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Abstract The virtual crack closure technique makes
use of the forces ahead of the crack tip and the dis-
placement jumps on the crack faces directly behind the
crack tip to obtain the energy release rates GI and GI I .
The method was initially developed for cracks in lin-
ear elastic, homogeneous and isotropicmaterial and for
four noded elements. Themethodwas extended to eight
noded and quarter-point elements, as well as bimate-
rial cracks. For bimaterial cracks, it was shown that
GI and GI I depend upon the virtual crack extension
Δa. Recently, equations were redeveloped for a crack
along an interface between two dissimilar linear elastic,
homogeneous and isotropic materials. The stress inten-
sity factors were shown to be independent of Δa. For
a better approximation of the Irwin crack closure inte-
gral, use of many small elements as part of the virtual
crack extensionwas suggested. In this investigation, the
equations for an interface crack between two dissimilar
linear elastic, homogeneous and transversely isotropic
materials are derived. Auxiliary parameters are used to
prescribe an optimal number of elements to be included
in the virtual crack extension. In addition, in previous
papers, use of elements smaller than the interpenetra-
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tion zone were rejected. In this study, it is shown that
these elements may, indeed, be used.

Keywords Energy release rate · Finite element
method · Interface crack · Interpenetration zone ·
Transversely isotropic · VCCT

1 Introduction

Initial assumptions for the Virtual Crack Closure Tech-
nique were made by Rybicki and Kanninen (1977).
Using those assumptions, Raju (1987) presented a
mathematical derivation for thismethod.WhileRybicki
and Kanninen (1977) proposed the method for four
noded elements, Raju (1987) developed it for higher
order elements, including eight noded andquarter-point
elements. For themathematical derivation, Raju (1987)
used the Irwin (1958) crack closure integral which is
given as

G = lim
Δa→0

1

Δa

∫ Δa

0

[
σyy(Δa − r)uy(r)

+ σyx (Δa − r)ux (r)
]
dr (1)

in twodimensions. InEq. (1),σyy andσyx are the tensile
and shear stresses, respectively, ahead of the crack tip.
The tensile stress σyy is shown in Fig. 1a. The sliding
and opening displacements are denoted as ux and uy ,
respectively; uy is shown in Fig. 1b. Note that r is the
radial coordinate emanating from the crack tip whose
length is a + Δa, as shown in Fig. 1b. The first and
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Fig. 1 a Crack of length a and b crack of length a + Δa (from
Banks-Sills and Farkash 2016)
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Fig. 2 The forces and displacement jumps used for calculating
GI with an eight noded element

second integrals in Eq. (1) are, respectively, the modes
I and II energy release rates, GI and GI I . Raju (1987)
derived the VCCT equations using expression for the
traction ahead of the crack tip and for the crack face
displacements, that depend upon element type. These
were substituted into the Irwin crack closure integral in
Eq. (1).While Rybicki and Kanninen (1977) suggested
carrying out one finite element analysis for a crack of
length a+Δa, Raju (1987) suggested carrying out one
analysis using a crack of length a. The equation for
the mode I energy release rate, using a finite element
formulation with an eight noded element, is given by

GI = 1

2Δa

2∑
m=1

FymΔuym′ . (2)

In Eq.( 2), the virtual crack extension Δa is defined
as the length of the element ahead of the crack tip, as
shown in Fig. 2. It may be noted that the length of

the element behind the crack tip must be identical for
this formulation. The forces Fy1 and Fy2, are the nodal
forces in the y-direction at nodes 1 and 2, respectively,
as shown in Fig. 2;Δuy1′ andΔuy2′ are the crack open-
ing displacements at nodes 1′ and 2′, respectively, also
shown in Fig. 2. To calculate GI I , y is replaced with x
in Eq. (2).

The VCCT was first extended to interface cracks
between two dissimilar isotropic media by Sun and Jih
(1987). A literature survey on this subject was pre-
sented in Banks-Sills and Farkash (2016). For com-
pleteness, it may be noted that the energy release rates
GI and GI I have been shown to oscillate as the virtual
crack extension Δa is varied. Since this investigation
deals with an interface crack between two dissimilar
anisotropic media, a fewwords will be devoted to these
studies. Raju et al. (1988) investigated an edge crack
along an interface in a laminate composed of two dis-
similar monoclinic materials. The energy release rates
were shown to depend upon ε andΔa as e±2iεlnΔa . Sun
andManoharan (1989) presented the same dependency
for interface cracks between two orthotropic materials.
Other anisotropic material pairs were considered by
Chow and Atluri (1995), Beuth (1996) and Hemanth
et al. (2005).

Banks-Sills and Farkash (2016) derived new and
simpler equations for an interface crack between two
dissimilar isotropicmaterials. Two pairs of stress inten-
sity factors were determined. To obtain a unique solu-
tion, it was postulated that the crack faces are open.
The suggestion of Beuth (1996) and Oneida et al.
(2015) to use a virtual crack extension consisting
of many elements was adopted. Choice of an opti-
mal number of elements was determined by means
of two auxiliary parameters. This paper is an exten-
sion of the investigation presented by Banks-Sills and
Farkash (2016). Here, an interface crack is located
between two dissimilar transversely isotropic materi-
als.

