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Abstract This paper originally proposes a nonlin-
ear cohesive/frictional contact coupled model for the
mode-II shear delamination of adhesive composite
joint based on a modified Xu and Needleman’s expo-
nential cohesive model. First, the friction is assumed to
increase nonlinearly at the delamination interfacewhen
the tangential cohesive softening appears. Second, a
non-associative plasticity model based on the Mohr–
Coulomb frictional contact law is proposed, which
includes a frictional slip criterion and a slip poten-
tial function. Third, a return mapping algorithm based
on the non-associative plasticity theory is proposed to
solve the updated normal and tangential tractions and
stiffnesses. It is shown the tangential cohesive traction
and stiffness depend on the friction and dilatancy of
the delamination interface. Finally, the proposed theo-
retical model is implemented using three-dimensional
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finite element analysis by ABAQUS-UEL (user ele-
ment subroutine) and demonstrated by comparing the
finite element results with the analytical results for the
[0◦]6, [±30◦]5, [±45◦]5 end-notched flexure adhesive
composite joints with the mode-II shear delamination.
The effects of the friction coefficient, cohesive strength,
normal contact stiffness and mesh size on the load–
displacement curves and delamination mechanisms of
composites are studied. Numerical results show the
shear delamination growth is governed by the transi-
tion from the decreased tangential cohesive traction
to the increased tangential friction, and the frictional
effect becomes distinct after unstable delamination for
angle-ply laminates.

Keywords Cohesive/friction coupling · Adhesive
composite joint · Mode-II shear delamination · Finite
element analysis (FEA)

1 Introduction

Fiber reinforced laminated composites have been
increasingly used in fields of aerospace and aircraft due
to high stiffness and strength as well as low density.
An important work in the process of design and man-
ufacture of lightweight composite structures is to seek
efficient and robust jointing techniques between dif-
ferent components with similar or dissimilar material
properties. Adhesive joining is one of the most favor-
able joining techniques in composites because they can
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reduce detrimental stress concentration and guarantee
structural integrity compared with traditional fasteners
such as riveting and bolting, in which fiber cutting and
interruption often result in severely non-uniform stress
distributions (Mortensen and Thomsen 2002; Liljedahl
et al. 2006; Gustafson and Waas 2009). Typical adhe-
sive joint types include the single-lap joint, the double-
lap joint, the strapped joint and the scarf joint (Noorman
2014).

Delamination between the adherend and the finite-
thickness adhesive layer due to low bonding strength of
the adhesive layer often leads to the loss of stiffness and
strength of composite structures. Delamination issue of
composites is essentially represented by the crack ini-
tiation and propagation. Interlaminar normal and tan-
gential stresses between the adhesive/adherend inter-
face increase, leading to the delamination failure of
joints. From the fracturemechanics perspective, delam-
ination occurs when the interlaminar crack resistance
is exceeded by the energy release rate (ERR) (Mi et al.
1998; Xie andWaas 2006). From the micromechanical
point of view, the ductile failure of pressure-sensitivity
rubber modified epoxy adhesives is represented by the
nucleation, growth and coalescence of voids and the
formation of discrete shear bands for cavitated rubber
particles (Cheng and Guo 2007).

Because of the complex geometry, material non-
linearity and large deformation of adhesive compos-
ite joints, finite element analysis (FEA) has become a
powerful tool to study the delamination mechanisms
of composites. Combined with the FEA, there are
two main numerical methods which have been widely
applied to the delamination research of composites: the
virtual crack closure technique (VCCT) and the cohe-
sive theory. The VCCT proposed by Rybicki and Kan-
ninen (1977) can calculate the ERR more efficiently
than J-integral (Krueger 2004; Liu and Yang 2014)
because the requirement for mesh sizes is not high for
the VCCT. Besides, the VCCT can predict the delami-
nation crack growth well using FEA (Xie and Biggers
2006; Liu et al. 2011; Liu and Zheng 2013) based on
the B–K law (Benzeggagh and Kenane 1996) or Power
law. However, the VCCT within the framework of lin-
ear elastic fracture mechanics is not competent for pre-
dicting ductile failure of the adhesive layerwith a finite-
size nonlinear fracture process zone. By comparison,
the cohesive theory proposed by Dugdale (1960) and
Barenblatt (1962) has been demonstrated to be themost
popular approach for predicting the delamination initi-

ation and growth of adhesive composite joint within
the framework of elastic–plastic fracture mechanics
(Yang et al. 1999; Gustafson and Waas 2009). The
cohesive model assumes the interface failure is gov-
erned by a mathematical traction–displacement jump
relationship which is related to the interface fracture
toughness.

