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Abstract Three-dimensional model of fracture prop-
agation is proposed. The model simultaneously
accounts rock deformation in the vicinity of a frac-
ture and a cavity, fluid flow inside the fracture and its
propagation in the direction that is selected by a growth
criterion.The results of the sensitivity analysis ofmodel
solution to the variation of model parameters are pre-
sented.

Keywords 3D boundary element method · Fracture
initiation · 2D fluid flow · Hydraulic fracture
propagation · Numerical simulation · Fully coupled

1 Introduction

There are a lot of papers that concern modeling of
hydraulic fracturing process, which started at 1950s.
Review of the most widely-used one-, two-, and
three-dimensional models is given in Esipov et al.
(2014). Fully 3Dmodels are distinguished among other
because of their important distinctive feature which is
the ability to describe out-of-plane propagation or in
other words dimensional reorientation of a fracture.
They describe not only opening mode, but also the rel-
ative shear displacement of crack edge, and are able to
simulate fracture sliding and tearing. The typical case,
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where such models are needed is when the initial frac-
ture is not oriented in the preferred fracture plane and
the final crackmay result tortuous. Then, the restriction
of the crack width near a wellbore may cause its further
plugging by a proppant.

Before the simulation of fracture propagation itself,
one needs to solve the problem of fracture initiation
to obtain the initiation pressure, fracture position and
orientation, which are the necessary initial data for the
simulation of fracture propagation. The solution of 3D
fracture initiation for the different cases is presented in
Esipov et al. (2011a), Alekseenko et al. (2013), Aidag-
ulov et al. (2015). It is shown that the fracture can
initiate from a wellbore, an intersection between the
wellbore and a perforation, and from the perforation
itself. The conditions of each case execution are deter-
mined. In Esipov et al. (2011a) the influence of casing,
which is the integral part of technological process, is
also determined. It is shown that the presence of this
column sufficiently changes both the initiation pressure
and the initial fracture position.

The local condition when a critical tensile stress
on a cavity surface exceeds the rock tensile strength
is considered as the criterion of fracture initiation in
above mentioned papers (Esipov et al. 2011a; Alek-
seenko et al. 2013). Here, the cavity size is not directly
taken into account.

However, the initiation pressure actually depends
on the cavity geometry and in particular on its typi-
cal size (Neuber 1937; Novozhilov 1969). The authors
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of mentioned articles have introduced a linear size of
the object problem. They have suggested comparing
the segment-averaged mean tension stress σ with the
critical stress σc. The segment-averaging procedure is
performed over the interval of length d, which con-
nects a point on the cavity and an adjacent point in
an elastic media. In the paper (Novozhilov 1969), d
is interpreted as an interatomic distance. It can also
be interpreted as a typical size of a grain. The influ-
ence of a loaded specimen size has also been stud-
ied at experimentally-theoretical work (Carter 1992).
In papers (Neuber 1937; Novozhilov 1969; Carter
1992) the size effect of a specimen has been consid-
ered in a two-dimensional initiation problem. Paper
(Cherny et al. 2015) generalizes it to sufficiently three-
dimensional fracturing problems. In that case, the value
d is calibrated using an experimental data.

In the present paper, we focus on the simulation
of the exclusively fully 3D (non-planar) evolution of
hydraulic fractures. The suggested models and meth-
ods are the natural generalization of the approaches that
have been developed by the authors in Cherny et al.
(2009), Alekseenko et al. (2011).

2 The concept of mathematical model

In all of articles reviewed in the present paper, a frac-
ture is considered without a cavity. Fluid injection is
simulated as a point source at its surface. In the model
which is described here we use the geometrical concept
presented inFig. 1, that connects the cavity and the frac-

Fig. 1 Geometrical concept of 3D models: 1 initial fracture; 2
crack front; 3 cavity with border S∗; S± upper and bottom crack
sides

ture. The fracture is considered as a curvilinear surface
in three-dimensional infinite media that consists of the
upper S+ and the lower S− sides. The surfaces S+ and
S− are geometrically equal and the outer unit normal at
coinciding points satisfies the expressionn+ = −n−. It
is observed that in the case of high stress in deep reser-
voirs and in case of lowfluid viscosity the fluid pressure
along the fracture faces is almost constant. Therefore,
we will consider two models of fracture loading here.

In the first one we assume that the fluid pressure
is constant along the fracture faces, although it can
be time-dependent. Under this condition, it is also
assumed that the fluid and the fracture fronts coincide,
i.e. the size of so-called fluid lag is negligible. We will
say that such hydraulic fracture propagation regime is
described by a quasi-static crack growth model.

In the other model the viscous fluid flow inside the
fracture is simulated.TheflowofNewtonianfluid along
the surface of fracture is described by 2D equations:
the unsteady continuity equation and two simplified
(lubrication theory) momentum equations.

The fracture grows in an isotropic homogeneous
elastic material, compressed at the infinity by a stress
tensor σ∞ with principal components σ∞

x , σ∞
y , and

σ∞
z . It is assumed that the fracture grows with a

sufficiently low velocity, and the propagation can be
described in the scope of linear elasticity fracture the-
ory (Cherepanov 1979).

The present paper examines two hydraulic fracture
propagation regimes which are the quasi-static fracture
growth and the viscous fluid fracture growth. In the lat-
ter case, the propagationmodel is unsteady.Theprocess
unsteadiness is taken into account in the flow continu-
ity equation.Meanwhile, all other equations describing
the momentum balance, the elastic equilibrium, and
the material breakage are stationary. The dynamics of
propagation process is represented by the static condi-
tions of flowmomentum, stress field, and elastic media
displacements in different moments of time.

3 Stress-displacement analysis of an elastic media
near the cavity and the fracture

3.1 Governing equations

The stress–strain state of an isotropic homogeneous
media is described by the elastic equilibrium equations
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∂σi j

∂x j
= 0, (1)

in which the components of stress tensor σi j satisfy the
linear Hookes law in the case of small strains εi j

σi j = λδi jεkk + 2μεi j , εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
.

(2)

In (2) ui are the displacenemts, λ andμ are the Lame
parameters expressed via Young modulus E and Pois-
son’s ratio ν as

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (3)

Out of the equations (1) and (2) theLame’s equations
of elastic equilibrium in terms of the displacements are
derivered (Sedov 1997)

(λ + μ)grad divu + μ�u = 0, (4)

where u = (u1, u2, u3).

3.2 Boundary conditions

The inner boundary S problem (Fig. 1) consists of the
cavity border S∗, upper S+ and lower S− fracture bor-
ders: S = S∗ + S+ + S−.

On the cavity S∗ the boundary condition

ti ≡ σi j n j = −pwellni − σ∞
i j n j , (5)

is set up, where ni are the components of the surface
outer unit normal; pwell is the pressure in the cavity;
σ∞
i j are the components of tensor σ∞. The principal

componentsσ∞
x , σ∞

y , andσ∞
z of tensorσ∞ are applied

in the directions of axis x, y and z respectively and are
revealed as an in situ stress.

On the fracture surface S± in the fracture propaga-
tion problem the following boundary condition is set

ti = −pcrackni − σ∞
i j n j . (6)

There is also the condition at the infinite distance
that should be satisfied

ui (∞) = 0. (7)

The in situ stress is accounted by the terms σ∞
i j in

the boundary conditions (5) and (6). The solution of
the elasticity problem provides the stress-strain state of
rock that is already strained with the stress σ∞

i j . There-
fore, the actual stress that appear in the rock equals to
the σi j + σ∞

i j .

