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Abstract The in-plane classical dislocation-based
linear elastic fracturemechanics analysis is extended to
the case of strain gradient elasticity. Nonsingular stress
and smooth-closure crack profiles are derived. As in the
classical treatment, the crack is represented by a distri-
bution of climb edge dislocations (for Mode I) or glide
edge dislocations (for mode II). These distributions are
determined through the solution of corresponding inte-
gral equations based on variationally consistent bound-
ary conditions. An incompatible framework is used and
the nonsingular full-field plastic distortion tensor com-
ponents are calculated. Numerical results and related
graphs are provided illustrating the nonsingular behav-
iour of the stress/strain components and the smooth
cusp-like closure of the crack faces at the crack tip. The
work provides an alternative approach to celebrated
“Barenblatt’s treatment” of cracks, without the intro-
duction of a cohesive zone and related to intermolecular
forces ahead of the physical crack tip. It also supple-
ments a recent paper by the authors in which the mode
III crack, represented by an array of screw dislocations,
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1 Introduction

Dislocations play a key role in different aspects of solid
mechanics and can be used to treat different physi-
cal phenomena such as plasticity and fracture (Bilby
and Eshelby 2006; Hirth and Lothe 1982). Dislocation-
based fracturemechanics (Weertman 1996) and the dis-
tributed dislocation technique (Hills et al. 1996) has
been successfully used to address cracks within the
classical theory of elasticity. On the other hand, dis-
location (crystal) plasticity has been developed exten-
sively recently (Acharya 2001; Sandfeld et al. 2011; Po
et al. 2014). Such formulations of plasticity and frac-
ture can be unified to provide tools for the analysis of
materials without any ad hoc assumptions.

Within continuum theory of dislocations (Kröner
1958), dislocations are sources of incompatibility. In
our treatment, cracks are represented as a distribu-
tion of dislocations. Since dislocation is a source of
incompatibility, it is required to employ an incom-
patible continuum theory for this study. In this con-
nection, it is noted that a discussion on compatibil-
ity and incompatibility for generalized continua is
given in Eringen (1999). For such generalized con-
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tinua containing dislocations, disclinations and other
structural defects, the classical compatibility (or inte-
grability) conditions for the usual strain tensor are vio-
lated.

Classical linear elasticity does not possess an inter-
nal length and, thus, no size effects can be predicted and
unphysical singularities emerge at dislocation cores
and crack tips. Classical dislocation-based approaches
also confirm these features of linear elasticity theory.
Therein, the singularity of the crack tip stems from the
singular fields of the individual dislocations making
up the arrays used to represent a macroscopic crack.
However, within classical elasticity, the dislocation-
based approach does not predict any crack tip plasticity
unless an assumption of cohesive zone is considered.
It would be valuable to develop a nonsingular frac-
ture theory incorporating crack tip plasticity without
any assumption other than the constitutive model of
the material.

Continuum mechanics generalization of linear elas-
ticity including higher-order strain or stress gradients
have been proposed and extensively used in the litera-
ture to account for microstructural effects as they man-
ifest at a continuum macroscopic scale (e.g. Eringen
1999, 2002;Mindlin 1965;Mindlin andEshel 1968 and
references quoted therein). In general, these theories
are complex, involve many unknown phenomenologi-
cal coefficients and they are difficult to be implemented
in the solution of related boundary value problems. An
exception to this is Eringen’s nonlocal elasticity the-
ory (Eringen 2002) which in its reduced stress gradi-
ent form (for a particular type of kernel in the integral
constitutive relation) produces analytical nonsingular
expressions for the stress field of dislocations and non-
singular stresses (but not nonsingular strains) at the
crack tip. Along similar lines, the simple strain gradi-
ent elasticity theory (the GradEla model) proposed by
the second author (Aifantis 1992) was the first model
to provide nonsingular strain at dislocation core and
crack tips when boundary conditions do not play a role
(e.g. for dislocations in infinite media) or they are sim-
plified and not necessarily identified to those derived
from a variational principle (e.g. for cracks in infinite
media).

Due to the promising initial results derived for dis-
locations and cracks by the GradEla model and the
applicability of the so-called Ru–Aifantis theorem (Ru
and Aifantis 1993), various authors have adopted it
and its variational counterpart for studying dislocation,

disclination and crack problems (Altan and Aifantis
1997; Georgiadis 2003; Gutkin and Aifantis 1999; Git-
man et al. 2010; Unger and Aifantis 1995; Vardoulakis
et al. 1996; Lazar et al. 2005; Karlis et al. 2007; Ama-
natidou and Aravas 2002) within a “compatible” or
“incompatible” framework. An early review on com-
bined strain-stress gradient models without attention
to characterizing the incompatible distortion field, was
provided in Aifantis (2003) andmore recent results can
be found in Aifantis (2011a) and Askes and Aifantis
(2011). The extension of the GradEla model, within an
incompatible framework, to derive analytical expres-
sions for both elastic and plastic distortions was given
in Lazar andMaugin (2006) for dislocation fields. Ana-
lytical expressions for strain fields for mode I, II and III
cracks were derived in Aifantis (2009, 2011b, 2014).
It is beyond the scope of present contribution to discuss
the various features of the stress, strain, and displace-
ment fields produced by the various fracture mechan-
ics analyses based on strain or stress gradient gener-
alizations of elasticity theory. We refer, however, to
recent works (Isaksson and Dumont 2014) attempt-
ing to make contact of gradient dependent nonsingular
solutions to experimental observations and Sciarra and
Vidoli (2013), where some asymptotic results for gra-
dient elastic fracturemodes are reported.Moreover, the
gradient elastic effects associated with the existence of
a cohesion type interphase layer is discussed in Lurie
and Belov (2014). The same authors have previously
developed a higher-order theory of continuous media
with conserved dislocations to address hypothesis of
Barenblatt about cohesion field near crack tip (Lurie
and Belov 2008).