Currently, there are many cohesive models accord-
ing to the shape of traction–displacement jump curves.
Popularmodels include the polynomial cohesivemodel
(Tvergaard 1990), the trapezoidal models (Tvergaard
and Hutchinson 1993), the bilinear cohesive models
(Geubelle and Baylor 1998; Alfano and Crisfield 2001;
Camanho et al. 2003; Turon et al. 2006; Jiang et al.
2007), the linearly decreasing cohesive model (Cama-
cho and Ortiz 1996), the discrete cohesive model (Xie
and Waas 2006), the unified potential-based cohesive
model (Park et al. 2009) and the exponential cohe-
sive models (Xu and Needleman 1993; Ortiz and Pan-
dolfi 1999; Goyal et al. 2004; Liu and Islam 2013; Liu
et al. 2015). In particular, the extended finite element
method with the embedded cohesive model is used to
model the crack propagation along arbitrary path (Moës
and Belytschko 2002; Xu and Yuan 2011; Liu 2015).
Although these models are successfully applied to the
delamination research of composites, most of them
neglected the frictional contact effect during delamina-
tion. From the theoretical perspective, there is a contin-
uous transition from the cohesive state to the frictional
contact state related to the asperity deformation. Thus,
a plausible two-step method including the first decohe-
sion and then the friction was generally adopted. Tver-
gaard (1990) first considered both the cohesive fail-
ure and frictional contact effect by assuming the fric-
tion is activated after complete cohesive failure. Later,
Chaboche et al. (1997) modified the polynomial cohe-
sive model proposed by Tvergaard (1990), Lin et al.
(2001) modified the bilinear cohesive model proposed
by Geubelle and Baylor (1998) and Snozzi and Moli-
nari (2013) modified the linearly decreasing cohesive
model proposed by Camacho and Ortiz (1996) in order
to describe continuous transition from the cohesive
state to the frictional state.

However, the degradation process of cohesive zones
is often accompanied by gradually increased friction
from the physical perspective because the thickness
of adhesive layers is very thin. In fact, the micro-
scopic damage process of rubber modified epoxy
matrix is also accompanied by the internal friction.
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Shear induced delamination of adhesive composite joint 137

Wisnom and Jones (1996) highlighted the frictional
effect in the mode-II shear delamination of compos-
ites by experiments. Later, Fan et al. (2007) proposed
a unified approach to quantify the frictional effect
using the mode-II delamination tests including the
end-notched flexure (ENF), end-loaded-split (ELS),
four-point bending ENF (4ENF) and over-notched-
flexure (ONF). Their conclusions showed the friction
plays an important role in affecting the delamination
resistance. Therefore, a favorable strategy is to cou-
ple the cohesive model and friction in the delami-
nation analysis. Raous et al. (1999) first proposed a
micromechanical adhesion/friction coupled model by
considering the contact zone as a material bound-
ary. When the interface is decomposed into a dam-
aged part with the friction and an undamaged part,
Alfano and Sacco (2006) proposed a bilinear cohe-
sive/friction coupled model. Later, Parrinello et al.
(2009, 2013), Guiamatsia and Nguyen (2014) and Ser-
pieri et al. (2015) extended the work of Alfano and
Sacco (2006) by further considering the plastic inter-
face and mixed-mode interface failure under different
load conditions.

However, Liu and Islam (2013) showed the bilinear
cohesive model cannot represent accurately the true
nonlinear fracture process zone with such as the fiber
bridging toughening mechanism and crack-tip plastic
deformation in fiber-reinforced composites. Campilho
et al. (2013) also pointed out the bilinear cohesive
model is efficient for brittle adhesive failure under ten-
sion, but underestimates the failure strength of duc-
tile adhesives with large plastic flow in shear. Besides,
numerical convergence usingFEAdue to a sharp transi-
tion at the peak traction for the bilinear cohesive model
is also a big trouble (Liu and Islam 2013; Campilho
et al. 2013). By comparison, Campilho et al. (2013)
showed the exponential and trapezoidal cohesive mod-
els are more suitable for ductile adhesive failure. Fur-
ther, the exponential function with a continuous tran-
sition at the peak point is more suitable for modeling
the delamination with the friction than the trapezoidal
function from the mathematical perspective. Thus, a
favorable strategy is to couple the exponential cohesive
model with the friction to simulate the shear delamina-
tion of composites.