3.3 Solution method

Essentially, two main methods for the solution of elas-
ticity sub-problem are used in the papers that concern
3D initiation and evolution of hydraulic fractures: the
finite element method (FEM) (Gupta and Duarte 2014)
and the boundary element method (BEM). The proto-
type of the latter is the so-called “direct method” of
linear elasticity based on Somigliana’s solution (Rizzo
1967). The FEM is employed to discretize the 3D
partial differential equations. Then, the large volume
of reservoir in the vicinity of the wellbore and the
hydraulic fracture needs to be discretized. This is a very
computationally expensive procedure. Therefore, in the
problems of elasticity the BEM has gained popularity
because of its boundary-only discretization that reduces
the dimensionality of the problem (Rizzo 1967). The
Conventional BEM (Rizzo 1967) can be implemented
for the problems of fracture initiation from the cavity,
which is confined by some surface S∗ without any frac-
tures (Alekseenko et al. 2013; Aidagulov et al. 2015;
Briner et al. 2015a, b). However, using the conventional
BEM to collocate the coincident points on the opposite
crack surfaces produces a singular system of algebraic
equations. The equations for a point, which is located
at one of the surfaces of the crack, are identical to those
equations for the point with the same coordinates, but
at the opposite surface (Cruse 1972, 1973).

Many methods have been devised to overcome this
difficulty. The crack Green’s function method (Snyder
and Cruse 1975) is applied to the problems with a dom-
inant crack of so regular a shape that free-spaceGreen’s
functions, which satisfies the traction-free boundary
condition on the crack surface, is obtainable.

The multiple-zone method (Blandford et al. 1981)
introduces artificial boundaries in the intact area to
connect cracks and the boundary and thus divides the
domain into zones so that no cracks appear in the inte-
rior of each zone. The drawback of the multiple-zone
method is that the introduction of artificial boundaries
is not unique, and thus cannot be easily implemented
into an automatic procedure. In the problems of frac-
ture propagation the remeshing of artificial boundary
is required at every step of fracture growth. In addition,
themethod generates a larger system of algebraic equa-
tions than the required. Despite these drawbacks, the
multiple-zone method has been the most widely used
technique for elastostatics. In Esipov et al. (2011a, b)
we used the multiple-zone BEM for the solution of
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three-dimensional fracture initiation problem from the
cased wellbore.

The displacement discontinuity method (DDM)
was proposed by Crouch (1976). In this method, the
unknown functions are the displacement discontinu-
ities between the crack surfaces and can be used
directly. In the original DDM for 2D elasticity prob-
lems, the displacement discontinuity across the two
surfaces of a crack are assumed to be constant on line
segments representing the crack. Stresses in the cracked
domain are related to the displacement discontinuities
on the line segments using the Papkovitch functions
and superposition. In Liu and Li (2014) it is shown
explicitly that the DDM is equivalent to the BEM,
in which the traction (hypersingular) boundary inte-
gral equation (TBIE) is discretized with constant line
elements instead of displacement (singular) boundary
integral equation (DBIE). In the one of the first papers
on the simulation of fully three-dimensional fracture
propagation (Vandamme and Curran 1989) the DDM
was used for solving the hydraulic fracturing problem.
The borehole, through which the fluid is injected into
the fracture is not simulated in the stress analysis: its
size is assumed to be negligible, compared to the size
of the fracture.

In Napier and Detournay (2013) the initial propaga-
tion of fractures from a pressurized borehole in three-
dimensional case is simulated. In the present paper in
order to apply the DDM to a borehole-fracture problem
the borehole is represented as a cylindrical crack and it
comprises displacement discontinuity elements. I.e. a
fictive body that has the same properties as an external
elastic media is placed into a borehole. The solutions of
the external and the fictive internal problems are simul-
taneously found. The displacements of some points of
the fictive body should be fixed to avoid its shift and
rotation as a rigid body even if only the external prob-
lem is of interest. The displacements in the fictive body
are defined using these fixed points and in the external
domain they are defined using fixed zero displacements
at the infinity. If the problem under consideration has
two planes of symmetry as in Napier and Detournay
(2013) then the internal domain is automatically fixed
with regard to these two planes. If the problem under
consideration is not symmetrical, then additional ele-
ments should be added in to the crack and zero dis-
placements should be set at their inner sides to prevent
themotion of the internal domain as a rigid body. These
elements can produce additional stresses that can affect

the solution of the external problem. The resulting solu-
tion of external problem will not be equal to the correct
solution of the original problem obtained for example
by the dual boundary element method (DBEM).

The most suitable method for the solution of the
elasticity problem in 3D model of fracture propagation
from the arbitrary cavity is the DBEM (Hong and Chen
1988; Chen and Hong 1999). The first use of dual inte-
gral equations in crack problems has been reported by
Bueckner (1973). Watson (1982, 1986) has presented
the normal derivative of the displacement boundary
integral equation for the development of Hermite cubic
element where the number of unknowns is larger than
the number of equations. For the case of a degener-
ate boundary, the dual integral representation has been
proposed for crack problems in elasticity by Hong and
Chen (1988), Chen and Hong (1999). They have intro-
duced the idea of dual boundary integral equation, in
which a combination of the standard boundary integral
equation and its derivative can be used to provide inde-
pendent equations in order to overcome the problem of
degeneracy. Hong and Chen have presented the theo-
retical basis of dual integral equations having shown
how the DBIE can be differentiated and Hooke’s law
can be applied to derive the TBIE. Portela et al. (1991)
have implemented the combined use of the DBIE and
theTBIE in single system to solve two-dimensional lin-
ear elastic crack problems. Both of the crack surfaces
are discretized with discontinuous quadratic boundary
elements, in which nodes are located within the body
of element. The collocation at these nodes satisfies the
Holder continuity requirements of the hypersingular
integral equation since the shape functions are contin-
uously differentiable at these points. Mi and Aliabadi
(1992, 1994) has extended two-dimensional cases to
the three-dimensional crack problems.

The difficulties in using DBEM in comparison with
the conventional BEM are the high degree of the singu-
larity of TBIE and the increase of computational costs
because of the necessity to use discontinuous boundary
elements, which leads to the increase of the degrees of
freedom, and as result to the enlargement of matrix in
SLAE.

In our work, we develop another approach that still
allows to use the conventional BEM by the means of
a slight modification of the computational domain. In
this approach the real fracture is replaced by a fictious
notch with an artificial finite width dart (Fig. 2). The
artificial width parameter should be chosen to min-
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imize the error caused by domain modification. The
collocation nodes at the opposite sides of the notch are
positioned far enough to make the algebraic equations
well-conditioned and close enough to keep the errors of
the calculation of crack width and stress intensity fac-
tors minimal. The appropriate value of the parameter
and the estimation of the computational error caused
by the BEMwith domain modification (BEM/DM) are
presented further. The artificial notch approach based
on the conventional BEM has computational advan-
tages comparing to both DDM and DBEM. Indeed, let
the cavity surface be presented by Nc elements and
the fracture be presented by N f elements. As it has
been mentioned, the discontinuous boundary elements
should be used for the hypersingular TBIE discretiza-
tion and the continuous elements can be used for the
DBIE discretization. In the case of the simplest linear
elements the following degrees of freedom can be esti-
mated for the given methods. The DDM produces a
system of linear equations with 3(4N f +4Nc) degrees
of freedom, the DBEM gives 3(4N f + Nc) degrees of
freedom and BEM/DM gives 3(2N f + Nc) degrees of
freedom. From the given estimations, it is clear that the
suggested BEM/DM is the most suitable method for a
3D elasticity problem from the computational point of
view. Especially, if the crack sizes are significant and
N f values are correspondingly significant too.

4 Crack growth model

4.1 Stress intensity factors and the specific features
of their calculations

The fundamental postulate of Linear Elastic Fracture
Mechanics (LEFM) is that the behaviour of cracks
is determined solely by the value of Stress Intensity
Factors (SIFs). The stress field in the vicinity of the
crack front is characterized by the SIFs KI , KII and
KIII . In the present paper, the displacement extrapola-
tion method for evaluating SIFs is employed (Aliabadi
2002)

K O
I = E

4(1 − ν2)

√
π

2l

(
uP+
b − uP−

b

)
,

K O
II = E

4(1 − ν2)

√
π

2l

(
uP+
n − uP−

n

)
,

K O
III = E

4(1 + ν)

√
π

2l

(
uP+
t − uP−

t

)
,

(8)

where point O is at the crack front; the displacements
uP+

and uP−
are evaluated at the points P+ and P−,

which are the nodes in the neighbourhood of the crack
front for the upper and lower crack surfaces, respec-
tively; ub, un and ut are the projections of u on the
coordinate directions of the local crack coordinate sys-
tem presented in Fig. 3, and l is the distance to the crack
front.