In Sect. 2, the basic concepts related to an interface
crack between two transversely isotropic materials are
presented. The basic equations for this interface crack
are presented in Sect. 2.1. In Sect. 2.2, an expression
for calculating the length of the interpenetration zone is
derived. This phenomenonwas also considered in Toya
(1992), Sun andQian (1997),Hemanth et al. (2005) and
Agrawal and Karlsson (2006). In Toya (1992) and Sun
and Qian (1997), it was pointed out that Δa should be
larger than the interpenetration zone. In this study, this
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Fig. 3 Interface crack between two dissimilar linear elastic,
transversely isotropic and homogeneous materials

proposal is questioned. In Sect. 3, expressions for cal-
culating the stress intensity factors for two transversely
isotropic materials, by means of the VCCT are red-
erived following Banks-Sills and Farkash (2016). One
problem is described for three different sets of applied
tractions in Sect. 4. Numerical results are presented
there, as well. In Sect. 5, a discussion and conclusions
will be presented.

2 Interface crack

The basic concepts for an interface crack between two
dissimilar transversely isotropic materials as shown in
Fig. 3, are presented in this section. The upper mate-
rial is a unidirectional composite with fibers in the x-
direction; therefore, x = 0 is a symmetry plane. The
lower material is a unidirectional composite with fibers
in the z-direction; therefore, z = 0 is a symmetry
plane.Moreover, for the derivation, conditions of plane
deformation were assumed. Each of these materials
is transversely isotropic and, hence, described by five
independent effective elastic constants. For the upper
material, the constants are EA and ET , the Young’s
moduli in the axial and transverse directions, respec-
tively; νA and νT are the Poisson’s ratios in the axial and
transverse directions, respectively; and the axial shear
modulus is GA. The transverse shear modulus is given
by

GT = ET

2(1 + νT )
. (3)

The upper and lower material are the same; the lower
material is rotated by 90◦ with respect to the y-axis
shown in Fig. 3.

2.1 Equations for an interface crack between two
dissimilar transversely isotropic media

In this section, the analytical development follows
Banks-Sills and Boniface (2000) which relies on the
Stroh (1958) and Lekhnitskii (1950,1963) formalisms.
The in-plane stresses in the neighborhood of the crack
tip for an interface between two orthotropic materials
are given by

kσαβ = 1√
2πr

[
�

(
Kriε

)
k	

(1)
αβ (θ)

+�
(
Kriε

)
k	

(2)
αβ (θ)

]
(4)

where k = 1, 2 denotes the upper and the lower materi-
als, respectively, as shown in Fig. 3; α, β = 1, 2 repre-
sent polar or Cartesian coordinates; � and � represent
the real and imaginary parts of the expression in paren-
theses, respectively; K is the complex stress intensity
factor and is given by

K = K1 + i K2 (5)

In Eq. (5), i = √−1 and K1 and K2 are the real and
imaginary parts of K . The stress functions k	

(1)
αβ (θ) and

k	
(2)
αβ (θ) are known functions of θ and the mechan-

ical properties which are referred to � (
Kriε

)
and

� (
Kriε

)
, respectively. The oscillatory parameter is

given by

ε = 1

2π
ln

(
1 + β

1 − β

)
(6)

where

β =
[
−1

2
tr

(
S̆
)2]1/2

. (7)

In Eq. (7), the matrix S̆ is given by

S̆ = D−1W, (8)

D = L−1
1 + L−1

2 , (9)

W = S1L
−1
1 − S2L

−1
2 . (10)

For two orthotropic materials D and W will be dif-
ferent from those presented here for two transversely
isotropic materials. In Eqs. (9) and (10), the subscripts
1 and 2 represents the upper and the lower material,
respectively. The second rank tensors Sk and Lk , are
real, and may be calculated using four 3 × 3 matrices

123



192 E. Farkash, L. Banks-Sills

Ak and Bk , where k = 1, 2. For the upper material,
explicit expressions for A1 and B1 may be found in
Appendix 1 of Banks-Sills and Boniface (2000). Using
the relation

−AkB
−1
k = SkL

−1
k + iL−1

k (11)

for k = 1, onemaydetermineS1L
−1
1 andL−1

1 , since the
left hand side ofEq. (11) is known.Note that inEq. (11),
there is no sum on k. The lower material is mathe-
matically degenerate. In order to obtain A2B

−1
2 , for

the lower material, further development was required,
since the matrix B−1

2 is singular. In this case, one may
define two new matrices A′

2 and B′−1
2 such that

A2B
−1
2 = A′

2B
′−1
2 . (12)

The matrices A′
2 and B′−1

2 may be found in Appendix
1 of Banks-Sills and Boniface (2000). By means of
Eqs. (11) and (12), explicit expression for S2L

−1
2 and

L−1
2 are obtained. These expressions are substituted

into Eqs. (9) and (10) to determine W, D and S̆ in
Eq. (8).

For plane deformation, the tractions along the inter-
face ahead of the crack tip are given by

(√
D11

D22
σyy + iσyx

)∣∣∣∣∣
θ=0

= Kxiε√
2πx

. (13)

In Eq. (13), K is given in Eq. (5) and the x-coordinate
is shown in Fig. 3. The crack face displacement jumps
in the neighborhood of the crack tip are given by
√

D11

D22
Δuy + iΔux = 2D11

(1 + 2iε) cosh πε

×
√

Δa − x

2π
(Δa − x)iεK .

(14)

In Eqs. (13) and (14), the parameters D11 and D22 are
components of the matrixD in Eq.( 9) and are given by

D11 = β1 + β2

EA

(
1 − ν2A

ET

EA

)
+ 1 + 2κ

4GT
, (15)

D22 = β1β2(β1 + β2)

EA

(
1 − ν2A

ET

EA

)
+ 1 + 2κ

4GT
.