This paper originally proposes a nonlinear cohe-
sive/friction coupled model for the mode-II shear
delamination of adhesive composite joint based on a
modified Xu and Needleman’s exponential cohesive

model, which includes a non-associative frictional slip
criterion and a slip potential as well as a returnmapping
algorithm for the plastic frictional contact problem.The
proposed model is implemented using zero-thickness
interface element by ABAQUS-UEL, which is limited
to small frictional sliding state. Then, the main purpose
of numerical calculations is to predict the effects of the
friction coefficient and cohesive strength on the load–
displacement curves and delamination mechanisms of
composites. Numerical results for the mode-II shear
delamination of the [0◦]6, [±30◦]5, [±45◦]5 angle-ply
end-notched flexure adhesive composite joints using
FEA demonstrate the proposed model by comparing
the analytical solutions.

2 Nonlinear cohesive/friction coupled model for
mode-II delamination of composites

Mode-II shear delamination for an end-notched flexure
(ENF) composite specimen with the frictional contact
is shown in Fig. 1. The normal and tangential displace-
ment jumps (or called separation) [[u]]n and [[u]]t are
written as

[[u]]n =
(
x1 − x2

)
· n, [[u]]t =

(
x1 − x2

)
· t (1)

where x1 and x2 are material points at the discontinu-
ous interface, and n and t denote the normal and tan-
gential directions. For the contacted interface, the non-
penetration condition requires the inequality constraint
[[u]]n ≥ 0 holds.

Xu and Needleman (1993) proposed an interface
potential-based cohesive model which has been widely
used for predicting the interface failure
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Fig. 1 Mode-II shear
delamination for the ENF
composite specimen with
the frictional contact (x1

and x2 are separated
material points at the
discontinuous interface)

Tt ([[u]]n, [[u]]t )
= ∂φ

∂[[u]]t
= 2

φn

δt

[[u]]t
δt

[
q +

(
r − q

r − 1

) [[u]]n
δn

]

× exp

(
−[[u]]n

δn

)
exp

(
−[[u]]2t

δ2t

)
,

δn = φn/
[
σmax exp (1)

]
, δt = φt/

[
τmax (0.5 exp (1))0.5

]

(2)

where φ is the interface potential including the nor-
mal and tangential parts φn and φt . Tn and Tt are the
normal and tangential cohesive tractions. σmax is the
maximum normal traction without the tangential dis-
placement jump and τmax is the maximum tangential
traction without the normal displacement jump. The
normal traction Tn reaches the maximum value σmax

at the normal displacement jump δn , and the tangen-
tial traction Tt reaches the maximum value τmax at the
tangential displacement jump δt/

√
2. Specially, Gao

and Bower (2004) considered the interface potential as
the fracture toughness. In the following, Gc

I = φn and
Gc

II = φt are taken as the delamination fracture tough-
ness in the normal and tangential directions, respec-
tively. q = φt/φn and r = [[u]]∗n/δn are coupling con-
stants between the normal and tangential directions.
[[u]]∗n is the value of [[u]]n after complete shear sepa-
ration with Tn = 0.

Abdul-Baqi and Van der Giessen (2002) and Hat-
tiangadi and Siegmund (2005) suggested q ≈ 0.43
so that the maximum tractions have the same values

Tn = Tt at δn = δt . However, φn = φt holds at q = 1,
which is yet inconsistent with the experimental delam-
ination results. In order to allow different values for φn

and φt , van den Bosch et al. (2006) proposed a mod-
ified version of Xu and Needleman’s cohesive model
by taking q = 1 in Eq. (2) and replacing φn by φt in
the expression of the traction Tt

φ ([[u]]n, [[u]]t )
= φn

[
1 −

(
1 + [[u]]n
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exp
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,

Tn ([[u]]n, [[u]]t )
= φn

δn
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δn
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(
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)
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)
,
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= 2

φt
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δt

(
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δn

)
exp

(
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)
exp

(
−[[u]]2t
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)

(3)

where the work done during mixed-mode separation is
path-dependent at φn = φt .

