ0)�w∗′(ζ0) + �w∗(ζ0)

γ

]

(21)

where σ̂xx , σ̂xy and σ̂yy are the components of the stress
field due to two wedge disclination dipoles in the pro-
cess of the cooperative GB sliding andmigration defor-
mation, and γ = μ(by − ibx )/[4π(1 − ν)].

�∗
w(ζ0) = lim

ζ→ζ0

[
ϕ′

w(ζ )

ω′(ζ )
− ϕ′

w0(ζ )

ω′(ζ )

]

�w∗′(ζ0) = lim
ζ→ζ0

[
ϕ′′

w(ζ )ω′(ζ ) − ϕ′
w(ζ )ω′′(ζ )

[ω′(ζ )]3

−ϕ′′
w0(ζ )ω′(ζ ) − ϕ′

w0(ζ )ω′′(ζ )

[ω′(ζ )]3
]

�∗
w(ζ0) = lim

ζ→ζ0

[
ψ ′

w(ζ )

ω′(ζ )
− ψ ′

w0(ζ )

ω′(ζ )

]

Second, we assume that the first edge dislocation emit-
ted from the tip of branched crack is located at the point
z0 = b+reiθ in the x1o1y1 coordinate system. Accord-
ing to Fang and Liu (2006) and Fang et al. (2009), the
elastic field of edge dislocation in the ζ -plane can be
expressed by two complex potentials

ϕd(ζ ) = ϕ∗
d (ζ ) + ϕd0(ζ ) (22)

ψd(ζ ) = ψ∗
d (ζ ) + ψd0(ζ ) (23)

where ϕ∗
d (ζ ) = γ ln(ζ − ζ0), ψ∗

d (ζ ) = γ ln(ζ − ζ0) −
γ H/(ζ − ζ0) and H = ω(ζ0)/ω

′(ζ0).
Using the above-mentioned same approach, we have

ϕd(ζ ) = γ ln(ζ − ζ0) − γ ln(ζ − ζ0) − γW

ζ − ζ0
(24)

ψd(ζ ) = γ ln(ζ − ζ0) − γ H

ζ − ζ0
− γ ln(ζ − ζ0)

+ ω(ζ )

ω′(ζ )

[
γ

ζ − ζ0
− γW

(ζ − ζ0)2

]

(25)

where W = [ω(ζ0) − ω(ζ0)]/ω′(ζ0).
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6 T. He et al.

The image force can be calculated by utilizing the
Peach–Koehler formula

fd = fdx − i fdy =
[
σ ∗
xy(ζ0)bx + σ ∗

yy(ζ0)by
]

+ i
[
σ ∗
xx (ζ0)bx + σ ∗

xy(ζ0)by
]

= μ(b2y + b2x )

4π(1 − ν)

[
�∗

d(ζ0) + �∗
d(ζ0)

γ

+ω(ζ0)�d∗′(ζ0) + �∗
d (ζ0)

γ̄

]

(26)

where σ ∗
xx , σ

∗
xy and σ ∗

yy are the components of the per-
turbation stress arising from the interaction between
the edge dislocation and the free surface of the inter-
nal crack, �∗

d(ζ0) = ϕd∗′(ζ )/ω′(ζ ), �d∗′(ζ0) =[
ϕd∗′′(ζ0)ω′(ζ0) − ϕd∗′(ζ0)ω′′(ζ0)

]
/[ω′(ζ0)]3 and �∗

d
(ζ0) = ψd∗′(ζ0)/ω′(ζ0).

Next, the applied load exerted on the edge disloca-
tion can be evaluated by the following equation

fσ = b⊥σrθ (27)

where b⊥(= bx + iby) is the Burgers vector of the
first edge dislocation, σrθ is in-plane stress induced by
remote loadings, and σrθ = (σy − σx ) sin θ cos θ +
σxy(cos2 θ − sin2 θ).