(16)

The complex eigenvalues of the compatibility equa-
tions p j of the upper material are given by

p j = iβ j ( j = 1, 2, 3) (17)

(see Banks-Sills and Boniface 2000); so that the real
parameters β j in Eqs. (15) and (16) are known. The
parameter κ is given by

κ = 3 − νT − ν2AET /EA

2(1 + νT )
. (18)

The interface energy release rate Gi is related to the
the stress intensity factors by

Gi = 1

H1

(
K 2
1 + K 2

2

)
(19)

where the subscript i represents interface and

1

H1
= D11

4 cosh2 πε
. (20)

The energy release rate for an interface crack may be
calculated from Irwin’s crack closure integral inEq. (1).
The interface energy release rate is also the sum of the
energy release rates from modes I and II, namely

Gi = GI + GI I . (21)

A mode mixity or phase angle may be defined as

ψ ≡ tan−1
(
K2

K1

)
. (22)

A normalized stress intensity factor may be written as

K̂ = K L̂iε (23)

where L̂ is an arbitrary length scale. Thus,

K̂ = |K |eiψ̂ (24)

where it is possible to define another phase angle

ψ̂ = tan−1

[
�(K L̂iε)

�(K L̂iε)

]
. (25)

123



Virtual crack closure technique 193

2.2 Interpenetration zone

Using the method presented in Rice (1988), one may
derive an expression for the length of the interpene-
tration zone for an interface crack between two trans-
versely isotropic materials. Taking the real part of Eq.
(14), one may write

Δuy = C̃
√
r�

[
K

1 + 2iε
r iε

]
(26)

where C̃ is a constant and r has been substituted for
Δa − x in Eq. (14). Solving Eq. (23) for K and substi-
tuting Eq. (24) into it, leads to

K = |K |L̂−iεeiψ̂ . (27)

Use of Eq. (27) in (26) yields

�
[

K

1 + 2iε
r iε

]
= |K |

1 + 4ε2
cos

[
ψ̂ + ε ln

(
r

L̂

)

− tan−1 2ε
]

. (28)

In order to determine rc, the length of the interpenetra-
tion zone, one may require Δuy = 0; thus,

cos

[
ψ̂ + ε ln

(
rc

L̂

)
− tan−1 2ε

]
= 0. (29)

For ε < 0, Eq. (29) implies that

[
ψ̂ + ε ln

(
rc

L̂

)
− tan−1 2ε

]
= π

2
. (30)

Therefore

rc = L̂ exp

{
1

ε

[(π

2
− ψ̂

)
+ tan−1 2ε

]}
. (31)

Equation (31) depends explicitly on L̂ and implicity on
this quantity through ψ̂ . However, it may be shown that
rc does not depend on L̂ .

3 Stress intensity factors

In this section, equations are derived using those in
Sect. 2.1, in order to determine expressions for the

stress intensity factors related to GI and GI I . Separat-
ing Gi for modes I and II, using Eq. (1), one may obtain
the expressions

GI = lim
Δa→0

1

2Δa

∫ Δa

0
σyy(x)Δuy(Δa − x) dx

(32)

GI I = lim
Δa→0

1

2Δa

∫ Δa

0
σyx (x)Δux (Δa − x) dx .

(33)

In Eqs. (32) and (33), Δa is the virtual crack extension
shown in Fig. 1b; the tensile and shear stresses ahead of
the crack tip are σyy and σxy , respectively. The tension
stress σyy , as well as the x-coordinate emanating from
the original crack tip are shown in Fig. 1a. The displace-
ment jumps in the x and y-directions are, respectively,
Δux and Δuy . Note, that in Eqs. (32) and (33) use
was made of Δux and Δuy rather than ux and uy as in
Eq. (1). Thus, the former equations are multiplied by
1/2.

In order to determine the relations between the com-
plex stress intensity factor components and GI and GI I ,
two auxiliary integrals are presented

AT = 1

2Δa

∫ Δa

0

[√
D22

D11
σyy(x) + iσyx (x)

]

×
[√

D11

D22
Δuy(Δa − x) − iΔux (Δa − x)

]
dx .

(34)

DT = 1

2Δa

∫ Δa

0

[√
D22

D11
σyy(x) + iσyx (x)

]

×
[√

D11

D22
Δuy(Δa − x) + iΔux (Δa − x)

]
dx .

(35)

To denote that the material is transversely isotropic,
a subscript T is used in Eqs. (34) and (35). Using
Eqs. (32)–(35), it is possible to show that the energy
release rates for modes I and II are given by

GI = 1

2
lim

Δa→0

[
�(AT ) + �(DT )

]
(36)

GI I = 1

2
lim

Δa→0

[
�(AT ) − �(DT )

]
(37)

Substitution of Eqs. (36) and (37) into Eq. (21) results
in

Gi = lim
Δa→0

�(AT ). (38)
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By substituting Eqs. (13) and (14) into Eq. (34) leads
to

AT = D11

8πΔa(1 − 2iε) cosh πε

(
K 2
1 + K 2

2

)
I1 (39)

where

I1 =
∫ Δa

0

(
Δa − x

x

) 1
2−iε

dx . (40)

In Banks-Sills and Farkash (2016), the integral in
Eq. (40) was shown to be

I1 = Δa
(1 − 2iε)π

2 cosh πε
. (41)

Substituting Eq. (41) into Eq. (39) results in

AT = D11

4 cosh2 πε

(
K 2
1 + K 2

2

)
. (42)

Use of Eq. (42), in Eq. (38) leads to the relation in
Eq. (19).