The aforementionedworks ongradient elastic cracks
do not make use of the fact that a crack can be repre-
sented by an array of dislocations (screw for mode III,
climb edge for mode I and glide edge for mode II).
Such artificial but accurate representation of a crack
has been very useful within classical elasticity and con-
firmed existing results of “singular” linear elastic frac-
ture mechanics, obtained from the solution of related
boundary value problems based on standard continuum
linear elasticity theory (Bilby andEshelby2006;Weert-
man 1996; Hills et al. 1996). Since the GradEla model
and its extension to incompatible framework provides
nonsingular dislocation solutions, it should be expected
that the adoption of such gradient theory for disloca-
tions may lead to corresponding nonsingular solutions
for crack fields.
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The first work to employ nonsingular disloca-
tion solutions for continuously distributed disloca-
tion arrays (without applying to crack problems) was
Eringen (1985), but it was only recently (Mousavi et al.
2014) that the distributed dislocation technique (DDT)
within gradient elasticity was employed to address
crack problems. In particular, based on the nonsingular
stress component expressions for screw dislocations,
cracks of mode III were studied. The standard classi-
cal elasticity boundary conditions were used, and cor-
responding solutions for a single crack and co-linear
cracks were presented. The stress field was obtained,
but no results were reported for the strain or the crack
opening displacement. Later, DDT was employed in
Mousavi and Lazar (2015) to study cracks of mode
I, II and III within nonlocal elasticity of Helmholtz
type. Based on nonsingular stress components for the
dislocation fields, nonsingular crack tip stresses were
obtained. As expected for nonlocal elasticity, the crack-
tip strains remained singular. Recently, nonsingular
antiplane fracture theory of anisotropicmaterials is for-
mulated within nonlocal elasticity (Mousavi and Kor-
sunsky 2015).

The mode III crack within the gradient elasticity
theory was revisited recently in Mousavi and Aifantis
(2015) by employing the DDT and using the nonsin-
gular stress expressions. Nonsingular elastic stresses
were obtained (with the double stresses being singular)
and corresponding nonsingular conjugate strains were
derived, along with “smooth closure” profiles for the
crack faces. In contrast to Mousavi et al. (2014), vari-
ationally consistent boundary conditions were used.
This work provided an alternative approach to cele-
brated “Barenblatt’s treatment” of cracks (Barenblatt
1962), without introducing the concept of “cohesive
zone” and “intermolecular forces “ahead of the “phys-
ical” crack tip. However, in contrast to Altan and
Aifantis (1992), where the crack opening displacement
(COD) tends asymptotically to zero for large distances
ahead at the crack tip, theCOD inMousavi andAifantis
(2015) vanishes at a finite distance ahead of the crack
tip, thus defining precisely the length of the cohesive
zone. TheDDThas also been used to investigate defects
within the theory of couple stress elasticity (Gourgio-
tis and Georgiadis 2007). However, due to the singular
stresses for dislocations within the theory of couple
stress elasticity, the stress field for mode I, II and III
cracks in couple stress elasticity remain singular (in

fact, they become more singular than in classical elas-
ticity).

The purpose of this paper is to present the solution to
in-plane crackswithin an incompatible gradient elastic-
ity framework using a dislocation-based approach. The
paper is organized as follows. In Sect. 2, the framework
of incompatible first strain gradient elasticity theory is
presented. In Sect. 3, the solutions of edge dislocations
within suchgradient elasticity theory are reviewed from
the literature. The stress field of these dislocations will
serve as the building blocks for obtaining the stress
field of cracks. Section 4 deals with the generalization
of the distributed dislocation technique (DDT) from
classical elasticity to gradient elasticity by considering
equilibrium, boundary and incompatibility conditions.
The non-singular stress fields of edge dislocations are
used for the in-plane (modes I and II) crack analyses.
Numerical examples are presented in Sect. 5. In Sect. 6,
the conclusions are given.

2 Fundamentals of strain gradient elasticity

Gradient elasticity is a generalization of linear elastic-
ity which includes higher-order strain or stress gradi-
ent terms to account for microstructural effects. Within
strain gradient elasticity, the strain energy depends on
the elastic strain, and higher order strain tensors defined
as spatial gradients either of the displacement field, or
of the strain field (Mindlin and Eshel 1968). This gen-
eral form of the gradient elasticity (Mindlin and Eshel
1968) has been used in different simplified versions
such as the one adopted in Aifantis (1992), Ru and
Aifantis (1993), Altan and Aifantis (1997) and Altan
and Aifantis (1992). We intend to use dislocations for
the analysis of cracks, and since dislocations are the
source of incompatibility, a suitable framework would
be that of incompatible gradient elasticity. Thus, we
consider a strain gradient theory in which the strain
energy depends on the elastic strain and the first-order
strain gradient with variationally consistent boundary
conditions (Altan and Aifantis 1997; Aifantis 2011a,
2014), but within an incompatible framework (Lazar
et al. 2005; Lazar and Maugin 2006, 2005). Due to the
gradient terms, the strain energy contains additional
gradient coefficients with the dimension of length. For
an isotropic gradient elastic medium, the strain energy
density reads (Altan andAifantis 1997; Lazar andMau-
gin 2005; Polizzotto 2003),
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W = 1

2
τi j ei j + 1

2
τi jkei j,k . (1)

while τi j and τi jk are the stress and double stress ten-
sors, respectively. We employ a comma to indicate par-
tial derivative with respect to rectilinear coordinates.
The elastic strain (ei j ) is the symmetric part of the elas-
tic distortion (βi j )

ei j = 1

2

(
βi j + β j i

)
, (2)