Let us evaluate the accuracy of SIFs calculations
using the formula (8) on an inclined penny-shaped
crack problem. There is a penny-shaped fracture of
radius R, upper S+ side, lower side S−, and a cen-
ter in the origin of coordinates. This crack is placed
on a plane which is inclined at an angle α to the axis
Oz (Fig. 4a). The surrounding media is loaded at the
infinity by uniaxial tensile stress σ∞ with principal
components σ∞

x = σ∞
z = 0, σ∞

y > 0. Stresses on the
fracture sides are equal to zero σ ·n ∣∣

S± = 0.
The exact solution for the SIFs is (Murakami 1987;

Tada et al. 2000)

KI = 2σ∞
y cos2 α

√
R

π
, (9)

KII = 4

2 − ν
σ∞
y sin α cosα cosω

√
R

π
, (10)

KIII = 4(1 − ν)

2 − ν
σ∞
y sin α cosα sinω

√
R

π
, (11)

where ω is an angular coordinate on the crack plane
that represents a position of the crack front.

For a particular case when α = 0, the fracture prop-
agation problem has an exact solution (Sneddon and
Elliott (1946); Abe et al. (1976))

W (σ∞
y , r) = 8σ∞

y

πE ′
√
R2 − r2, (12)

whereW is the fracture width, calculated using the for-
mulaW (x) = u+(x+)n+(x+)+u−(x−)n−(x−), x =
x± ∈ S± (Fig. 2), E ′ is the plane strain modulus, asso-
ciated with the Young modulus E and the Poisson’s
ratio ν

E ′ = E

1 − ν2
. (13)

Figure 5 shows the numerical fracture width calcu-
lated with the BEM/DM (Fig. 4b) under parameters
α = 0, R = 1 m, σ∞

y = 1 MPa, E = 20 GPa, ν =
0.2, and the exact (12). The computational mesh con-
tains 16 elements in radial direction r and 64 ele-
ments in circumferential direction ω. The artificial
notch width equals dart = 0.12 m.
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Fig. 2 Artificial notch
concept: real fracture (left)
is replaced with artificial
notch (right)

Fig. 3 Evaluation of stress intensity factors from nodal displace-
ments

Let us consider now the influence of displacements
calculation on KI value. In Fig. 6 the values of KI

for the problem with the parameters mentioned above,

calculated at each mesh node along the radius, using
the first formula (8) are shown. The displacements are
taken from the exact and the numerical solutions using
the BEM/DM method with dart = 0.12m. It can be
seen that the accuracy of KI calculations the by single-
point formulae (8) reduces at the three nodes nearest
to the crack front. The following approach for the cal-
culation of all SIFs at the crack front K 0 is proposed
here.

Let us assume that on the propagation step n the
front has an increment in a form of a ruled surface Z
and the fracture propagates to the step n + 1 as it is
shown in Fig. 7. The lengths of the ruled surface L are
the fracture increment magnitudes. In the suggested
approach, SIFs at xn+1 are calculated using only the
displacements from the fracture increment Z . The sur-
face Z is divided into N f + 1 auxiliary circular layers

Fig. 4 The problem of penny-shaped crack in a media stretched in the direction of coordinate y: a infinitely thin fracture in a plane
rotated around axis Oz by and angle of α; b penny-shaped notch of width 2dart with sharp tip in the same plane
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Fig. 5 Fracture width profiles: exact solution (12) (solid line);
BEM/DM with dart = 0.12 m (circle)

Fig. 6 SIF KI : formula (9) with α = 0 (dashed); first formula
(8) inmesh nodes with displacements taken from (12) (solid line)
and numerical solution BEM/DM with dart = 0.12m (circle)

of elements. The width of front-line element is L f , the
width of all other elements is (L − L f )/N f . After the
calculation of fracture’s nodes xn+1 on step n + 1, and
after the transition to the step n + 2 of propagation,
auxiliary layers are erased from the memory.

For the SIFs calculations at the point O of the crack
front the two-point formula is used

K O = K 2 + l2(K 1 − K 2)

l2 − l1
, (14)

where K 1 and K 2 are the each of three SIFs, calculated
using the formulae (8) at the nodes 1 and 2 of the aux-
iliary layer of elements, which is the most distant from

crack front N f +1 (seeFig. 7); l1 and l2 are the distances
between the front and the nodes 1 and 2 respectively.
In all the further calculations the following values were
considered N f = 3, L f = 0.2L .

Figure 8 shows the dependencies of the SIFs along
the crack front for a penny-shaped crack inclined at
α = 45◦, obtained from the exact solution (9)–(11)
and another obtained using the suggested numerical
approach.

4.2 Crack growth criteria

Several criteria have been proposed to describe the
magnitude of the crack front advance at each crack
front vertex. Among them, the most popular are the
maximumenergy release rate criterion and themodified
fatigue criterion based on the Paris-Erdogan formula.
The suggestedmodel includes both of these criteria and
it might be used for simulation either brittle or fatigue
fracturing.

4.2.1 The strain energy release rate criterion

The classical formulation of the strain energy release
rate criterion for the spatial mixed mode loading frac-
tures (Nuismer 1975; Germanovich and Cherepanov
1995; Weber and Kuhn 2008; Gupta and Duarte 2014)
consists in the following. The fracture propagates when
the energy release rate in the direction of crack propa-
gation θ∗ reaches the critical energy release rate of the
material (G-criterion)

G(θ∗, t + �t) = Gc, (15)

where

G(θ∗, t + �t)

= 1 − ν2

E

(
K 2

I (θ
∗, t + �t) + K 2

II (θ
∗, t + �t)

)

+1 + ν

E
K 2

III (θ
∗, t + �t),

Gc = 1 − ν2

E
K 2

I c,

t is the time before kinking, �t is time increment for
the transition to the next crack front position, θ∗ is the
kinking angle.

In the present manuscript the Maximum Tangential
Stress (MTS) criterion (Erdogan and Sih 1963) is used
to define the fracture propagation direction θ∗. For the
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Fig. 7 Ruled surface of
fracture increment Z
between propagation steps n
and n + 1
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Fig. 8 SIFs variation along the penny-shaped crack inclined at
45◦: exact solution (solid line); BEM/DM with dart = 0.12 m
(circle)

explicit calculation of θ∗ in plane mixed-mode crack
problem MTS gives

θ∗ = 2 arctan

⎛
⎝KI (t) −

√
K 2

I (t) + 8K 2
II (t)

4KII (t)

⎞
⎠ . (16)

The implicit condition for the calculation of θ∗ is used,
which is equivalent to the MTS criterion

KII (θ
∗, t + �t) = 0. (17)

By taking into account the formula (17) in the equa-
tion (15) the strain energy release rate criterion (15) is
transformed into the condition

K 2
I (θ

∗, t + �t) + 1

1 − ν
K 2

III (θ
∗, t + �t) = K 2

I c.

(18)

The influence of mode III in (18) on a fracture path
diminishes with every new fracture propagation step
because the fracture reorients to the Preferred Fracture
Plane (PFP). Figure 9 shows the fracture paths, Fig. 10
shows the pressure distribution on propagation steps,
Figs. 11 and 12 show the SIFs along the crack front,
calculated using the G-criterion (15) and KI -criterion

KI (θ
∗, t + �t) = KIc. (19)

Thus, if the condition (17) is used to define crack
front deflection then the implicit criteria (15) and (19)
give similar results. If these criteria (15) and (19) were
treated as explicit ones by using the explicit terms
KI,II,III (t) instead of the implicit ones KI,II,III (θ

∗, t+
�t) then the results would be different. The problems
described by byLeblond andFrelat (2000, 2001, 2004)
andDobroskok et al. (2005) can be used to demonstrate
this difference.