Furthermore, McGarry et al. (2014) pointed out that
unphysical behavior appears in the regions of mixed-
mode overclosure using Eq. (3): the work of tangen-
tial separation reduces with increasing normal over-
closure, and negative tangential work appears for large
normal overclosure [[u]]n/δn < −1, resulting in repul-
sive tangential traction. In order to correct this problem,
McGarry et al. (2014) modified Eq. (3) to the following
non-potential form by removing the term 1+[[u]]n/δn
Tn ([[u]]n, [[u]]t )

= σmax exp (1)
[[u]]n

δn
exp

(
−[[u]]n

δn

)
exp

(
−[[u]]2t

δ2t

)
,
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Tt ([[u]]n, [[u]]t )
= τmax

√
2 exp (1)

[[u]]t
δt

exp

(
−[[u]]n

δn

)
exp

(
−[[u]]2t

δ2t

)
,

δn = φn/
[
σmax exp(1)

]
, δt = φt/

[
τmax (0.5 exp (1))0.5

]
(4)

In the following, a cohesive/friction coupled model
based on Eq. (4) for the mode-II shear delamina-
tion of composites is proposed. After the tangential
cohesive softening appears, non-associative plastic-
ity interface with the frictional contact is assumed,
where both the normal and tangential displacement
jumps [[u]]n and [[u]]t are divided into the elastic
and plastic parts [[u]]n = [[u]]n(e) + [[u]]n(p) and
[[u]]t = [[u]]t (e) + [[u]]t (p). If the tangential traction-
elastic displacement jump curve obeys the exponential
distribution, Eq. (4) is further adjusted to the follow-
ing form for the mode-II shear delamination with the
normal contact

Tn
([[u]]n(e)

) = Kn[[u]]n(e),

δt = φt/
[
τmax (0.5 exp (1))0.5

]
,

Tt
([[u]]t (e)

) = τmax
√
2 exp (1)

[[u]]t (e)
δt

exp

(
−[[u]]2t (e)

δ2t

)
,

Kt = ∂Tt
∂[[u]]t (e)

= τmax

δt

√
2 exp (1) exp

(
−[[u]]2t (e)

δ2t

)

(
1 − 2[[u]]2t (e)

δ2t

)
(5)

where the normal traction Tn is adjusted by intro-
ducing the normal penalty stiffness Kn based on
the Kuhn–Tucker contact relationships [[u]]n(e) ≥ 0,
Tn ≤ 0,[[u]]n(e)Tn = 0. Kt is the tangential stiffness
which becomes negative at [[u]]t (e) ≥ [[u]]0t (e) =√
2/2δt .

Remarks Currently, many numerical methods are pro-
posed to deal with the contact constraint including the
penalty method and the Lagrange multiplier method.
Weyler et al. (2012) made a comprehensive review on
these two methods. Although they lead to consistent
formulations, there is some difference for numerical
robustness. TheLagrangemultipliermethod introduces
an additional variable (Lagrange multiplier) to enforce

the contact constraint. However, it introduces zero in
the diagonal of the matrix, leading to some numerical
difficulties. By comparison, the penalty method solves
the interpenetration problem by introducing a large
positive penalty parameter to satisfy the constraint con-
dition. Theoretically, infinite penalty parameter leads to
accurate enforcement of the constraint. In this research,
the penalty method is used, but the penalty stiffness Kn

must be appropriately chosen so that ill-conditioned
problems can be avoided.