The total distortion (βT
i j ) is the gradient of the displace-

ment (ui ) and is given as a sum of elastic (βi j ) and
plastic parts βP

i j (deWit 1973)

βT
i j = ∂ j ui = βi j + βP

i j , (3)

Once the dislocations are the source of the incompati-
bility, the dislocation density is given by

αi j = ε jklβil,k = −ε jklβ
P
il,k . (4)

The stress and double stress tensors read

τ = {τi j } = {Ci jklekl}, (5a)

τ (1) = {τi jk} = {�2τi j,k}. (5b)

while � is the gradient coefficient which enrich the cur-
rent framework to capture the size effect and lead to reg-
ularized expressions for stress. For an isotropicmaterial
the tensor of elastic moduli (Ci jkl ) is

Ci jkl = λδi jδkl + μ(δikδ jl + δ jkδil), (6)

while λ, μ are the Lamé constants and δi j is the Kro-
necker delta, respectively.

The equilibrium equation of the first gradient elas-
ticity reads (Altan andAifantis 1997; Polizzotto 2003),

∂ j (τi j − τi jk,k) = 0. (7)

Following a variational approach (e.g. Mindlin and
Eshel 1968), the natural boundary conditions can be
derived. Within first gradient elasticity, the traction
(natural) boundary conditions read (e.g. Polizzotto
2013)

t = t̄, (8a)

t(1) = t̄(1), (8b)

where t̄ and t̄(1) are the prescribed generalized traction
vectors. The generalized tractions t and t(1) in (8) are
given by Polizzotto (2013)

t = n · T − (∇̄(⊥n) + Hn
) · S, (9a)

t(1) = n · S. (9b)

Here ∇̄(⊥n) is the surface gradient (which denotes
the tangential gradient over a plane of normal n), i.e.
∇̄(⊥n) = P(n) · ∇, while the projection operator is
P(n) = I − nn and I represent the unit dyadic. The
symbol ∇ denotes the spatial gradient operator, i.e.
∇x = {

∂i x j
}
and H = −∇̄(⊥n) · n. In (9), the so-

called total stress T is defined as

T = {
τi j − τi jk,k

}
, (10)

and the surface stress S reads

S = n · τ (1). (11)

The non-standard boundary conditions (8) is an
important aspect of the gradient theory which should
be taken into account, in particular, for crack problems.
The boundary conditions (8), in the index notation,
read (Gao and Park 2007)

ti = (τi j − τi jk,k)n j − ∂ j (τi jknk)

+ n j∂l(τi jknknl), (12a)

t (1)i = τi jkn j nk . (12b)

The natural boundary conditions (8) are also derived
in Altan and Aifantis (1997) but represented in slightly
different forms. For convenience, herewe have used the
notation presented in Polizzotto (2013). It is also noted
that a simplified version of the boundary conditions are
used in Altan and Aifantis (1997). In the current study,
the natural boundary conditions are enforced in their
original form (8).

3 Edge dislocations in gradient elasticity

In first gradient elasticity, (glide and climb) edge dislo-
cations produce non-singular stress and singular double
stress fields. The edge dislocation line is assumed to be
along the z-axis, while the Burgers vector of a glide
dislocation (bx ) is parallel to the x-axis, and the Burg-
ers vector of a climb dislocation (by) is parallel to the
y-axis. In other words, a glide edge dislocation is an
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edge dislocation that can glide in x-direction while a
climb edge dislocation can move only by climb in the
x-direction.

3.1 Glide edge dislocation

Within an incompatible gradient elasticity, the stress
components of a glide edge dislocation with Burgers
vector bx read (Lazar et al. 2005; Lazar and Maugin
2005; Lazar 2013)

τxx = −γ bx
y

r4

{
(y2 + 3x2) + 4�2

r2
(y2 − 3x2)

− 2y2
r

�
K1

(
r/�

) − 2(y2 − 3x2)K2
(
r/�

)}
,

(13a)

τyy = −γ bx
y

r4

{
(y2 − x2) − 4�2

r2
(y2 − 3x2)

− 2x2
r

�
K1

(
r/�

) + 2(y2 − 3x2)K2
(
r/�

)}
,

(13b)

τxy = γ bx
x

r4

{
(x2 − y2) − 4�2

r2
(x2 − 3y2)

− 2y2
r

�
K1

(
r/�

) + 2(x2 − 3y2)K2
(
r/�

)}
,

(13c)

where γ = μ/[2π(1 − ν)], ν is the Poisson ratio and
τzz = ν(τxx + τyy). The stress field (13) is identical to
the stress field reported in Gutkin and Aifantis (1999)
for a compatible gradient elasticity. The double stress
tensor τi jk may be derived by substituting the stress
tensor (13) in (5).

The stress of a glide edge dislocation is zero at the
dislocation line and possesses extremum values (maxi-
mum and minimum) near the dislocation line. Consid-
ering the discontinuity of the dislocation to be along
y < 0, the displacement field of a glide edge dislo-
cation within first gradient elasticity reads (Lazar and
Maugin 2006)

ux = bx
4π(1 − ν)

{
2(1 − ν)w(x, y) + xy

r2

− 4�2
xy

r4
+ 2xy

r2
K2

(
r/�

)}
, (14a)

uy = − bx
4π(1 − ν)

{
(1 − 2ν)(ln r + K0

(
r/�

)
) + x2

r2

− 2�2
x2 − y2

r4
+ x2 − y2

r2
K2

(
r/�

)}
, (14b)