For the linear elastic plane problems,Muskhelishvili
(1977) and Neuber (1946) have totally established gen-
eralized methods. On the basis of their analyses, Irwin
(1957) obtained thewell-known equations of the crack-
tip stress fields by adopting the first terms of series
expansion. Similarly, the solutions to the current prob-
lem have been derived as
⎧
⎨

⎩

σx
σy

σxy

⎫
⎬

⎭
= Kapp

I√
2πr

cos
θ

2

⎧
⎨

⎩

1 − sin θ
2 sin

3θ
2

1 + sin θ
2 sin

3θ
2

sin θ
2 cos

3θ
2

⎫
⎬

⎭

+ Kapp
II√
2πr

⎧
⎨

⎩

− sin θ
2

(
2 + cos θ

2 cos
3θ
2

)

sin θ
2 cos

θ
2 cos

3θ
2

cos θ
2

(
1 − sin θ

2 sin
3θ
2

)

⎫
⎬

⎭
(28)

where Kapp
I and Kapp

II are the appliedmode I andmode
II SIFs due to infinity load, and (r , θ ) is the polar coor-
dinate system whose origin is located at the point A.

Together with Eq. (28), Eq. (27) can be rewritten as
below

fσ = b⊥σrθ = b⊥√
2πr

(J1K
app
I + J2K

app
II ) (29)

where J1 = 1
2 sin θ cos θ

2 , J2 = cos 3θ
2 + sin2 θ

2 cos
θ
2 .

At last, by using the superposition principle, the total
force exerted on the edge dislocation near the tip of
branched crack can be calculated as

femit = fx cos θ + fy sin θ + fσ = Re[ fd + fw]
cos θ − Im[ fd + fw] sin θ + fσ (30)

where

fd + fw = μ(b2y + b2x )

4π(1 − ν)

[
2Re[�∗

d (ζ0) + �∗
w(ζ0)]

γ

+ω(ζ0)[�d∗′(ζ0) + �w∗′(ζ0)] + [�∗
d (ζ0) + �∗

w(ζ0)]
γ̄

]

4 The critical stress intensity factors for the
dislocation emission

It is a broadly accepted criterion that a new dislocation
may be spontaneously emitted from a crack tip when
the force acting on it is equal to or larger than zero, and
the distance between new dislocation and the crack free
surface is not smaller than the dislocation core radius r0
(Rice and Thomson 1974). Associating the Eqs. (18)–
(30) and femit = 0, we can obtain the following critical
SIFs for dislocation emission

Kapp
I = 0, Kapp

II =
√
2πr

b⊥ J2
(Im[ fd + fw] sin θ − Re[ fd + fw] cos θ)

for mode II crack, and

Kapp
II = 0, Kapp

I =
√
2πr

b⊥ J1
(Im[ fd + fw] sin θ − Re [ fd + fw] cos θ)

for mode I crack.
It is worth noting that when the planes of main

crack and the branched crack are flattened out into
one, namely, for m = 0, the present results are qual-
itatively consistent with the results obtained by Feng
et al. (2013b).

The analytical solutions to the current problem have
been completely obtained. Next, we examine how
cooperative GB sliding and migration affects the dis-
location emission from the tip of branched crack by
evaluating the critical SIFs in deformed nanocrys-
talline solids. In the subsequent numerical calcula-
tion, we mainly focus on the influences of impor-
tant parameters such as the lengths of main crack
and branched crack, and the angle between their
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planes on the dislocation emission from the tip of
branched crack. For simplicity, we define the normal-
ized critical SIFs as Kapp

Ic = Kapp
I /(μR

√
b⊥) and

Kapp
IIc = Kapp

II /[μR
√
b⊥]. Besides, we choose the typ-

ical parameter values of the nanocrystalline materials
(Hirth and Lothe 1982) Ni with μ = 73Gpa, ν = 0.31
as an illustrative example. As a makeshift, the Burg-
ers vector of the edge dislocation b = 0.25nm, and
the distance between the tip of branched crack and the
emitted dislocation is set as the dislocation core radius
r0 (r0 = b/2).