After the initial tangential cohesive softening
appears, μ |Tn| (μ is the variable friction coefficient) is
superimposed onto the tangential traction Tt to describe
continuous transition from the cohesive state to the
friction state explicitly. Thus, the tangential traction
becomes Tt + μ |Tn|. μ |Tn| increases exponentially
from zero to the smooth value μs |Tn| (μs = tan φ

is the smooth friction coefficient and φ is the friction
angle) where pure frictional contact appears, as shown
in Fig. 2. The variable friction coefficient μ is written
as

μ = μs
exp (d) − 1

exp (1) − 1
,

d =
[[u]]ct (e)

[
[[u]]t (e) − [[u]]0t (e)

]

[[u]]t (e)
[
[[u]]ct (e) − [[u]]0t (e)

] (6)

Fig. 2 Superimposed tangential friction increases exponentially
from zero at the beginning of tangential cohesive softening to
the smooth friction (friction coefficient is μs) at the complete
tangential cohesive failure where pure frictional contact appears
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where d is the damage-like variable which represents
the intensity of adhesion. It is worth pointing out Raous
et al. (1999) modeled the coupling between the adhe-
sion, friction and unilateral contact, in which the adhe-
sion is characterized as an internal variable similar to
the damage variable d. [[u]]0t (e) and [[u]]ct (e) are the
initial and critical displacement jumps, respectively.
Based on Eq. (5), [[u]]ct (e) is solved by assuming the
area under the tangential traction–elastic displacement
jump curve reaches the maximum

∫ [[u]]ct (e)
0

[[u]]t (e)
δt

exp

(
− ([[u]]t (e))2

δ2t

)
d[[u]]t (e)

∫∞
0

[[u]]t (e)
δt

exp

(
− ([[u]]t (e))2

δ2t

)
d[[u]]t (e)

= e → 1 ⇒ [[u]]ct (e) = δt
√− ln (1 − e) (7)

where [[u]]ct (e) ≈ 3δt holds at e = 0.9999.

Remarks it is noted the exponential cohesive traction
never reaches zero even at infinite crack opening sepa-
ration. However, the actual critical separation [[u]]t (e)
cannot reach infinity at the complete tangential fail-
ure. Therefore, a finite critical separation [[u]]ct (e) is
assumed in this research, which is solved by assuming
the accumulative cohesive fracture energy reaches the
maximum, similar to the work by Goyal et al. (2004)
and Liu and Islam (2013).

The plastic deformation of adhesive materials in
shear is non-associative. After the initial cohesive soft-
ening appears, the frictional contact problem resorts
to the classic non-associative plasticity theory. Based
on the work of Raous et al. (1999), Parrinello et al.
(2009) and Weyler et al. (2012), the frictional slip cri-
terion F and the slip potential G according to the non-
associative Mohr–Coulomb frictional contact law are
written as

F = Tt + μ |Tn| − μs |Tn| ,
G = Tt + βs |Tn| ,

[[u̇]]t (p) = λ̇
∂G

∂Tt
= λ̇, [[u̇]]n(p) = λ̇

∂G

∂ |Tn|
= βs λ̇ = βs[[u̇]]t (p) (8)

where λ̇ is the consistency factor. Fobeys the slip/stick
(Kuhn–Tucker) conditions F ≤ 0, λ̇ ≥ 0 and λ̇F =
0. βs = tan (ϕ) is the dilatancy and ϕ (0 ≤ ϕ ≤ φ)

is the dilatant angle. In the Mohr–Coulomb plas-
ticity model, the friction angle φ defines the ratio
of the shear stress to the normal stress, and the

Fig. 3 Limit friction surfaces of the Coulomb law as a cone in
the space of contact traction

dilatant angle ϕ denotes the ratio of the volumet-
ric strain rate to the shear strain rate, and dila-
tancy βs is the volume expansion in shear for adhe-
sive materials. The limit friction surface F = 0
of the Coulomb law is a cone in the space of con-
tact traction, as shown in Fig. 3. From Eq. (8),
the normal and tangential plastic displacement jumps
[[u]]n(p) and [[u]]t (p) take on the same increasing ten-
dency.

Remarks Parrinello et al. (2009) proposed a bilin-
ear cohesive/friction coupled interface model, where
a non-associative frictional interface is considered. In
this research, the tangential traction Tt + μ |Tn| by
replacing Tt in their model is used in the slip criterion
in Eq. (8).

After introducing the return mapping algorithm in
“Appendix 1”, the updated normal traction T n =
Tn
([[u]]n(e)

)
, the updated tangential traction T t =

μs |Tn|
([[u]]n(e)

)
and the tangential stiffness Kt =

Kt
([[u]]t (e)

)
are obtained.