Considering the imaginary components in Eq. (34),
one may define

I(T )
I = 1

2Δa

√
D22

D11

∫ Δa

0
σyy(x)Δux (Δa − x)dx

(43)

I(T )
I I = 1

2Δa

√
D11

D22

∫ Δa

0
σyx (x)Δuy(Δa − x)dx .

(44)

As mentioned before, AT is real, so that �(AT ) = 0;
using this and Eqs. (34), (43) and (44), it is possible to
show that

I(T )
I = I(T )

I I . (45)

Next, calculation of the integral in Eq. (35) is carried
out. Substitution of Eqs. (13) and (14) into Eq. (35)
leads to

DT = D11

4πΔa( 12 + iε) cosh πε
K 2 I2 (46)

where

I2 =
∫ Δa

0
x− 1

2+iε(Δa − x)
1
2+iεdx . (47)

In Banks-Sills and Farkash (2016), it was shown that
I2 may be written as

I2 = Δa1+2iε
(
1
2 + iε

)
P (48)

where

P =
Γ

(
1
2 + iε

)
Γ

(
1
2 + iε

)

Γ
(
2 + 2iε

) . (49)

Note,Γ (a+ib) is theGamma function.ByusingMaple
(2014), the real and imaginary parts of P are obtained.
Substituting Eq. (48) into (46) leads to

DT = D11

4π cosh πε
PK 2Δa2iε . (50)

One may separate DT into real and imaginary parts as

�(DT ) = 1

H1
(K 2

1 + K 2
2 )C cosχ (51)

�(DT ) = 1

H1
(K 2

1 + K 2
2 )C sin χ (52)

where

C = cosh πε

π

√
P2
R + P2

I (53)

χ = 2 tan−1
(
K2

K1

)
+ ψP + 2ε lnΔa (54)

ψP = tan−1
(
PI
PR

)
. (55)

In Eqs. (53) and (55), P given in Eq. (49) is separated
into its real and imaginary parts, respectively, PR and
PI . It should be noted that in Eq. (54), the same length
units should be used for the stress intensity factors and
for Δa. In Eqs. (51) and (52), only χ is a function of
Δa.

Following Banks-Sills and Farkash (2016), the ratio
between the energy release rates for modes II and I is
defined as

g ≡ GI I

GI
. (56)

Substituting Eqs. (42) and (51) into (36) and (37) with
Eq. (20) while omitting the limit, results in

χ = cos−1 1

C

1 − g

1 + g
. (57)
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Solving for the first term in Eq. (54), the phase angle
ψ in Eq. (22), and substituting Eq. (57) into it leads to

ψ = 1

2
cos−1

(
1

C

1 − g

1 + g

)
− 1

2
ψP − ε lnΔa. (58)

On the other hand, use of Eqs. (19) and (22) yields

K1 = ±√
H1Gi cosψ . (59)

Note that two solutions are obtained for K1. Solving
Eq. (22) for K2 leads to

K2 = K1 tanψ . (60)

Note that two pairs of solutions are found. Using
the analytical condition suggested in Banks-Sills and
Farkash (2016), requiring the crack faces to be open,
Eq. (14) leads to

−π

2
< tan−1

(
K2

K1

)
− tan−1 2ε + ε ln r <

π

2
. (61)

In Eq. (61), r , the distance from the crack tip, is chosen
to be approximatly a/100. By using this condition, the
invalid pair of stress intensity factors is eliminated.

Following Banks-Sills and Farkash (2016), the
energy release rates GI and GI I , are calculated from
the finite element results as

GI = 1

2Δa

N∑
m=1

FymΔuym′ (62)

GI I = 1

2Δa

N∑
m=1

FxmΔuxm′ . (63)

In Eqs. (62) and (63),Δa = N�/2where N is the num-
ber of nodes ahead of the crack tip used for the calcula-
tion and � is the length of the elements that participant
in the calculation, as shown in Fig. 4 for N = 4. The

1' 2' 3' 4' 1 2 3 4

∆a

Fig. 4 Example of the elements that are used for the calculation
of the energy release rates when N , the number of the nodes
ahead of the crack tip, is equal to 4 (adapted from Banks-Sills
and Farkash 2016)

forces Fym and Fxm are, respectively, the nodal point
forces in the y and x-directions at nodem. The jump in
the crack opening and sliding displacements at nodem′
are, respectively, Δuym′ and Δuxm′ . A larger number
of elements may be taken in the calculation. By means
of the same method, Eqs. (43) and (44) are calculated
as

I(T )
I = 1

2Δa

√
D22

D11

N∑
m=1

FymΔuxm′ (64)

I(T )
I I = 1

2Δa

√
D11

D22

N∑
m=1

FxmΔuym′ . (65)

Note that the last two expressions are related to the left
and right hand sides of Eq. (45), respectively, and ana-
lytically they are equal. When calculated numerically,
the parameters will not, in general, be equal; but for a
certain number of elements used for the virtual crack
extension Δa, their values approach one another. The
difference between I(T )

I and I(T )
I I may be used as a

measure of accuracy of the solution by considering the
parameter

IT = I(T )
I − I(T )