In these articles the problems of sliding fractures
under compressive loads are considered. In these prob-
lems the stress-strain state near the fracture tip at the
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Simulating fully 3D non-planar evolution of hydraulic fractures 189

Fig. 9 Inclined atα = 45◦ penny-shaped crack and cylindrical wellbore (cut through at the center of the domain): solid line KI -criterion;
dashed line G-criterion

Fig. 10 Pressure versus
step of propagation: circle
KI -criterion; triangle
G-criterion

moment t before the fracture propagation is character-
ized by zero mode I and non-zero mode II

KI (t) = 0, KII (t) �= 0. (20)

Therefore, the explicit criterion (19) in contrast to (15)
is not fulfilled. But if one considers both criteria at the
moment t+�t after the fracture kinking then according
to the principle of local symmetry (Goldstein and Sal-
ganik 1974) mentioned in Leblond and Frelat (2001)
the following relationships will be valid

KI (t + �t) > 0, KII (t + �t) = 0. (21)

In this case the implicit criteria (15) and (19) are equiv-
alent. Besides that there is no mode III in the problems
that are considered in Leblond and Frelat (2000, 2001,
2004), Dobroskok et al. (2005).

Note that according toRichard et al. (2005) the crite-
ria ofErdogan andSih (1963),Nuismer (1975),Richard
et al. (2005) and Schollmann et al. (2002) should be

used very carefully while being applied to the cases
like the sliding of cracks under pure mode II or III
loading. This means that the criterion (19) may be non-
applicable for the problems described by Leblond and
Frelat (2000, 2001, 2004).However, in the problems of
pressurized fracture (that are considered in the present
paper) the fracture is always opened, therefore the SIF
mode I is greater than zero and the mentioned criteria
are applicable.

4.2.2 The modified fatigue criterion based on the
Paris-Erdogan formula

The Paris-Erdogan fatigue law is discussed in the man-
uscript as an alternative to the iterative selectionmethod
of crack front increment calculation which satisfies KI

or G—criteria.
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Fig. 11 SIFs along crack
front at various steps of
propagation with
KI -criterion: circle step 2,
triangle step 10, square step
28
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Fig. 12 SIFs along crack
front at various steps of
propagation with
G-criterion: circle step 2,
triangle step 10, square step
28
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The Paris-Erdogan model is used to simulate the
fatigue crack propagation, which states that

dL

dN
= C(�Keq)

m, (22)

where dL/dN is the rate of crack propagation with
respect to the number of loading cycles; C and m are
the material constants;

�Keq = Kmax
eq − Kmin

eq = Kmax
eq (1 − R) (23)

in which Keq is the effective stress intensity factor,
adopted in Richard et al. (2005) as

Keq = KI

2
+ 1

2

√
K 2

I + 4(α1KII )2 + 4(α2KIII )2

(24)

with α1 = 1.155 and α2 = 1. Since the linear elasticity
is considered, R in (23) can be written as

R = Kmin
eq

Kmax
eq

= σmin

σmax
, (25)

where σmin is zero and σmax is constant in Mi and
Aliabadi (1994), Aliabadi (2002), Rungamornrat et al.
(2005), Gupta and Duarte (2014). The formula for the
crack front increment magnitude L(l) from a time step
t to t +�t at any point along the crack front l (Fig. 13)
is derived from the law (22). The maximum value Lmax

of the next increment is the model parameter and it cor-
responds to the crack front point where the maximum
�Kmax

eq occurs. From (22) one can derive

L ≈ C(�Keq)
mN (26)

and

Lmax ≈ C(�Kmax
eq )mN . (27)

Fig. 13 Crack front increment L(l) from a time step t to t + �t

From (26) and (27) the following relationship is
obtained

L

Lmax =
(

�Keq

�Kmax
eq

)m

. (28)

Therefore, the incremental size at any front point l
can be evaluated by

L(l) = Lmax

(
�Keq

�Kmax
eq

)m

(29)

or with regard to the (23) and (25) it is approximately
assumed that

L(l) = Lmax

(
Keq

Kmax
eq

)m

. (30)

Formula (30) is called the scaling law for the crack front
increment. In the present article one more assumption
was made in (30) when replacing Keq with KI .

In Fig. 14 the comparison of the fracture trajecto-
ries of unloaded inclined penny-shaped fracture in a
tensioned infinite media is presented. The results were
obtained using the KI criterion and the condition (17),
as well as the scaling law (30) and the condition (16).

Also, the scaling law for the crack front increment
value (30) was used to solve the problem of two par-
allel circle incipient fractures propagation (Fig. 15).
The radii of the incipient fractures are 1 m, the dis-
tance between them is 0.4 m, constants are m = 2.1,
Lmax = 0.1 m. The problem is solved in the fatigue
crackgrowth approximation in two statements: the non-
loaded fractures (p = 0) are propagating in media
under tensile stress σ∞ = 1 MPa; the fractures loaded
by pressure p = 1 MPa are put into the media with
zero stress at infinity σ∞ = 0. The criterion (17) is
used to define the direction of crack front propagation.
Increment value is calculated from (30).

4.2.3 Crack front deflection criterion

In many papers devoted to the prediction of three-
dimensional crack growth (Vandamme and Curran
1989; Barr 1991; Sousa et al. 1993; Carter et al. 2010;
Rungamornrat 2004; Rungamornrat et al. 2005) the
crack front deflection is defined by only one kinking
angle θ disregard themode III (Fig. 16, a).They use the
MTS criterion proposed by Erdogan and Sih (1963) for
the calculation of kinking angle θ in planemixed-mode
problems.The kinking angle θ is calculated either using
the formula (16) or implicitly from the condition (17).
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Fig. 14 Inclined at
α = 45◦ penny-shaped
crack (cut through at the
center of the domain):
KI = KIc, KII = 0
(dashed line) and (29), (16)
(solid line) conditions

Fig. 15 Fracture
propagation from the two
parallel circle fractures: a
initial fractures at step 0; b
isometry of fractures loaded
by p = 1 MPa in unloaded
media σ∞ = 0 at step 40; c
paths of loaded by p = 1
MPa fractures in unloaded
media σ∞ = 0 (solid line)
and unloaded (p = 0)
fractures in tensile media
σ∞ = 1 MPa (dashed line)

The plane mixed mode criteria (15) (or (19)) and (16)
(or (17)) has been used here as a very first approach
of determining the crack front growth and deflection.
However for realistic determination of crack paths in
arbitrary 3D problems of real structures it is necessary
to apply three-dimensional mixed-mode I, II and III
criteria (Cooke and Pollard 1996; Richard et al. 2005)
(Fig. 16, b). The kinking angle θ and the twisting angle
ψ define the direction of crack front propagation at each
front point l. We suggest the new crack front kinking
and twisting model for three-dimensional mixed-mode
case. To define the kinking and twisting angles it uses
conditions

KII (θ(l)) = 0, KIII (ψ(l)) = 0. (31)

The angles θ andψ are interconnected as it is shown
inFig. 17. It is possible towrite down the formulawhich
defines this connection

tanψ = L(sin(θ + �θ) − sin θ)

�l
. (32)

By assuming the smallness of ψ, θ,�θ and �l val-
ues in (32), the dependence of the twisting angle from
the derivative of kinking angle with respect to the coor-
dinate l along the crack front can be obtained

ψ(l) = L(l)�θ

�l
= L(l)

∂θ

∂l
(θ(l)). (33)
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Fig. 16 Crack growth criterion and crack front deflection: a
plane mixed mode; b spatial 3D mixed mode

( )lθ

( )lψ

( )lθ
θΔ

L

l

l l+ Δ
l

Fig. 17 The kinking angle θ and the twisting angle ψ define the
direction of crack front propagation

Therefore, the third mode can be written as a function
of the kinking angle

KIII (ψ(l)) = K III (θ(l)). (34)

It allows to rewrite the conditions (31) only for this
angle θ

KII (θ(l)) = 0, K III (θ(l)) = 0. (35)

It is impossible to fulfill the second condition in (35)
at each point of the crack front separately from the adja-
cent points because the K III depends on the kinking
angle θ derivative with respect to the l (33). There-
fore, we have combined both modes KII and KIII with
weight β into a single function and have considered

this function as the integral along the whole crack front
at new time step t + �t

F(t + �t, θ(l)) =
∫

Crack front

(1 − β)K 2
II (t + �t, θ(l))

+βK
2
III (t + �t, θ(l))dl. (36)

The crack front deflection in a 3D mixed mode cri-
terion is determined by the distribution of θ∗(l) giving
minimum F

F(t + �t, θ∗(l)) = min
θ(l)

F(t + �t, θ(l)). (37)

The optimization problem (37) is solved iteratively

Fs+1 =
∑

j∈Crack front
(1 − β)

(
Ks

II j + 1

æII
�sθ j

)2

+β

(
K

s
III j + L j

æIII

�sθ j+1 − �sθ j

l j+1 − l j

)2

,

(38)

where �sθ j = θ s+1
j − θ sj and s is the iteration index.