3 Finite element analysis and numerical results of
composites with mode-II delamination

3.1 Numerical issues for the cohesive/friction coupled
model

The boundary value problem with a discontinuous
interface with the friction is shown in Fig. 4. Let us
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Fig. 4 Boundary value
problem with a
discontinuous interface with
the frictional contact. a
Discontinuous interface
with friction, b cohesive
element for contact. Contact
surfaces: m and s with small
frictional sliding

consider a bounded domain 
 ⊂ R
ndim (ndim denotes

the space dimension) as an open and bounded set with
an outward normal vector n
. The smooth boundary
∂
 is divided into either Neumann or Dirichlet bound-
ary conditions defined on ∂
t and ∂
u respectively,
such that ∂
 = ∂
u ∪ ∂
t , ∂
u ∩ ∂
t = ∅ and
closure 
 = 
 ∪ ∂
. 
 is divided into 
+ and 
−
by an internal discontinuous interface �d such that

 = 
+ ∪ 
−. The displacement field u across �d

is discontinuous but continuous in 
+ and 
−. The
normal vector n at the discontinuous interface points
from 
− to 
+.

Theweak formof boundary value problem iswritten
as∫


+∪
−
∇Xδu :σdV +

∫

�d

δ[[u]] · T

dA =
∫

∂
t

δu · tbdA (9)

where ub : ∂
u → R
3 is the field of prescribed dis-

placement on the Dirichlet boundary and tb : ∂
t →
R
3 is the field of prescribed traction on the Neumann

boundary. σ is the Cauchy stress tensor. The Cauchy
cohesive traction T which acts on the internal bound-
ary �d depends on the displacement jump [[u]] at the
interface �d . u lies in the space of admissible trial
function U := {

u : 
 → R
ndim ; u = ub on ∂
u

}
and

δu lies in the space of admissible weight function
V := {δu : 
 → R

ndim ; δu = 0 on ∂
u}.
Foulk et al. (2000) and Segurado and LLorca (2004)

proposed finite element formulations for implementing
the cohesive model using the isoparametric middle-
plane interpolation, which are applicable to the elastic,
elastoplastic, viscoelastic and viscoplastic materials

under geometrically small deformation or finite defor-
mation. A typical 3D finite element formulation under
quasi-static loads is given in “Appendix 2”, where a
main work is to calculate the cohesive stiffness tensor
and the residual force vector based on the Newton–
Raphson algorithm. Wriggers (2006) pointed out that
the isoparametric element within the frictional contact
area does not allow large relative displacement. Thus,
the proposed cohesive/frictionmodel is limited to small
deformation. In addition, these cohesive/frictional con-
tact elements are considered as intermediate regions
connecting the contacted master/slave surfaces in each
discrete contact domain of the deformed body (Weyler
et al. 2012).

For the mode-II delamination growth, only two con-
tact states appear: stick and slip. Therefore, the vir-
tual cohesive/contact work is further expanded as three
parts∫

�d

δ[[u]] · TdA

=
∫

AN
n

Tnδ[[u]]n(e)dA

︸ ︷︷ ︸
Normal contact

+
∫

AT
n

(Tt + μ |Tn |) δ[[ut ]]dA
︸ ︷︷ ︸

Stick

+
∫

AN
n /AT

n

T tδ[[u]]t (e)dA
︸ ︷︷ ︸

Slip

(10)

where AN
n and AT

n are the discrete normal and tangen-
tial cohesive/contact domains. For pure contact dis-
cretization, non-matching mesh is allowed to appear.
Yet, it is important to choose appropriate mesh dis-
cretization in case of non-matching mesh because
the penalty method is equivalent to a mixed method
where the Babuska–Brezzi stability condition must
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be satisfied (Wriggers 2006). Fortunately, isopara-
metric matching zero-thickness cohesive/contact ele-
ment adopted in this research can avoid this prob-
lem.