I I

I(T )
I

× 100 . (66)

4 Numerical results

In this section, the problem of an infinite body con-
taining a finite crack of length 2a, with a = 1 mm,
along an interface between two dissimilar linear elastic,
transversely isotropic and homogeneous materials is
considered, as shown in Fig. 5. Three different cases of
applied tractions are examined. In order to approximate
an infinite body, the dimensions of the body are taken
to be w/a = 40 and h/w = 1; 2h and 2w are, respec-
tively, the height and width of the body. The material
that is used in this problem is a fiber reinforced com-
posite made of graphite/epoxy AS4/3501-6. The effec-
tivemechanical propertieswere taken fromBanks-Sills
and Boniface (2000), and are shown in Table 1. For the
upper material, the fibers are in the x-direction, and
for the lower material, they are in the z-direction (see
Fig. 3).

In order to maintain displacement continuity along
the interface, stresses σ

(1)
xx and σ

(2)
xx , as shown in Fig. 5,

are applied parallel to the crack. The stress σ
(1)
xx in the

upper material was chosen to be the same as the tensile
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2a

0º

90º

h

h
2w

material (1)

material (2)

σ

τ
σxx(1)

σxx(2)

Fig. 5 Finite length interface crack between two transversely
isotropic materials, with applied tractions of tension σ and shear
τ . In the finite element analysis, the infinite body is approxi-
mated as a square with height and width 2h and 2w, respectively
(adapted from Banks-Sills and Farkash 2016)

Table 1 Effective mechanical properties of graphite/epoxy
AS4/3501-6 (Banks-Sills and Boniface 2000)

EA (GPa) ET (GPa) νA νT GA (GPa)

138.2 10.4 0.3 0.55 5.5

stress. The expression for the stress σ
(2)
xx is found in

Boniface and Banks-Sills (2002), using the principles
from Rice and Sih (1965), and is given for plane strain
by

Table 4 The size � of the elements near the crack tip and the
number of elements and nodes for each mesh

Mesh �(µm) Elements Nodes

Mesh A 5.0 1, 037, 444 3, 117, 284

Mesh B 0.05 244, 328 735, 172

Mesh C 0.5 30, 528 92, 372

σ (2)
xx = ET

EA
σ (1)
xx +

[
EAνT +ET (ν2A − νA − νAνT )

EA−ν2AET

]
σ

(67)

where σ is the far field tensile stress. The analytical
solution for this problem is given by Boniface and
Banks-Sills (2002) as

K =
(√

D22

D11
σ + iτ

)
(1 + 2iε)

√
πa(2a)−iε (68)

where D11 and D22 are found in Eqs. (15) and (16),
respectively and τ is the far field shear stress. Thevalues
of D11, D22 and ε, P , C and ψP from Eqs. (49), (53)
and (55), respectively, are given in Table 2. Three cases
of applied tractions have been examined in this study.
The applied tractions and the analytic solution for the
stress intensity factors are presented in Table 3.

Three meshes were constructed using Abaqus/CAE
(2014) with eight noded isoparametric elements
(CPE8). In each case, the entire body was modeled.
The size of the elements near the crack tip, �, and num-
ber of elements and nodes, for eachmesh, are presented
in Table 4.

Table 2 Parameters used to
calculate the stress intensity
factors

D11 (1/GPa) D22 (1/GPa) ε P C ψP

0.2307 0.3122 −0.02780 3.1053+0.4141i 1.0010 0.1326

Table 3 Applied tractions
and the analytic solutions
for the cases investigated in
this study

σ τ σ
(1)
11 σ

(2)
11 K1 K2

(MPa) (MPa) (MPa) (MPa) (N/mm3/2+iε) (N/mm3/2+iε)

Case 1 1 0 1 0.6006 2.0638 −0.0749

Case 2 1 1 1 0.6006 2.1282 1.6991

Case 3 1 4 1 0.6006 2.3213 7.0212
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Fig. 6 Schematic view of part of mesh A presented in Table 4.
This mesh contains 1,037,444 eight noded isoparametric ele-
ments and 3,117,284 nodal points

A schematic figure of part of mesh A is shown in
Fig. 6. The parts of the mesh that are far from the crack,
at the corners of the body, contain uniform elements
whose dimensions are about 2 × 2 mm2. Note that the
crack length 2a is 2 mm. There is a uniform mesh of
elements each 5 × 5 µm2 surrounding the crack tip.
Therefore, � = 5 µm. Above, below and on the sides
of the crack, there are transition zones between the
two regions with elements which have a large aspect
ratio, the largest being 400. The stress gradients are
low in those regions; so that these elements should not
adversely affect the accuracy of the results. In addi-
tion, meshes B and C presented in Table 4 with smaller
values of � were constructed. For those two meshes,
a focused region around the crack tip was utilized as
shown schematically in Fig. 7. For the elements in the
vicinity of the crack tip, � = 0.05µm and � = 0.5µm,
respectively, for meshes B and C. A uniformmesh with

an element size of � × �, was constructed only in the
crack tip region, as shown schematically in Fig. 7b. An
enlargement of the region surrounded by a dotted red
line in Fig. 7a is illustrated in Fig. 7b.