At each iteration s + 1 the angles θ s+1
j are obtained

as the points of the minimal value of functional (38) by
solving the SLAE

∂Fs+1

∂θ s+1
j

= 0, j ∈ Crack front. (39)

Parameter β allows to consider various propagation
criteria. In case when β = 0 the maximal tangential
stress (MTS) criterion is obtained. Nowadays, there
is no agreement in choosing the most adequate three-
dimensional propagation criteria (Richard et al. 2005),
therefore the problem statement (36), (37) is used in a
general form. Parameter β can be calibrated on differ-
ent considered experimental problems.

To show the influence of KIII mode on the shape
of crack front, an inclined penny-shaped crack prop-
agation has been simulated. The initial crack incli-
nation angle is α = 50◦. The media is loaded by
σ∞
x = −16 MPa, σ∞

y = −10 MPa, σ∞
z = −16 MPa.

The fracture obtained using the described criterion for
β = 0.5 is shown in Fig. 18. The fracture trajecto-
ries for the different weighting coefficient β in a plane
cut through the center of the domain are shown in
Fig. 19.

The distributions of three SIFmodes along the crack
front at various time steps for β = 0.5 are shown
in Fig. 20. It is seen that the zero condition for the
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Fig. 18 Fracture shape for
the middle value of the
weighting coefficient
β = 0.5

Fig. 19 Inclined at
α = 50◦ penny-shaped
crack for different values of
the weighting coefficient β

SIFs mode II and III is not fulfilled because the crack
front can not twist enough to eliminate shearing stresses
and displacements in its vicinity so fast. With the fur-
ther fracture growth the front tends to a flat curve
(Fig. 18) and the values of KII , KIII are being reduced
(Fig. 20).

At the present, there is nofinal formulation of the cri-
terion that would allow to fix the adequate value of the
weighting parameter β (Richard et al. 2005). Therefore
variousweighting parameters have been used. The SIFs
distributions along the front at the 30th step of prop-
agation are shown in Fig. 21 for the various values of
weighting parameter β. It is seen that the plane mixed-
mode model (β = 0) gives non-zero SIFs mode III .
Although it should be zero at the plane crack front. If
mode III is taken into account (β ≥ 0.5) the values of
the SIFsmode III become lower because of the smaller
deflection of the fracture from the plane.

In this problem one cannot obtain the feather crack
and the zigzag-shaped distribution of KIII along the
crack front. The obtained KIII distribution is smooth
which is also mentioned in Cooke and Pollard (1996);
Pereira (2010). Nevertheless, the 3D mixed-mode
I, II and III criteria mechanism is included in our
model.

5 Fracture load

The two types of fracture load, and therefore – two
hydraulic fracture propagation regimes are considered.
They are the quasi-static crack growth and the viscous
fluid crack growth.

5.1 Quasi-static crack growth

5.1.1 Unloaded fracture in an elastic media under
tensile stress

The problem statement for the inclined penny-shaped
crack was introduced in section 4.1. For the case of
α = 0 it is easy to obtain the analytic law of brittle
quasi-static plane-radial fracture propagation. Let the
initially set value of tensionpullσ∞

y fulfill the condition

KI < KIc, (40)

and it is not propagating. At the same time, the frac-
ture’swidthW (σ∞

y , r) (12) is non-zero and the fracture
volume equals to the

V = 16σ∞
y R3

3E ′ . (41)
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Fig. 20 SIFs along crack front with β = 0.5: step 2 (dashed);
step 10 (dashed-dotted); step 30 (solid)

While the condition (40) is fulfilled, the increase
of σ∞

y in (41) leads to the growth of V and the frac-
ture radius R is constant. Because of the further σ∞

y
increase, the condition

KI > KIc, (42)

is fulfilled. Then the equation

KI ≡ 2σ∞
y

√
R

π
= KIc (43)

gives a new crack front position

R = πK 2
I c

4(σ∞
y )2

(44)

and its volume

V = π3K 6
I c

12E ′(σ∞
y )5

. (45)

Let us examine the initial fracture described in the
section 4.1, with R = 1m in the elastic media with E =

ωo

K I
I
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Fig. 21 SIFs along crack front at step 30: β = 0 (solid); β = 0.5
(dashed-dotted); β = 0.8 (dashed); β = 0.9 (dotted)

20 GPa, ν = 0.2, KIc = 3 MPa
√
m. Starting from the

initial tension σ∞
y = 1 MPa fracture load will begin

to rise consequently. After the fracture starts to grow,
the tension σ∞

y and the fracture radius R are adjusted
to fulfill the condition (44). Figure 22 compares the
solution for the problem of fracture propagation in the
case of unloaded media under tensile stress: the ana-
lytical solution obtained above for the case α = 0 and
the numerical solution obtained using the developed
model.

In the case of non-zero initial fracture inclination
angle α an equivalent quasi-static growth shown in
Fig. 23 will be obtained. Results displayed there were
obtained numerically using the described algorithm.
The trajectories of fracture propagation with different
inclination angles are shown in Fig. 24.

5.1.2 Loaded fracture in a compressed elastic media

In this section the other statement of quasi-static
crack growth problem is considered. This statement is
more appropriate for the simulation the simulation of
hydraulic fracturing process than the previous one (sec-
tion 5.1.1). The statement is shown in Fig. 25. There is a
penny-shaped initial fracture of radius R in an inclined
to axis Oz at an angle α plane. This can be either an iso-
lated crack, or a crack that adjoins a wellbore of radius

123



Simulating fully 3D non-planar evolution of hydraulic fractures 197

Fig. 22 Crack front radius R (a) and σ∞
y (b) as a functions of fracture volume V : analytical solution (solid line); numerical (circle)

Fig. 23 Quasi-static propagation of an initial fracture inclined by α = 30◦ in a media under a tensile stresses σ∞
y : a fracture shape

after step 6; b fracture trajectory in section z = 0; c variation of σ∞
y and V during the crack growth

Rw and is perpendicular to thiswellbore. The surround-
ing media is loaded at the infinity by compressing prin-
cipal stresses σ∞

x , σ∞
y , σ∞

z , that have negative values.
The wellbore and the initial fracture are loaded from
the inside with pressure p. By adjusting the value p
which is necessary for fracture propagation, the quasi-

static crack growth shown in Fig. 25 can be observed.
The algorithmof the numerical solution of this problem
and the analysis of the influence of wellbore presence
towards fracture trajectories will be given thereafter.

The simulations were preformed with the follow-
ing parameter values: E = 20 GPa, ν = 0.2, KIc =
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Fig. 24 Fracture trajectories: α = 15◦(circle), α = 30◦(square), α = 45◦(triangle)

Fig. 25 Cavity and fracture loaded with pressure p in a media,
which is compressed by a tensor σ∞ on an infinite distance

3 MPa
√
m, R = 1 m, Rw = 0.5 m, α = 30◦, σ∞

x =
−16 MPa, σ∞

y = −12 MPa; σ∞
z = −16 MPa.