The variations of the normalized critical SIFs Kapp
Ic

and Kapp
IIc versus the dislocation emission angle θ with

different crack length ratio b/a are shown in Figs. 2
and 3, respectively. For the normalized critical mode
I SIFs in Fig. 2, the normalized critical mode I SIFs
first decrease to a minimum from positive infinity, then
increase to positive infinity with increasing dislocation
emission angle, which suggests that there is a critical
angle θ0 = 54.4 for dislocation emission from the tip of
branched crack. It is obvious that the dislocation emis-
sion from the tip of branched crack will become more
difficult with the increment of the crack length ratio.
That is to say, the main crack tends to propagate while
shorter branched crack is prone to be blunted by emit-
ting lattice dislocations from its tip, which is qualita-
tively in line with the results of Feng et al. (2013b). For
the normalized critical mode II SIFs depicted in Fig. 3,
the normalized critical SIFs increase from a smaller
value to infinity, dramatically turn to negative infinity,
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Fig. 3 Normalized criticalmode II SIFs versus dislocation emis-
sion angle θ with different crack length ratio b/a for m =
1/3, ω = π/6, x/d = 0.3, y/d = 0.1, δ = 2π/3, p = 0, q =
0, d = 15nm
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then increase to a maximum, and finally decrease to
negative infinity. According to the work of Huang and
Li (2004), the sign of the SIFs depends on the direction
of Burgers vector of the emerging dislocations, which
means that the normalized critical SIFs can be posi-
tive or negative. The most probable angle for positive
dislocation emission from the tip of branched crack
is always zero, while for negative dislocation emis-
sion it is about 100.3◦. Furthermore, if the crack length
ratio b/a between the branched crack andmain crack is
larger, the dislocation emission from the tip of branched
crack will be more difficult.

The normalized critical mode I and mode II SIFs
with respect to dislocation emission angle θ with dif-
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ferentm are clearly shown in Figs. 4 and 5, respectively.
For the normalized critical mode I SIFs in Fig. 4, it is
found that themost probable dislocation emission angle
is always 54.4◦ for m = 1/4, 1/3 and 2/3. However,
when the planes of main crack and the branched crack
are flattened out into one, namely, for m = 0, there
exists a critical angle 77.3◦ making the normalized crit-
ical SIFs zero, which is in agreement with the results
of Feng et al. (2013b). We can also see that when main
crack approaches the branched crack, dislocation emis-
sion from the tip of branched crack will be suppressed,
which means that the two disclination dipoles arising
from cooperative GB sliding and migration can shield
the dislocation emission from the tip of branched crack.
Additionally, we can observe that the dislocation emis-
sion from the tip of branched crack ismore difficult than
from the tip of a single straight crack. For the normal-
ized critical mode II SIFs in Fig. 5, whenm = 1/4, 1/3
and 2/3, the most probable angle for positive disloca-
tion emission from the tip of branched crack is always
zero,while for negative dislocation emission it is nearly
103◦. Moreover, when m = 0, there is a critical angle
77.3◦ making the normalized critical SIFs zero, and the
dislocation emission from the tip of branched crack is
more difficult than from the tip of straight crack.

5 Conclusions

The problem of cooperative GB sliding and migra-
tion interacting with an internal crack is investigated
by using complex function method. The effect of two

wedge disclination dipoles due to cooperative GB
sliding and migration on lattice dislocation emission
from the tip of branched crack in deformed nanocrys-
talline materials is theoretically presented. The analyt-
ical expressions of the critical SIFs for the first disloca-
tion emission are also derived.Moreover, the influences
of vital parameters such as the lengths of branched
crack and main crack, and the angle between their
planes on the critical SIFs are discussed in detail. In
summary, some brief conclusions are listed as follows:

(1) There exists a critical dislocation emission angle
near the tip of branched crack,which is independent
on the lengths of branched crack and main crack,
and mode II loadings are easier to induce disloca-
tion emission from the tip of branched crack than
mode I loadings.

(2) When main crack approaches the branched crack,
dislocation emission from the tip of branched crack
will be suppressed. The main crack tends to prop-
agate while shorter branched crack is prone to be
blunted by emitting lattice dislocations from its tip.

(3) Compared with a single straight crack, the dislo-
cation emission from the tip of branched crack is
more difficult than from the tip of straight crack.

(4) The grain size, disclination strength and geometry
of cooperative GB sliding and migration have great
important effect on the critical SIFs.
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