Here, w(x, y) is given by

w = arctan
y

x
− π

2
+ 1

2π

∫ ∞

−∞

∫ ∞

−∞
k1
k2

1

k2 + 1
�2

× exp(ik · x) dk1 dk2, (15)

with k2 = k21 + k22, k = (k1, k2) and x = (x, y). When
y → 0, the displacement (14) on the x-axis is given by

ux (x, 0) = bx
2π

w(x, 0), (16a)

uy(x, 0)= − bx
4π(1 − ν)

{
(1−2ν)(ln |x |+K0

(|x |/�))

+ 1 − 2�2

x2
+K2

(|x |/�)
}

, (16b)

while

w(x, 0) = −π

2
sgn(x) {1 − exp(−|x |/�)} . (17)

Within first gradient elasticity, the plastic distortion
along y = 0 is given by

βP
xx (x, 0) = −bx

4�
. exp(−|x |/�) (18)

The dislocation density tensor reads (Lazar et al. 2005;
Lazar and Maugin 2006)

αxz = bx
2π

1

�2
K0(r/�), (19)

which is singular.

3.2 Climb edge dislocation

Thefield components of a climbedgedislocation canbe
derived following a same procedure outlined for glide
edge dislocation. The stress components of a climb
edge dislocation with Burgers vector by read (Lazar
and Maugin 2005)

τxx = γ by
x

r4

{
(x2 − y2) − 4�2

r2
(x2 − 3y2)

− 2y2
r

�
K1

(
r/�

) + 2(x2 − 3y2)K2
(
r/�

)}
,

(20a)

τyy = γ by
x

r4

{
(x2 + 3y2) + 4�2

r2
(x2 − 3y2)

− 2x2
r

�
K1

(
r/�

) − 2(x2 − 3y2)K2
(
r/�

)}
,

(20b)
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τxy = γ by
y

r4

{
(x2 − y2) − 4�2

r2
(3x2 − y2)

+ 2x2
r

�
K1

(
r/�

) + 2(3x2 − y2)K2
(
r/�

)}
,

(20c)

where, again, γ = μ/[2π(1 − ν)], ν is the Poisson
ratio and τzz = ν(τxx + τyy). Similarly to a glide edge
dislocation, the stress of a climb edge dislocation is
zero at the dislocation line and possesses extremum
values (maximum and minimum) near the dislocation
line. The double stress tensor τi jk can be derived by
substituting τi j from (20) into (5).

The displacement field of a climb edge dislocation
within first gradient elasticity reads

ux = by
4π(1 − ν)

{
(1 − 2ν)(ln r + K0

(
r/�

)
)

+ y2

r2
− 2�2

y2 − x2

r4
+ y2 − x2

r2
K2

(
r/�

)
}

,

(21a)

uy = by
4π(1 − ν)

{
2(1 − ν)w(x, y) − xy

r2
+ 4�2

xy

r4

− 2xy

r2
K2

(
r/�

)}
, (21b)

while w(x, y) is given in (27). When y → 0, the dis-
placement (21) is simplified to

ux (x, 0) = by
4π(1 − ν)

{
(1 − 2ν)(ln |x | + K0

(|x |/�))

+ 2�2

x2
− K2

(|x |/�)
}

, (22a)

uy(x, 0) = by
2π

w(x, 0), (22b)

where w(x, 0) is given by (17). Within first gradient
elasticity, the plastic distortion along y = 0 is given by

βP
yx (x, 0) = −by

4�
exp(−|x |/�), (23)

and the dislocation density tensor reads

αyz = by
2π

1

�2
K0(r/�). (24)

It is noted that the dislocationdensitywithinfirst gra-
dient elasticity is still singular, while second gradient

elasticity theory (Lazar et al. 2006) offers a nonsingular
dislocation density.

3.3 Edge dislocation in classical elasticity

In the limit for classical elasticity (� → 0), all of the
expressions given for thefield quantities of the edgedis-
locations above are reduced to the classical case (deWit
1973). For completeness and in order to compare the
classical results with the gradient theory in the follow-
ing section, the classical field quantities of the edge
dislocations are summarized here. The stress field of
climb and glide edge dislocations are given by

τxx = −γ bx
y

r4
(y2 + 3x2) + γ by

x

r4
(x2 − y2),

(25a)

τyy = −γ bx
y

r4
(y2 − x2) + γ by

x

r4
(x2 + 3y2),

(25b)

τxy = γ bx
x

r4
(x2 − y2) + γ by

y

r4
(x2 − y2) . (25c)

The displacement field of edge dislocations reads

ux = bx
4π(1 − ν)

{
2(1 − ν)w0(x, y) + xy

r2

}

+ by
4π(1 − ν)

{
(1 − 2ν) ln r + y2

r2

}
, (26a)

uy = − bx
4π(1 − ν)

{
(1 − 2ν) ln r + x2

r2

}

+ by
4π(1 − ν)

{
2(1 − ν)w0(x, y) − xy

r2

}
,

(26b)

with w0(x, y) given by

w0(x, y) = arctan
y

x
− π

2
. (27)

Along the x-axis, the displacement field (27) is simpli-
fied to

ux (x, 0) = −bx
4
sgn(x) + by(1 − 2ν)

4π(1 − ν)
ln |x | , (28a)

uy(x, 0) = − bx
4π(1 − ν)

{(1 − 2ν) ln |x | + 1}

− by
4
sgn(x). (28b)

123



Dislocation-based gradient elastic fracture mechanics 99

The plastic distortion tensor reads

βP
xx (x, 0) = −bxδ(x)H(−y) , (29a)

βP
yx (x, 0) = −byδ(x)H(−y), (29b)

which gives rise to the following expressions for dislo-
cation density tensor for edge dislocations

αxz = bxδ(x)δ(y), (30a)

αyz = byδ(x)δ(y). (30b)

Once the plane is assumed to contain a dislocation
situated at a point with coordinates (η, ζ ), the fields
quantities of the plane may be deduced by transform-
ing (x, y) to (x −η, y− ζ ) in the formulation provided
above. In the following section, the distributed disloca-
tion technique is generalized to gradient elasticity for
the analyses of cracks of mode I and II.