For Mesh B, the size of the uniform mesh in the
crack tip region, is 10 × 10 µm2, and there are 200 ×
200 elements with � = 0.05 µm. Note that there are
100 such elements in front of the crack tip and 100
elements on each crack face behind the crack tip. To
allow for this small element size, the mesh is focused
towards the crack tip, as shown inFig. 7a. In the focused
zone there are 70 square rings, each one smaller and
thinner than the outer one. Three inner rings are shown
in Fig. 7b. In the outer region, a uniform coarse mesh
was constructed, similar to that in Fig. 6. The elements
in that region are 1 × 1 mm2. The largest aspect ratio
of the transition elements is 100.

For mesh C, the size of the uniform mesh in the
crack tip region, is 25 × 25 µm2; there are 50 × 50
elements with � = 0.5 µm, instead of 200 × 200 ele-
ments with � = 0.05 µm in mesh B. Note that there
are 25 elements in front of the crack and 25 elements
on each crack face behind the crack tip. In the focused
zone, there are 25 square rings instead of 70 square
rings as in mesh B. In the outer region, elements are
1 × 1 mm2, with no change compared to mesh B. The
largest aspect ratio of the transition elements is 25. It
may be noted that for meshes B and C, there are no
stress gradients in the transition regions. One of the
aims of this study is to determine accurate stress inten-
sity factors values for meshes which are as coarse as
possible. Hence, elements in the transition region have
high aspect ratios.

Using the finite element results, the values of the
energy release ratesGI andGI I are calculated bymeans
of Eqs. (62) and (63), respectively. In order to compute

Fig. 7 Schematic view of
the a crack region and b the
crack tip region of meshes B
and C presented in Table 4

(a) (b)
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Table 5 Data for case 1 in Table 3, solved with mesh A (� =
5 µm)

N/2 Δa(μm) K1(%) K2 (%) IT (%)

1 5 0.02 −15.5 −42.9

2 10 0.02 −4.01 −16.7

3 15 0.02 1.34 −12.3

4 20 0.02 0.40 −9.7

5 25 0.02 0.40 −8.5

6 30 0.02 0.40 −7.4

7 35 0.02 0.27 −6.2

8 40 0.02 0.27 −5.7

15 75 0.00 0.27 −4.5

16 80 0.00 0.27 −4.2

17 85 0.00 0.27 −4.3

18 90 0.00 0.27 −4.3

19 95 0.00 0.27 −4.0

20 100 −0.01 0.27 −4.5

25 125 −0.02 0.27 −4.3

26 130 −0.03 0.40 −4.4

31 155 −0.05 0.40 −4.6

32 160 −0.06 0.40 −4.7

40 200 −0.10 0.40 −5.7

50 250 −0.17 0.53 −6.2

the stress intensity factors, GI and GI I are substituted
into Eqs. (21) and (56) to obtain the interface energy
release rate Gi and the ratio g, respectively. Using the
value of the oscillatory parameter ε given in Eq. (6)
and Table 2, the constants P , C and ψp in Eqs. (49),
(53) and (55), respectively, are calculated; their val-
ues may be found in Table 2. By substituting C, ψp,
g and Δa into Eq. (58), the phase angle ψ , defined in
Eq. (22), is obtained. Two pairs of stress intensity fac-
tors are determined by substituting Gi and ψ into Eqs.
(59) and (60). Using the condition in Eq. (61), the valid
solution is found. By means of Eqs. (64), (65) and (66)
the parameters I(T )

I , I(T )
I I and IT , respectively, are also

computed. These are used to indicate a best solution.
The first two cases in Table 3 were considered for all

three meshes described above. The results for the first
and second cases are shown in Tables 5, 6, 7, 8, 9 and
10, respectively. The third case in Table 3 was carried
out only with mesh B presented in Table 4. The results
for this case are shown in Table 11. In Tables 5, 6, 7,
8, 9, 10 and 11, the first column represents the number
of elements used for Δa, the virtual crack extension,

Table 6 Data for case 1 in Table 3, solved with mesh
B (� = 0.05 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

1 0.05 0.11 −15.8 −27.5

2 0.10 0.07 −1.60 −11.5

3 0.15 0.06 1.34 −8.3

4 0.20 0.06 0.40 −6.3

5 0.25 0.06 0.40 −5.2

6 0.30 0.06 0.27 −4.4

50 2.50 0.06 0.27 −0.64

100 5.00 0.06 0.27 −0.24

Table 7 Data for case 1 in Table 3, solved with mesh
C (� = 0.5 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

1 0.5 0.07 −15.1 −36.5

2 1.0 0.06 −4.01 −14.6

3 1.5 0.06 0.93 −10.5

4 2.0 0.06 0.27 −8.0

5 2.5 0.06 0.40 −6.6

6 3.0 0.06 0.27 −5.6

25 12.5 0.06 0.27 −1.9

which is given in the second column. SinceΔa consists
of N nodes and eight noded elements are used in the
analyses, the number of elements is N/2. In the next
two columns, errors in the stress intensity factors K1

and K2 appear. The percentage IT in Eq. (66) is shown
in column 5. Recall that IT should be zero.

In Table 5, the results are shown for case 1 in Table 3,
using mesh A. Since there is a difference of two orders
of magnitude between the two stress intensity factors,
as shown in Table 3, it is difficult to obtain an accurate
solution. For K1, the percent error is less than 0.06% for
Δa = 5 µm to 155 µm. For Δa = 35 µm to 125 µm,
the percent error for K2 is 0.27%. The lowest value of
IT is obtained for Δa = 95 µm. For this value of Δa,
K1 has no error to 3 significant figures and K2 has an
error of 0.27%. Note, that by using one element forΔa,
the error for K2 is −15.5%.