The analysis of fracture trajectory sensitivity
towards the principal in situ stress, and the well-
bore presence in the problem statement is shown in
Fig. 26.

The isometric projections of fracture obtained dur-
ing the quasi-static propagation with the fixed in situ
stress σ∞

x = σ∞
z = 16 MPa and the varied in situ

stress σ∞
y = 8 MPa (left) and 15.9 MPa (right) are

shown in Fig. 27. Also, their trajectories in z = 0 plane
are compared in this figure.

5.2 Viscous fluid crack growth

The fracture surface in 3D space and its piecewise pla-
nar representation are shown in Fig. 28. Through the
boundary Sq the fracturing fluid is pumped from the
wellbore to the crack. The boundary S p is a fluid’s
front.

At each planar piece of fracture the lubrication
approximation for a Newtonian fluid flow of viscos-
ityμ between parallel plates, with distanceW between
each other, gives

q = − W 3

12μ
∇ p (46)

where q is the fluid flux.
The mass conservation equation can be written as

follows
∂W

∂t
+ ∇ · q = 0. (47)

From (46) - (47) it is possible to obtain the following
equation for p:

∇(a∇ p) = f, (48)

where a = W 3

12μ, f = ∂W
∂t .

Boundary conditions for the equation (48) are the
following:

p
∣∣∣
S p

= ppore (49)

and the inflow condition is∫
Sq

q ·nq dS = Qin, (50)

where nq is the normal to the boundary Sq . In terms of
pressure the latter condition (50) with consideration of
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Fig. 26 Fracture trajectories in statements with a wellbore (dashed line) and without it (solid): (σ∞
x ; σ∞

y ; σ∞
z ) = −(4; 3; 4)MPa

(circle), −(8; 6; 8) MPa (square), −(16; 12; 16) MPa (triangle)

Fig. 27 Quasi-static fracture propagation: 1 σ∞
y = 8 MPa (left); 2 σ∞

y = 15.9 MPa (right); fracture trajectories in section z = 0
(down)
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Fig. 28 Fracture surface in 3D space and its piecewise planar
representation

(46) is rewritten as∫
Sq

a
∂p

∂n
dS = −Qin . (51)

It is assumed that the fluid frontmoveswith the same
speed v f , as the fluid particles v(x) at the front (Stefan
condition) do

v f (x) = v(x) = q(x)/W (x), x ∈ S p. (52)

The algorithm of the condition (51) implementation
assumes two variants of crack orientation: transversal
and longitudinal (Fig. 29).

The inflow rate distribution should be set on the
boundary Sq . In the case of transversal crack the flow
domain is extended with an imaginary domain in the
wellbore (Fig. 30). The boundary condition for the vol-
umetric injection rate Qin (51) is set at the wellbore
center xin . The condition at the injection point xin is
incorporated directly into the continuity equation. To
do so, the equation (47) is re-written as

∂W

∂t
+ ∇ · q−δ(x− xin)Qin = 0, (53)

and theequation (48) is re-written as

∇(a∇ p) = f − δ(x)Qin . (54)

The crack width in the imaginary domain is set
W = 105m. According to the equation (48) this

value provides constant pressure in this domain. There-
fore, the distribution of the inflow rate along the Sq

is defined during the computation with the assump-
tion that the pressure along this boundary is constant
p(x) = const, x ∈ S p.

According to the FEM the equation (54) is re-written
in weak formulation∫
Sn

∇(a∇ p)ωdS =
∫
Sn

( f − Qinδ(x))ωdS, (55)

where ω is a test function. After that, the solution is
represented in the form

p(ξ1, ξ2) =
M∑
i=1

piφi (ξ1, ξ2), (56)

the system of equations for each element is written as

Ki j p
i = Q j + Fj + Qin δ̃(x), (57)

where

Ki j =
∫∫
Sn

a∇φi · ∇φ j |J |dξ1dξ2,

Q j =
∫

∂Sn

a
∂p

∂n
φi dG, (58)

Fj = −
∫∫
Sn

f φi |J |dξ1dξ2,

δ̃(x) = 1 at x = xin , and δ̃(x) = 0 at x �= xin .
Finally, the united system of linear equations is

obtained by assembling element stiffness matrices to
global stiffness matrix

Kp = Q + F + Qin. (59)

There, the boundary equation for Qin is taken into
account in the right part of Qin.

Fig. 29 Schemes of
longitudinal (left) and
transversal (right) cracks
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Fig. 30 Inflow rate for the transversal crack: initial fracture inlet
boundary (left), inlet boundary modified with inflow addition
(right)

The features of a longitudinal crack are the follow-
ing: there are two fracture wigs, the distribution of the
inflow rate among them is unknown, and there is a
boundary part Sq , with no inflow rate on it. Such bound-
ary part appears for example when the system contains
a casing.

As well as in the case of transversal crack, the imag-
inary flow domain is applied here. It connects bound-
aries with non-zero inflow rate and a point xin where
the total volumetric inflow rate is set. As a result of the
system (59) solution, the inflow rate on the part of the
boundary Sq0 is equal to zero, its distribution along the
boundaries Sq1 ∪ Sq2 is calculated so that the pressure
along this boundary is constant, and the total inflow
rate equals to the volumetric inflow rate (Fig. 31).

6 Results of fracture propagation simulations

Crack propagation algorithm is discussed in theAppen-
dix.

6.1 1D verification

6.1.1 Radial hydraulic fracture propagating

To verify the model, the numerical simulations of a
plane-radial fracture propagation under a viscous fluid
loading and a comparison with the previous results
obtained using the one-dimensional model (Esipov
et al. 2014) were done. There, the one-dimensional
model of material deformation under an axially sym-
metric pressure distribution is described by the relation

W (r) = 8

πE ′

R∫
r

⎛
⎝

ζ∫
0

pnet (ξ)ξ√
ζ 2 − ξ2

√
ζ 2 − r2

dξ

⎞
⎠ dζ,

(60)

where R = R(t) is the crack front position defined
from

KI = 2√
πR

R∫
0

pnet (ξ)ξ√
R2 − ξ2

dξ = KIc. (61)

The net pressure pnet = p − σmin is defined as the
pressure in the crack minus stress σmin against which
it opens.

Thefluidflow is describedby the continuity equation

∂W

∂t
+ 1

r

∂(rWu)

∂r
+ QL(r, t) = 0 (62)

and the momentum equation

∂pnet
∂r

= −12μ

W 2 u. (63)

The fluid leak-off to the rock QL is described by the
Carter law (Esipov et al. 2014).

The fluid flow equations (62) and (63) are completed
with the boundary condition in the wellbore of radius
Rw

2πRwWu = Qin . (64)

The lag between the fluid front R f and the fracture
front R is assumed

R − R f > 0. (65)

The position of the fluid front R f is defined from the
equation

Q(R f , t) = 0, (66)

and the boundary condition for (62) and (63) at the fluid
front R f takes the form of

pnet (R f , t) = −σmin. (67)

Note that the net pressure pnet in the area between the
fluid front and the fracture tip is also considered equal
to the −σmin.