4 Distributed dislocation technique
in strain gradient elasticity: in-plane analysis

Dislocation is an elementary defect in solids which can
be utilized to build composite defects (Weertman 1996)
such as dislocation arrays, pile ups, and cracks. In par-
ticular, by using the distributed dislocation technique
(DDT), an arbitrary configuration of cracks can be
modelled (Hills et al. 1996). In this technique, the dis-
locations are distributed in the location of the crack and
the stress field is determined for the cracked medium.
The basic idea ofDDT is that the field tensor of cracks is
determined by the convolution of the field tensor of dis-
locations with a distribution function. This distribution
function is determined using the crack-face boundary
conditions. In general, DDT is capable of the analy-
sis of multiple curved cracks. Here, for simplicity, we
consider one straight crack. Employing this analysis
for multiple inclined cracks is straight forward. Con-
sider a plane weakened by one straight crack of length
2a along x-axis (Fig. 1). The parametric form of the
crack is

x = α(s) = as , −1 < s < 1 (31a)

y = β(s) = 0. (31b)

Within the first gradient elasticity framework, the
generalized traction boundary conditions is given by
(8). In order to accurately model cracks within gradi-
ent elasticity, these nonstandard boundary conditions

Fig. 1 Plane weakened by one crack

should be taken into account. Accordingly, on the sur-
face of the crack, the normal vector is n = {0, 1, 0}
(Fig.1) and the nonzero generalized tractions (9) on
the surface of the crack are

tx = τxy − �2(τxx,xy + τxy,xx + τxy,yy) , (32a)

ty = τyy − �2(τxy,xy + τyy,xx + τyy,yy) , (32b)

t (1)x = �2τxy,y , (32c)

t (1)y = �2τyy,y , (32d)

Since these tractions are produced due to the the dis-
locations, we may use the relations for the stress com-
ponents of a discrete dislocation (13, 20) (i.e. τxx,x =
−τxy,y, τxy,x = −τyy,y) to further simplify the gen-
eralized tractions (32). Thus, the generalized tractions
(32) on the surface of the crack are simplified to

tx = τxy − �2τxy,xx , (33a)

ty = τyy − �2τyy,xx , (33b)

t (1)x = �2τxy,y , (33c)

t (1)y = �2τyy,y . (33d)

For the in-plane analysis of the crack at hand, the
crack is represented by a continuous distribution of
glide and climb dislocations. Considering (13, 20), the
stress components caused by the climb and glide edge
dislocations located at a point with coordinates (η, ζ )
read

τls(x, y) = kxls(x, y, η, ζ )bx + kyls(x, y, η, ζ )by , (34)

where kils(x, y, η, ζ ), l, s ∈ {x, y} are the coefficients
of bx and by , i.e.,

kxxx = −γY

R4

{
(Y 2 + 3X2) + 4�2

R2 (Y 2 − 3X2)

− 2Y 2 R

�
K1

(
R/�

) − 2(Y 2 − 3X2)K2
(
R/�

)
}

(35a)
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kxyy = −γY

R4

{
(Y 2 − X2) − 4�2

R2 (Y 2 − 3X2)

− 2X2 R

�
K1

(
R/�

) + 2(Y 2 − 3X2)K2
(
R/�

)}

(35b)

kxxy = γ X

R4

{
(X2 − Y 2) − 4�2

R2 (X2 − 3Y 2)

− 2Y 2 R

�
K1

(
R/�

) + 2(X2 − 3Y 2)K2
(
R/�

)}

(35c)

kyxx = γ X

R4

{
(X2 − Y 2) − 4�2

R2 (X2 − 3Y 2)

− 2Y 2 R

�
K1

(
R/�

) + 2(X2 − 3Y 2)K2
(
R/�

)}

(35d)

kyyy = γ X

R4

{
(X2 + 3Y 2) + 4�2

R2 (X2 − 3Y 2)

− 2X2 R

�
K1

(
R/�

) − 2(X2 − 3Y 2)K2
(
R/�

)}

(35e)

kyxy = γY

R4

{
(X2 − Y 2) − 4�2

R2 (3X2 − Y 2)

+ 2X2 R

�
K1

(
R/�

) + 2(3X2 − Y 2)K2
(
R/�

)}
,

(35f)

with X = x − η,Y = y − ζ and R = √
X2 + Y 2.

Next, we consider dislocations with unknown densi-
ties Bx (ξ) and By(ξ), distributed along an infinitesimal
segment dl = adξ on the surface of the crack. For the
horizontal crack (Fig. 1) for which Y = 0, the in-plane
tractions (33) on the surface of the crack due to the
presence of this distribution of dislocations are

tx
(
α(s), β(s)

) = a
∫ 1

−1

{
kxxy − �2kxxy,xx

}
Bx (ξ) dξ

+ a
∫ 1

−1

{
kyxy − �2kyxy,xx

}
By(ξ) dξ,

(36a)

ty
(
α(s), β(s)

) = a
∫ 1

−1

{
kxyy − �2kxyy,xx

}
Bx (ξ) dξ

+ a
∫ 1

−1

{
kyyy − �2kyyy,xx

}
By(ξ) dξ ,

(36b)

t (1)x

(
α(s), β(s)

) = a
∫ 1

−1
�2kxxy,y Bx (ξ) dξ

+ a
∫ 1

−1
�2kyxy,y By(ξ) dξ , (36c)

t (1)y

(
α(s), β(s)

) = a
∫ 1

−1
�2kxyy,y Bx (ξ) dξ

+ a
∫ 1

−1
�2kyyy,y By(ξ) dξ . (36d)

Here the functions kils(x, y, η, ζ ), {l, s, i} ∈ {x, y} are
given by (35) with Y = 0. The coordinates (x, y) =
(α(s), 0) are the parametric form of the points on the
crack (31) where (η, ζ ) = (α(ξ), 0) are the coordi-
nates of dislocation on the surface of the crack. Due to
non-singular dislocation solutions (13, 20), the integral
equations (36) are non-singular.