MeshA consists of over 1,000,000 elements making
this method impractical for extension to three dimen-
sions. Hence, the focused mesh B was used to reduce
the required computer memory and CPU time in the
finite element analyses. By using a focused mesh, a
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Table 8 Data for case 2 in Table 3, solved with mesh
A (� = 5 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

1 5 −0.43 0.65 −20.9

2 10 −0.08 0.14 −9.4

3 15 0.03 −0.04 −6.6

4 20 0.03 −0.03 −4.8

5 25 0.03 −0.04 −3.9

6 30 0.03 −0.04 −3.2

7 35 0.03 −0.04 −2.8

8 40 0.02 −0.04 −2.4

16 80 0.01 −0.05 −1.3

17 85 0.01 −0.05 −1.3

18 90 0.00 −0.05 −1.2

19 95 0.00 −0.06 −1.2

20 100 0.00 −0.06 −1.2

29 145 −0.03 −0.10 −1.04

30 150 −0.04 −0.11 −0.99

31 155 −0.04 −0.11 −1.04

33 165 −0.05 −0.12 −1.04

34 170 −0.06 −0.12 −1.00

50 250 −0.16 −0.24 −1.05

Table 9 Data for case 2 in Table 3, solved with mesh
B (� = 0.05 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

1 0.05 −0.36 0.74 −15.9

2 0.10 0.01 0.11 −7.5

3 0.15 0.09 −0.01 −5.3

4 0.20 0.07 0.01 −3.9

5 0.25 0.07 0.02 −3.1

30 1.50 0.07 0.02 −0.49

50 2.50 0.07 0.02 −0.34

100 5.00 0.07 0.02 −0.14

smaller value of � was also achieved. In Table 6, the
results are shown for case 1 in Table 3 using mesh
B in Table 4 and shown schematically in Fig. 7. For
Δa ≥ 0.3 µm, the percent error converges to 0.06%
for K1 and 0.27% for K2. The value of IT decreases
as Δa increases. For the greatest value of Δa used in
the calculation, the value of IT is −0.24%. Note that
the largest value of Δa in Mesh B is the smallest one
in mesh A. As a result of the stress singularity, using

Table 10 Data for case 2 in Table 3, solved with mesh
C (� = 0.5 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

1 0.5 −0.38 0.70 −20.3

2 1.0 −0.05 0.19 −9.2

3 1.5 0.06 0.02 −6.3

4 2.0 0.06 0.02 −4.7

5 2.5 0.07 0.01 −3.7

6 3.0 0.07 0.01 −3.1

7 3.5 0.06 0.02 −2.6

25 12.5 0.06 0.02 −0.72

Table 11 Data for case 3 in Table 3, solved with mesh
B (� = 0.05 µm)

N/2 Δa(µm) K1 (%) K2 (%) IT (%)

3 0.15 −2.33 0.29 53.1

4 0.20 −0.04 0.04 25.3

5 0.25 0.05 0.03 15.6

6 0.30 0.07 0.03 11.0

17 0.85 0.09 0.02 2.0

30 1.50 0.09 0.02 0.88

50 2.50 0.09 0.02 0.41

100 5.00 0.09 0.02 0.09

only the elements that are in the vicinity of the crack tip
leads to poor results for K2. For example, in Table 5, for
Δa = 15 µm and comprising the first 3 elements, the
percent error for K2 is larger than 1.3%. This behav-
ior was also observed for other methods such as the
M-integral and displacement extrapolation (see: Freed
and Banks-Sills 2005). For the M-integral, use of the
first volume of elements surrounding the crack front
produced poor results. For displacement extrapolation,
good results were obtained from elements that are at
least two or more elements distant from the crack tip.
On the other hand, as onemay see in Eq. (1),Δa should
be small. Therefore, there is a range of values for Δa
which produce good results. The lowest value of IT is
a good indicator for the choice of Δa and, hence, the
values for K1 and K2.

A further step to reduce the number of elements was
made with mesh C. Recall that the number of elements
in the uniform mesh surrounding the crack tip and the
number of rings used for mesh C is less than those of
mesh B. As presented in Table 4, the number of ele-
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ments in mesh C is about 30,000, a decrease of about
one-eighth as compared to mesh B. In Table 7, the
results are shown for case 1 in Table 3 using mesh C.
For Δa ≥ 3 µm, the percent error converges to 0.06%
for K1 and 0.27% for K2. The value of IT decreases
as Δa increases. For the greatest value of Δa used in
the calculation, the value of IT is −1.9%. The values
obtained for K1 and K2 using meshes B and C, as a
function of the number of elements are very similar.
Note that for both meshes B and C, by using one ele-
ment for Δa the error for K2 is quite large. It may be
noted that the lowest values of IT are obtained with
use of mesh B. This mesh is quite fine. Hence, mesh
C which is much coarser than mesh B was used (see
Table 4). It may be observed in Table 7 that values of
IT are not as small as those presented in Table 6 for
mesh B. But convergence is obtained with small errors
in the stress intensity factors.