Initial data is

R(0) = R0, R f (0) = R0,

W (r, 0) = W0, Rw � r � R0.
(68)

The problem (60)–(68) is solved for the parameters
E = 20 GPa, ν = 0.2, KIc = 3 MPa

√
m, σmin =

3 MPa, μ = 1000 Pa s, Qin = 16 cm3/s, QL = 0.
The initial fracture radius is R0 = 1 m, the wellbore
radius Rw = 0.5 m. The same problem is solved using
the 3D fracture propagationmodelwithBEM/DM, pro-
posed in the present paper. In this case the wellbore
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Fig. 31 Inflow rate for the longitudinal crack: structure of boundary Sq (above); imaginary flow domain (below)

Fig. 32 The wellbore and
crack surface representation
at various crack growth
steps (left is the wellbore
with the initial fracture)

Fig. 33 Radius of the crack R (a) and injection pressure p (b) as functions of the time: one-dimensional problem (60)–(68) (solid line);
three-dimensional model (circle)

cavity of radius Rw = 0.5 m with the initial fracture of
radius R0 = 1 m were added to the problem statement
(Fig. 32). It is assumed that the fracture propagation
criterion (61) is fulfilled from the very beginning of
the problem solution. It is achieved by adjusting the

time step value �t so that the volume of pumped fluid
is enough to produce the pressure of propagation. The
comparison between 1D problem solution (60)–(68)
and one obtained using the developed model is shown
in Fig. 33.
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Fig. 34 Dimensional (left) and scaled (right) fracture radius versus time: solid 3D model; dashed analytical solution (Savitski and
Detournay 2002); circle numerical solution (Savitski and Detournay 2002)

6.1.2 Verification against analytical solution
for viscous propagation regime

In Savitski and Detournay (2002) the authors intro-
duce two regimes of radial hydraulic fracture propaga-
tion: viscous and toughness regimes. The toughness-
dominated regime is characterized by the high pres-
sure gradient near the fluid front. This gradient can be
described accurately under the assumption that the lag
between the fracture front and the fluid front is neg-
ligibly small. Under this assumption, the pressure at
the fracture front is singular and special solution proce-
dures are used to calculate it. In our 3Dmodel the lag is
taken into account and it requires a lot of computational
resources to describe it precisely. So the only viscous
propagation regime that has been simulated and com-
pared with the solutions is presented in Savitski and
Detournay (2002).

To verify the coupled version of the proposed 3D
model a numerical simulation of radial hydraulic frac-
ture propagating in viscous regime has been performed
and the results obtained were compared to the ana-
lytical solution from Savitski and Detournay (2002).
For the comparison, a borehole with radius Rw =
0.02 m and a penny-shaped initial fracture with radius
Rw = 0.079 m that are placed in an elastic media
which is strained at the infinity by the stress σ∞

x =
σ∞
y = σ∞

z = 41.4 MPa are considered. The parame-

ters of the media are the following: Young modulus
E = 38.8 GPa, Poisson’s coefficient ν = 0.15 and
fracture toughness KIc = 1 MPa

√
m. The borehole’s

axis coincides with the axis y(α = 0). The fluid with
viscosity μ = 0.08 Pa · s and rate Qin = 0.053 m3/s
is pumped into the borehole.

The fracture radius R obtained as a function of time
t using the 3D model is shown in Fig. 34. Also, the
numerical and the analytical (Savitski and Detournay
2002) dimensionless crack radii γm as functions of
dimensionless toughness Km are shown in Fig. 34. The
dimensionless fracture radius γm and the dimensionless
toughness Km which can be identifiedwith an evolution
parameter (i.e. time) are calculated using the formulae
given in Savitski and Detournay (2002)

γm = R(t)/L(t), L(t) =
(
E ′Q3

int
4

12μ

)1/9

, (69)

Km = 4KIc

(
2

π

)1/2
(

t2

(12μ)5Q3
in E

′13

)1/18

. (70)

Figure 35 shows the distributions of dimensionless
width

�m = w

εL
, ε =

(
12μ

E ′t

)1/3

(71)

and dimensionless pressure

�m = p

E ′ε
(72)
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Fig. 35 Scaled fracture width (left) and pressure (right) along
the fracture radius: dashed 3D model Km = 0.15; solid 3D
model Km = 0.45; square analytical solution (Savitski and

Detournay 2002) Km = 0; circle numerical solution (Savitski
and Detournay 2002) Km = 0.15; triangle numerical solution
(Savitski and Detournay 2002) Km = 1.5

along the dimensionless radius ρ = r/R at the time
moments t = 10 s, t = 40 h, which correspond to the
dimensionless toughness Km = 0.15 and Km = 0.45.
Also, there are shown the distributions of dimension-
less width and pressure calculated analytically and
using the Loramec code (Desroches and Thiercelin
1993; Carbonell et al. 1999), that are given in Sav-
itski and Detournay (2002) for the values of dimen-
sionless time Km = 0.15 and Km = 1.5. The value
Km = 1.5 corresponds to the physical time t = 300
years, which cannot be calculated using the present 3D
model. Therefore the dimensionless toughness Km =
0.45 corresponding to t = 40 h has been chosen instead
of it.

The present 3Dmodel is designed for the calculation
of initial stage of hydraulic fracturing during which the
fracture remains in viscous regime of propagation. Fig
35 shows that at this regime the errors of calculation of
width and pressure do not exceed 10%.

6.2 3D verification of model

The developed 3D model was applied to the simula-
tion of fracture propagation under conditions of Chang
et al. (2014) where hydraulic fracturing laboratory tests
have been performed with the objective to study multi-
ple initiations of hydraulic fractures at multiple notches

placed in the wellbore (see Fig. 36). The key point of
the experimental investigation (Chang et al. 2014) was
to obtain the conditions of two possible scenarios: one
longitudinal fracture propagation or multiple transver-
sal fracture propagation. The simulation of fracture ini-
tiation is described in Aidagulov et al. (2015) and here
the fracture propagation is simulated. The key point of
the numerical investigation was to show that the model
is able to predict the fracture propagation direction cor-
rectly.

6.2.1 Longitudinal fracture propagation

In the Tests 1 and 2 (Chang et al. 2014) the notch
depth varies from 0.125 to 0.375 of wellbore diame-
ter. The longitudinal fracture initiates at the wellbore
wall in the area between the notches. The simulations of
fracture propagation have been performed in quasista-
tic statement. Considering this case allows to skip the
part of numerical algorithm where the hydrodynamics-
elasticity problem is solved. It is assumed that at each
timestep the fluid pressure within the wellbore, notches
and the fracture is the same. This reduces computa-
tional time and eventually allows using a finer com-
putational mesh and a smaller fracture increment. For
the same purpose, the computational domain was infi-
nite, though the blocks used in the experiments were
finite. However, they were large enough to allow such

123



Simulating fully 3D non-planar evolution of hydraulic fractures 205

Fig. 36 Fracture initiation patterns observed in simulations of
the tests (Chang et al. 2014)

simplification. Figure 37 shows fracture shape for var-
ious time moments. Disregard the viscosity, the frac-
ture propagation was simulated for the geometry and
the parameters corresponding to the Test 2. The mode

I rock fracture toughness was KIc = 1MPa
√
m, and

the tensile strength was σc = 5.2MPa.
In the simulation the fracture propagates along the

wellbore up and down “walking around” the notches.
The injection pressure obtained in the simulation varies
within the interval of p = 25 ÷ 30MPa that is lower
than the one observed in the experiment because of the
the absence of pressure gradient inside the fracture. The
fracture propagation speed is very high and notches are
overcome in less than one second.

In order to simulate the hydraulic fracture “walking
around” the notches, one has to use a small fracture
increment parameter and a very fine mesh. The authors
consider this as one of the main obstacles towards the
simulation of this fracture-walk-around in a fully cou-
pled case of viscous fluid. Therefore, the fully coupled
model was not applied to this case.