4.1 Mode I crack

For the analysis of a crack along the x-axis in mode I,
a far-field uniform traction τ∞

yy = τyy0 is applied to the
plane. Hence, the traction at the location of the crack
in the defectless plane reads

t̄x = 0 , t̄y = τyy0 , t̄ (1)x = t̄ (1)y = 0 . (37)

For the distribution of climb edge dislocations, the trac-
tions t̄x and t̄

(1)
y vanish automatically on the crack sur-

face. The remaining traction conditions, i.e.

t̄y = τyy0 , t̄ (1)x = 0 (38)

can be used to determine the density of the dislocations.
Using the Bueckner superposition principle (Bueckner
1973), the left-hand side of the integral equations (36)
are identical to the traction in (38) with opposite sign,
i.e., for mode I,
∫ 1

−1

{
kyyy − �2kyyy,xx

}
By(ξ) dξ = −τyy0

a
, (39a)

∫ 1

−1
�2kyxy,y By(ξ) dξ = 0 . (39b)

The closure requirement implies

∫ 1

−1
By(ξ)dξ = 0 , (40)
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which ensures the single-valuedness of the displace-
ment field field out of the crack. The system of the inte-
gral equations (39) and (40) should be solved to deter-
mine the climb dislocation density (By) for mode I.

4.1.1 Crack opening displacement

The crack opening displacement (COD) is obtained by
superposing the displacement field of the dislocations
distributed along the crack surface. Considering the
density of the dislocations By(ξ) for mode I, the COD
reads

g(x) = 2uy(x, 0) = −a
∫ x/a

−1
By(ξ) dξ

+ a

2

∫ 1

−1
sgn(x−at) exp(−|x−aξ |/�)By(ξ) dξ .

(41)

In the classical limit (l → 0), the COD reduces to

g(x) = −a
∫ x/a

−1
By(ξ) dξ=2(1 − ν)τyy0

μ

√
a2−x2.

(42)

In contrast to classical elasticity (42), the COD
within gradient elasticity (41) is not limited to the crack
surface.

4.1.2 Plastic distortion

The plastic distortion of a discrete dislocation (23) can
be superposed to determine the plastic distortion of the
plane weakened by a crack. Using the density of the
dislocations, the plastic distortion of the plane β

P,cr
yx

along y = 0 is obtained as

βP,cr
yx (x, 0) = − a

4�

∫ 1

−1
{exp(−|x−aξ |/�)} By(ξ) dξ .

(43)

Here and in the following, the superscript “cr” denotes
“crack”. In the limit for classical elasticity, the plastic
distortion is simplified to

βP,cr
yx (x, 0−) = −By(x/a). (44)

According to (44), the classical plastic distortion
vanishes outside the crack line while within gradi-
ent elasticity, the plastic distortion (43) appears also

beyond the crack tip. As demonstrated in the next sec-
tion, this suggests the emergence of crack tip plastic-
ity without any assumption other than the constitutive
model of the material.

4.1.3 Stress field

The stress field of the distributed dislocations reads

τ crxx (x, y) = a
∫ 1

−1
kyxx By(ξ) dξ , (45a)

τ cryy(x, y) = τyy0 + a
∫ 1

−1
kyyy By(ξ) dξ , (45b)

τ crxy(x, y) = a
∫ 1

−1
kyxy By(ξ) dξ , (45c)

where X = x − α(ξ), Y = y and R2 = X2 + Y 2. The
stress components (45) are nonsingular. The double
stress components can be derived by substituting (45)
in (5). As mentioned earlier, for a single dislocation,
the double stress is singular within gradient elasticity.
Consequently, the double stress tensor of a plane weak-
ened by a crack (being the convolution of the discrete
dislocations) is singular. On the other hand, the total
stress tensor can be determined by substituting (45) in
(10). Since the total stress of a discrete dislocation is
singular, it results in singular total stress at crack tips.

4.2 Mode II crack

For a mode II analysis, a plane weakened by a crack
along x-axis is assumed to be subjected to the far-field
uniform traction τ∞

xy = τxy0. The traction at the loca-
tion of the crack in the defectless plane is then given by

t̄x = τxy0 , t̄y = 0 , t̄ (1)x = t̄ (1)y = 0 . (46a)

For the distribution of glide edge dislocations, the trac-
tions t̄y and t̄

(1)
x vanish automatically on the crack sur-

face. The remaining traction conditions are

t̄x = τxy0 , t̄ (1)y = 0 (47)

which can be used to determine the density of the dis-
locations to represent the crack.

Once the traction in (47), with opposite sign, is sub-
stituted in the left-hand side of equations (36), the inte-
gral equations
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∫ 1

−1

{
kxxy − �2kxxy,xx

}
Bx (ξ) dξ = −τxy0

a
, (48a)

∫ 1

−1
�2kxyy,y Bx (ξ) dξ = 0 (48b)

are obtained for mode II. Similar to mode I, the closure
requirements should be considered for the analysis of
embedded crack, i.e.,

∫ 1

−1
Bx (ξ)dξ = 0 . (49)

The solution to the system of integral equations (48)
and (49) gives the glide dislocation density (Bx ) for
mode II.