In Tables 8 through 10, the results are presented for
case 2 from Table 3 using meshes A, B and C. In this
case, a shear stress is applied at the outer boundary of
the body as shown in Fig. 5, which is the same magni-
tude as the tensile stress, σ . Since the stress intensity
factors are the same order of magnitude for this prob-
lem, it should be easier to obtain accurate results. In
Table 8, the results are shown for case 2 inTable 3, using
mesh A. The absolute values of the percent errors are
less than0.06%for both K1 and K2,whenΔa = 15µm
to 165 µm for the former and Δa = 15 µm to 90 µm
for the latter. The lowest value of IT is obtained for
Δa = 150 µm. For this value of Δa, K1 has an error
of −0.04% and K2 has an error of −0.11%. Note that
by using one element for Δa, the errors are less than
1% for both stress intensity factors.

In Table 9, the results are presented for case 2 in
Table 3, using mesh B. ForΔa ≥ 0.25µm, the percent
error converges to 0.07% for K1 and 0.02% for K2.
For the greatest value of Δa used in the calculation,
the value of IT is -0.14%.

In Table 10, the results are presented for case 2 in
Table 3, using mesh C. For Δa ≥ 3.5 µm, the percent
error converges to 0.06% for K1 and 0.02% for K2.
For the greatest value of Δa used in the calculation,
the value of IT is -0.72%. Also here, by using one ele-
ment for Δa the errors are less than 1% for both stress
intensity factors. It is shown that a mesh consisting of
less elements in the vicinity of the crack tip and less
square rings, compared to mesh B, leads to excellent
results.

0.0000E+005.0000E-051.0000E-041.5000E-042.0000E-042.5000E-043.0000E-04

Upper carck face

Crack tipLower crack face

Lower crack face

Original crack faces

Node

Fig. 8 For case 3 in Table 3 using mesh B, a schematic view of
the deformed configuration of the crack faces using data obtained
from the finite element analysis

In case 3 presented in Table 3, the applied shear
stress is increased to 4 MPa. Using Eq. (31) for this
case, rc = 0.076 µm. Hence, the interpenetration zone
occurs for a distance r ≤ 0.076 µm from the crack tip.
Only mesh B presented in Table 4 was used for this cal-
culation. Since the size of one element is � = 0.05µm,
the first two elements behind the crack tip are in the
interpenetration zone. It is expected that interpenetra-
tion should occur between the third and the fourth nodes
from the crack tip. In Fig. 8, the deformed configura-
tion of the crack faces in the vicinity of the crack tip
are plotted. As may be observed, the first two elements
penetrate each other. Indeed, the interpenetration ends
between the third and fourth nodes from the crack tip.
For cases 1 and 2 in Table 3, there will be an interpen-
etration zone; but it will be smaller than the smallest
distance between the nodes in the vicinity of the crack
tip in mesh B.

In Table 11, the results are shown for case 3 from
Table 3 obtained using mesh B. Since interpenetration
occurs for Δa < 0.1 µm, results for Δa = 0.05 µm
and 0.1 µm, are not presented. For Δa ≥ 0.85 µm,
the percent error converges to 0.09% for K1 and 0.02%
for K2. For the greatest value of Δa used in the cal-
culation, the value of IT is 0.09%. The percent error
of −2.33% for K1 when Δa = 0.15 µm and values
of more than 25% for IT when Δa = 0.15–0.20 µm
are higher than the corresponding values for cases 1
and 2. These high values appear to be a result of crack
face interpenetration. Using the elements that are in the
interpenetration zone for the calculation does not cause
the results to deteriorate. On the contrary, in order to
obtain accurate results, those elements should be used
in the calculation.

5 Summary and conclusions

The virtual crack closure technique presented inBanks-
Sills and Farkash (2016) has been extended to an
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interface crack between two dissimilar transversely
isotropic materials. New equations for calculating the
stress intensity factors K1 and K2 have been devel-
oped. Two pairs of solutions are produced. An ana-
lytic condition to determine the valid solution is pre-
sented. As shown in Banks-Sills and Farkash (2016),
in some cases in order to obtain accurate results, the
virtual crack extension Δa should contain many small
elements. A low value of IT in Eq. (66), indicates an
optimal number of elements to be used for Δa. In
all of the load cases considered with meshes B and
C, IT converged towards zero as the number of ele-
ments in the virtual crack extension increased. For the
coarse mesh A, values of IT decreased as the num-
ber of elements used in the virtual crack extension
increased; but then increased. The lowest value of IT
was used to determine the stress intensity factor val-
ues. It may be pointed out that a virtual crack exten-
sion containing only one element may be used when
the stress intensity factors are of the same order of
magnitude.

In addition, an expression for the size of the inter-
penetration zone was presented. In previous papers
(Toya 1992; Sun and Qian 1997), use of elements
larger than the interpenetration zone was recom-
mended. For cases in which the virtual crack exten-
sion contains many small elements, excellent results
are achieved even if the elements are smaller than the
interpenetration zone. This conclusion also applies to
an interface crack between two dissimilar isotropic
materials.

Three cases for different applied tractions with three
meshes have been considered for an interface crack
between two transversely isotropic materials in an infi-
nite body. Using one element as the virtual crack
extension Δa leads to errors in the stress intensity
factors ranging in absolute value from 0.02 to 16%.
Low errors are obtained for the stress intensity fac-
tors when the values of K1 and K2 are the same order
of magnitude. When they differ substantially, more
than one element is required in the calculation. In this
study, it was suggested to choose the number of ele-
ments for Δa for which the lowest value of IT was
obtained. According to this suggestion, the errors for
the stress intensity factors ranged in absolute value
from 0.02 to 0.27%. Themethod presented heremay be
extended to other anisotropicmaterial pairs and to three
dimensions.
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