6.2.2 Transverse fracture propagation

In Tests 3 and 4 described in Chang et al. (2014) trans-
verse fractures initiate and grow at the edges of the
notches. As long as both tests have an equal geometry
and similar far field stresses are applied, the investiga-
tion has been focused on the Test 3 only. The surface

Fig. 37 Snapshots of
fracture propagation at
various time moments

Fig. 38 Geometry and
incipient fractures for the
Test 3: lab Test 3 geometry
and incipient fractures (a);
simplified statement (b);
crack propagation at
t = 0.25 s (c)
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Fig. 39 Fracture trajectories and their cross-sections: 1 quasistatic approach; 2 viscous fluid approach μ = 100 Pa · s; 3 viscous fluid
approach μ = 1000 Pa · s

geometry at the corner between the semicircular notch
and the wellbore (see Fig. 38a) is complex. Very small
fracture increment step is needed to simulate the frac-
ture propagation along such surface. Otherwise, it is
difficult to obtain the convergence of iteration algo-
rithms. To avoid this difficulty the simplified compu-
tational domain has been considered (see Fig. 38b).
It consists of the wellbore, two circular notches and
two incipient fractures obtained by solving the initia-
tion problem with the original computational domain
(Fig. 38a) (Aidagulov et al. 2015). The parameters
of the problem are: E = 20GPa, ν = 0.2, σ∞

x =
20.7MPa, σ∞

y = 15.5MPa, σ∞
z = 24.1MPa, σc =

5.2MPa, KIc = 1MPa
√
m, Qin = 0.5 cm3/s, notch

depth is equal to the wellbore diameter.
The initiated fracture propagates with a high speed

along the notch edge. Figure 38, c shows the fracture
geometry at the time moment t = 0.25 s after the
fracture started to propagate. Therefore, the form of
the incipient fracture and its position are not impor-
tant but its orientation affects the propagation process
only.

6.3 3D viscous fluid crack growth

6.3.1 Comparison of quasistatic and viscous fluid
approaches

Here, the simulation of a transverse fracture propaga-
tion is shown. A wellbore with the transverse frac-
ture is placed in a rock with Young modulus E =
20GPa, Poisson’s ratio ν = 0.2 and fracture tough-
ness KIc = 3MPa

√
m. The rock is loaded by vertical

σ∞
y = 12 MPa and two horizontal σ∞

x = 16MPa
and σ∞

z = 16MPa stresses. The wellbore height and
radius are H = 5m, Rw = 0.5m. The incipient frac-
ture radius is R = 1m. Thewellbore is inclined against
the σ∞

y direction at an angle α = 45◦ as it shown in
Fig. 25. A fluid with viscosity μ is pumped into the
wellbore with rate Qin = 1 · 10−3 m3/s. The fracture
propagates and tries to reorient into the plane orthogo-
nal to σ∞

y .
Two approaches are used for the simulation of frac-

ture propagation. The quasistatic approach does not
account the fluid viscosity. The viscous fluid approach
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Fig. 40 Time dependence of fracture pressure: quasi-static
model (circle); viscous fluid model withμ = 100 Pa · s(square)
and with μ = 1000 Pa · s(triangle)

is applied with two values of fluid viscosity μ = 100
and 1000 Pa · s.

The 3D fracture trajectories and their cross-sections
calculated using the quasistatic and the viscous fluid
approaches are shown in Fig 39. In Fig. 40 the time
dependence of fracture pressure is shown for the quasi-
static and the viscous fluid models.

6.3.2 Longitudinal fracture propagation

The problem of longitudinal fracture propagation in
a radially compressed media σ∞

x = σ∞
y = σ∞

z =
16 MPa with an elastic characteristics E = 20 GPa,
ν = 0.2, KIc = 3 MPa

√
m (Fig. 41) is solved. The

initial fracture has transversal size of 0.2 m and lon-
gitudinal size of 0.5 m, the wellbore radius is Rw =

Fig. 42 Longitudinal fracture time-dependence of pressure in a
pumping source

0.5 m. The fracture propagation is caused by the injec-
tion of a viscous fluid μ = 1000 Pa · s with discharge
Qin = 10−5 m3/s. The evolution of the fracture in time
and the shape of the fracture at the last step of propaga-
tion are shown in Fig. 41. Figure 42 shows the relation
between the fracture pressure and the time. The time
is calculated as t = V/Qin , where V is the volume of
the fracture.

7 Conclusions

1. The conception of the 3D non-planarmodel of frac-
ture propagation in elastic media and the numerical
algorithm for its implementation are proposed.

Fig. 41 Longitudinal
fracture propagation: 1
initial fracture at t = 0; 2
fracture at t = 79s; 3
t = 378s; 4 width of
fracture’s left wing at
moment 3, magnified by
200
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Fig. 43 Flow-chart of the quasi-static crack growth algorithm

2. The conception combines models of main con-
nected problems that affect one another: stress-
strain state, fracture loading, destruction of mater-
ial, and fracture propagation.

3. The main advantage of the proposed conception is
the possibility of using variousmodels in every sub-
problem without the necessity to rebuild the whole
algorithm, which allows advancing from simple
models to complex easily.

4. The first version of the model that combines the
sub-models of elastic equilibrium, the Newtonian
fluid flow, and the fracture propagation and direc-
tion criterion derived from the linear brittle fracture
mechanics is implemented.

Fig. 44 Flow-chart of the fatigue crack growth algorithm

5. The verification of the model and the sensitivity
analysis of solution to physical and numerical para-
meters is performed. It is shown that the results
obtained are reliable.

6. In the next version of the model the approxima-
tion of a fracture with a finite width notch will
be replaced by an infinitely thin fracture surface,
which will be calculated together with a cavity by
the DBEM; the algorithms of SIFs calculations will
become more precise; the Newtonian fluid model
will be replaced by a non-Newtonian one; the 3D
model will be validated by experiments.

Acknowledgments Authors gratefully acknowledge the finan-
cial support of this research by the Russian Scientific Fund under
grant number 14-11-00234.

Appendix

Crack propagation algorithm

Quasi-static crack growth

Let us consider the initial fracture with the front
defined by vertices x0i , i = 1, . . . , N f r . The case of an
unloaded fracture in a stretched media and the case of
a loaded fracture in a compressed media are combined
in the algorithm by a generalized loading pressure p.
A step-by-step fracture propagation is indicated with
the superscript n. The general scheme of fracture prop-
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Fig. 45 Flow chart of dynamic fracture growth algorithm,
derived viscous fluid flow

agation algorithm is displayed in Fig. 43. The iterative
process

pm+1 = P(pm) (73)

is introduced to achieve the fulfillment of the condition

max
i

K I (x
n+1 s
i , pm) = KIc. (74)

The iterations

Ls+1
i = L(Ls

i ), θ s+1
i = Q(θ si ) (75)

provide the fulfillment of conditions

KI (x
n+1 s
i , pm) = KIc, KII (x

n+1 s
i , pm) = 0 (76)

at each vertex of the crack front at propagation step
n+1. The iterative schemes (73) and (75) are based on
the methods of solving equations (74) and (76) respec-
tively. The criteria (19) and (17) are implemented iter-
atively with the desired accuracy, at each vertex of
the crack front, at every step of propagation algorithm

1k k= +

1 1 1 1 1, ,n s m k n s m n s m k
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Fig. 46 Flow chart of the algorithm for hydrodynamics-
elasticity problem solution

shown in Fig. 43. If the scaling law of crack incrimina-
tion is taken as a propagation criterion, and the direction
of propagation is defined by the formula (16) itself, then
the algorithm becomes essentially simpler (Fig. 44).
The crack trajectories calculated using the algorithms
in Fig. 43 and Fig. 44 are compared in the section 4.2.2
“Fatigue crack growth under cyclic loading – scaling
law for crack front increment”.

Viscous fluid crack growth

Let the fracture be loaded by the pressure of viscous
flow. The fluid front (labeled with its vertices xnf i ), the
fracture front with vertices xnr i , and the lag between
fluid and fracture front Lr i are included into the algo-
rithm. In the algorithm there is a fluid volume V n cal-
culated from the fracture width
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V n =
∫
S+

WndS. (77)

The hydrodynamics-elasticity problem in the algo-
rithm in Fig. 45 provides the relation between the frac-
turewidthWn+1 s and the pressure pn+1 s which is pro-
duced by the fluid flow in the fracture in the crack front
position xn+1 s

r i and the fluid front xnf i . The scheme of
the solution algorithm for the hydrodynamics-elasticity
problem is shown in Fig. 46. The iterative process
�tk+1 = T(�tk) is implemented to fulfill the con-
dition

max
i

∣∣∣vm+1 k
i

∣∣∣ = v f , (78)

which provides the equivalence of the fluid veloc-
ity and the fracture front velocity v f = L0

f /�t ,
where �t is calculated using the fracture volume
dynamics.
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