4.2.1 Crack opening displacement

The COD of a crack of mode II reads

g(x) = 2ux (x, 0) = −a
∫ x/a

−1
Bx (ξ) dξ

+ a

2

∫ 1

−1
sgn(x−at) exp(−|x − aξ |/�)Bx (ξ) dξ .

(50)

while in the limit for classical elasticity reduces to

g(x) = −a
∫ x/a

−1
Bx (ξ) dξ . (51)

4.2.2 Plastic distortion

Considering the plastic distortion of a discrete dislo-
cation (18) and the density of dislocations, the plastic
distortion on the plane β

P,cr
xx along y = 0 is obtained as

βP,cr
xx (x, 0)=− a

4�

∫ 1

−1
{exp(−|x − aξ |/�)} Bx (ξ) dξ,

(52)

whereas the classical plastic distortion reads

βP,cr
xx (x, 0−) = −Bx (x/a). (53)

Similarly to mode I, the classical plastic distortion
(53) vanishes outside the crack of mode II while within

gradient elasticity, the plastic distortion (52) appears
also beyond the crack tip.

4.2.3 Stress field

The (nonsingular) stress field of the distributed glide
edge dislocations, representing the crack of mode II,
reads

τ crxx (x, y)=a
∫ 1

−1
kxxx Bx (ξ) dξ , (54a)

τ cryy(x, y) = a
∫ 1

−1
kxyy Bx (ξ) dξ , (54b)

τ crxy(x, y) = τyy0 + a
∫ 1

−1
kxxy Bx (ξ) dξ , (54c)

where X = x − α(ξ), Y = y and R2 = X2 + Y 2. The
double stress components can be derived by substitut-
ing (54) in (5). Similar to the discussion for mode I,
the double stress field of a plane weakened by a mode
II crack, being the convolution of the discrete disloca-
tions, is singular.Additionally, the (singular) total stress
tensor can be derived by substituting (54) in (10).

5 Numerical results

In this section, numerical results are presented for a
plane weakened by a crack (Fig. 1). Mode I and II are
studied in the following subsections. It is noted that
the singular value decomposition technique is used to
solve the system of integral equations (Mousavi et al.
2014; Golub and Van Loan 1996).

5.1 Mode I crack

As demonstrated in the previous section, once the plane
is under a far-field uniform traction τ∞

yy = τyy0, the
crack behaves in mode I. In order to compare gradi-
ent elasticity with classical elasticity, the results for the
dislocation density are shown in Fig. 2 for τyy0 = μ.
The classical dislocation density is given by

By(x) = 2(1 − ν)τyy0

μ

x√
a2 − x2

. (55)

It can be seen that the density is singular at the crack
tips in which the dislocations are piled up and con-
centrated. The sign of the singularity in gradient elas-
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Fig. 2 Climb dislocation
density for mode I within
classical and gradient
elasticity, τyy0 = μ
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ticity coincides with the sign of the classical singular
density. This is an interesting feature of gradient elas-
ticity, in contrast to the nonlocal elasticity where the
singularities possess opposite sign with respect to clas-
sical elasticity (Mousavi and Lazar 2015). It is also
noted that the nonlocal stress field of a discrete dis-
location coincides with the stress field of a discrete
dislocation within gradient elasticity. The boundary
conditions are the major difference between nonlocal
and gradient elasticity which leads to this character-
istic distinction. In nonlocal elasticity, the boundary
conditions are as simple as classical elasticity, while
(as explained in previous sections) the gradient elas-
ticity contains non-classical boundary conditions. Fig-
ure 2 demonstrates the dislocation density for gradient
coefficients � = 0.1a, 0.4a, 0.8a. It is noticed that for
lower values of gradient coefficient, the classical den-
sity is recovered. However, the higher values of gra-
dient coefficients contribute to insignificant changes
of the dislocation density with respect to classical
one.

The crack opening displacement (COD) is an impor-
tant aspect of any fracture theory. Figure 3 compares
the classical COD (42) with the one in gradient elas-
ticity (41) for � = 0.1a, 0.2a. The gradient elasticity
predicts a smoother closure than the classical one. In

other words, a cusp-like closure of the crack faces is
observed within gradient elasticity.

In the presentmodel, CODextends beyond the crack
surfaces, which is related to the intermolecular forces
ahead of the physical crack tip. This extent of COD
beyond the physical crack tip demonstrates the simi-
larity of the current treatment with the cohesive zone
model (Karihaloo and Xiao 2003) in which the crack
opening in the cohesive zone is related to the distribu-
tion of cohesive force. In this study, this feature is mod-
elled without the introduction of a cohesive zone. In
fact, this is a nice feature of gradient elasticity providing
an alternative justification of Barenblatt’s “smooth clo-
sure” crack condition. In his seminal work, Barenblatt
proposed the idea of the “mathematical” and “physi-
cal” crack by introducing internal compressive forces
ahead of the mathematical crack tip, acting along a cer-
tain distance (the cohesive zone) determined by requir-
ing to eliminate the singularity at the tip of the physical
crack (Barenblatt 1962). Gradient elasticity provides a
different formulation and explanation of Barenblatt’s
problem by introducing the “cohesive forces” directly
in the constitutive equation.

Since dislocation is a source of incompatibility, they
give rise to plastic distortion. Consequently, an interest-
ing aspect of the dislocation-based approach is its capa-
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Fig. 3 Crack opening
displacement for mode I
within classical and gradient
elasticity, τyy0 = μ
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Fig. 4 Plastic distortion
β
P,cr
yx along y = 0 for mode

I within classical and
gradient elasticity,
τyy0 = μ, � = 0.1a
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bility to determine the plastic distortion of the plane
weakened by cracks. Figure 4 depicts the plastic distor-
tion β

P,cr
yx (43) along y = 0. It is noticed that the clas-

sical plastic distortion vanishes out of the crack faces,

while the gradient elasticity captures crack-tip plastic-
ity without any extraneous assumption, as in classi-
cal Barenblatt’s cohesive fracture theory (Barenblatt
1962).
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Fig. 5 Stress component
τ crxx for mode I within
classical and gradient
elasticity, τyy0 = μ,
� = 0.1a

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

x/a

τ xxcr
 /τ

yy
0

 

 
Classical elasticity
Gradient elasticity l =0.1*a

Fig. 6 Stress component
τ cryy for mode I within
classical and gradient
elasticity, τyy0 = μ,
� = 0.1a
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The stress components τxx and τyy are also shown
in Figs. 5 and 6, respectively. As expected, a full-
field solution is obtained using the dislocation-based
approach. The classical singularity of the stress field is

regularized and the stress field is finite at the crack tip.
The maximum of the stress field occurs in the vicinity
of the crack tip, out of the crack surface. It is noticed
that, in contrast to nonlocal elasticity which gives zero

123



106 S. M. Mousavi, E. C. Aifantis

Fig. 7 Glide dislocation
Density for mode II within
classical and gradient
elasticity, τxy0 = μ
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nonlocal stress at the crack tips (Mousavi and Lazar
2015), this gradient elasticity solution predicts finite
nonzero stress at the crack tips. This distinction is due
to different boundary conditions. In nonlocal elasticity,
the nonlocal stress should vanish along the crack while
within gradient elasticity, it is the generalized tractions
(33) which is set equal to zero on the crack surface.

Within classical elasticity, the dislocation-based
approach does not predict any crack tip plasticity unless
the assumption of cohesive zone is considered. In con-
trast, it is observed here that the dislocation-based
approach within strain gradient elasticity provided the
full-field nonsingular stress field as well as the profile
for the crack tip plasticity. In other words, a full-field
(not asymptotic) nonsingular stress field as well as the
profile for the crack tip plasticity is realized without
any assumption other than the constitutive model of
the material. The knowledge of stress field and crack
tip plasticity can serve the attempt to predict plastic
failure or brittle fracture. The study of such criteria is
in progress.

5.2 Mode II crack

In order to study an in-plane shear problem, the plane
(Fig. 1) is assumed to be under a far-field uniform trac-

tion τ∞
xy = τxy0 = μ. This gives rise to a crack of mode

II. Similarly to the previous section, the dislocation-
based approach is applied to obtain the dislocation den-
sity, crack opening, plastic distortion and stress field.

Figure 7 demonstrates the dislocation density of
classical elasticity and gradient elasticity (� = 0.1a,

0.4a, 0.8a). The mode II dislocation density (Fig. 7)
behaves qualitatively similarly to the one in mode I
(Fig. 2). For lower values of �, the density within gradi-
ent elasticity approaches to the classical one. However,
a distinction between mode I and II is the fact that, in
contrast to mode I, here we notice that the higher val-
ues of the gradient coefficient contribute to a significant
change with respect to classical solution.

The crack opening displacement is depicted in
Fig. 8. Similarly to mode I, the gradient elasticity pre-
dicts a smoother closure than the classical one.

To study the plasticity induced by the crack, the plas-
tic distortion β

P,cr
xx (52) is demonstrated along y = 0

in Fig. 9. As in the case for mode I, a non-vanishing
plastic distortion appears in the vicinity of the crack
tip, representing the cohesive zone.

Finally, the only nonzero stress components τxy is
shown in Fig. 10. The stress field is nonsingular and
possesses finite nonzero values at the crack tip. The
maximum of the stress occurs in the vicinity of the
crack tip outside the crack surface.
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Fig. 8 Crack opening
displacement for mode II
within classical and gradient
elasticity, τxy0 = μ
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Fig. 9 Plastic distortion
β
P,cr
xx along y = 0 for mode

II within classical and
gradient elasticity,
τxy0 = μ, � = 0.1a
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Fig. 10 Stress component
τ crxy for mode II within
classical and gradient
elasticity, τxy0 = μ,
� = 0.1a
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6 Conclusions

In this paper, a dislocation-based approach is applied
to analyse the cracks of mode I and II within gradient
elasticity. Due to the use of dislocations, an incompati-
ble framework was employed. By properly distributing
the dislocations and using the variationally consistent
boundary conditions, all field quantities are derived as
a convolution of the corresponding field quantities for
a discrete dislocation through the so-called dislocation
density function.

The dislocation densities of cracks (of mode I and
II) are demonstrated and compared to the classical
elasticity. The distinctive feature of gradient elastic-
ity in comparison to the nonlocal elasticity is that the
“nonlocal” density contains opposite singularity with
respect to the “classical” density, while the one in
gradient elasticity is consistent with that of classical
density.

Due to the regularization of the stress fields of edge
dislocations within gradient elasticity, non-singular
stresses for cracks are obtained for mode I and II. The
crack opening displacement (COD) is also determined
and is compared to the classical COD. It is observed
that, in comparison to classical elasticity, the crack clo-
sure is smoother than in gradient elasticity. Further-
more, the emergence of crack tip plasticity is captured

without any extraneous assumption such as in classical
Barenblatt’s cohesive fracture theory. This provides an
alternative approach to celebrated “Barenblatt’s treat-
ment” of cracks, without the introduction of a cohesive
zone and relate to intermolecular forces ahead of the
physical crack tip.

A nonsingular dislocation-based fracture theory is
of considerable interest since it provides the chance to
formulate a unifieddislocation-based theory for plastic-
ity and fracture. It is to be noted that dislocation (crys-
tal) plasticity has been developed successfully recently.
Such formulation of plasticity can be unified with
the dislocation-based fracture to provide tools for the
analysis of materials without any ad hoc assumptions.
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