The cohesive model naturally introduces a length
scale parameter due to cohesive softening behavior,
which is defined as the distance from the crack tip
to the position where the maximum cohesive traction
is attained (Yang and Cox 2005; Turon et al. 2007;
Harper and Hallett 2008). If the length scale is not con-
sidered in the delamination analysis, the dissipation
of delamination fracture energy cannot be accurately
captured which will lead to mesh sensitivity problem.
Thus, the cohesive zone length must be properly eval-
uated. Further, there exist different length scales (or
cohesive zone length) for different delamination frac-
ture modes. Yang and Cox (2005), Turon et al. (2007)
and Harper and Hallett (2008) evaluated the cohesive
zone length by comparing existing theoretical formulas
based on the crack-tip stress and energy fields. They
showed the cohesive zone length is about 2–3 ele-
ment side length. In this research, the cohesive zone
length for the mode-II delamination is calculated in
this way to regularize the delamination fracture tough-
ness based on the smeared crack band model (Bažant
and Oh 1983).

The proposed model is implemented by ABAQUS-
UEL (user element subroutine) and the numerical algo-
rithm using FEA is shown in Fig. 5. After the tangen-
tial cohesive softening appears, the tangential trial trac-
tion is calculated. If the frictional slip appears, New-
ton iterations are performed to calculate the updated
normal and tangential tractions and stiffnesses. Then,
the node residual force and element stiffness are cal-
culated for solving the node displacement increment.
It is noted that Newton–Cotes integration rather than
Gaussian integration in ABAQUS-UEL is adopted to
guarantee numerical robustness because Gaussian inte-
gration leads to oscillating load response at large stress
gradient over the interface element (Schellekens and
Borst 1993).

Convergence is also an important issue due to cohe-
sive softening behavior. Here, a viscous force vector
f v is introduced into the residual equations to improve
the convergence

{
f ext − f − f ν = R,

f ν = cM∗ν, ν = 
u/
t
(11)

where M∗ is an artificial mass matrix calculated with
unity density, v is the vector of node velocity, c is
a constant damping factor and 
t is the time incre-
ment during nonlinear numerical iterations. f ext is
the external node force, f is the cohesive node force
in Eq. (20) and R is the tolerance. It is noted that
introduced viscous damping should be sufficiently
large to regularize cohesive softening behavior but
small enough not to affect numerical accuracy. Very
small time increment is required to ensure numerical
precision (the initial, minimum and maximum time
increments are 0.0001, 1e−10 and 0.001s, respec-
tively).

3.2 Numerical results and discussion for the
delamination of ENF adhesive joints

The end-notched flexure (ENF) glass/polyester com-
posite specimens with an initial middle-plane delami-
nation crack are shown in Fig. 6. Three types of layup
specimens [0◦]6, [±30◦]5 and [±45◦]5 are used. These
specimenswerefirst studied byOzdil et al. (1998) using
analytical and numerical approaches and later stud-
ied by Theotokoglou and Vrettos (2006) using FEA.
Geometry parameters are listed in Table 1 and mater-
ial parameters are listed in Table 2 (Ozdil et al. 1998),
in which the delamination fracture toughness is calcu-
lated using four methods: 1 Compliance theory (Broek
1984), 2Beam theory (Russell andStreet 1982), 3Mod-
ified beam theory (Carlsson et al. 1986) and 4 Asso-
ciated beam theory and first-order shear deformation
theory (Ozdil et al. 1998). The formulas for four meth-
ods are attached in “Appendix 3”. It is worth point-
ing out that the cohesive/friction model proposed by
Parrinello et al. (2009, 2013) allows only the same
delamination fracture toughness for the mode-I and II
delamination. In fact, the mode-I fracture toughness
is not necessary for the mode-II shear delamination.
Although the friction affects the mode-II delamina-
tion fracture toughness (Carlsson et al. 1986), our pur-
pose is to explore the effects of the cohesive strength
and friction on the delamination mechanisms and load
responses of composites at a constant mode-II delam-
ination fracture toughness, similar to the work by Par-
rinello et al. (2009, 2013). Thus, the average value of
the upper and lower limits of the delamination fracture
toughness using four methods is used in this research.
Three finite element models with different mesh sizes
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Fig. 5 Numerical
algorithm for implementing
the cohesive/friction
coupled model using FEA

are shown in Fig. 7,where the number of bulk and cohe-
sive elements for three mesh models and three layups
is listed in Table 3.

First, the effect of viscous constant c in Eq. (11)
on the load–displacement curves for Case-A lami-

nate using two mesh models is shown in Figs. 8 and
9. Numerical results by the proposed model are also
compared with the analytical results without consider-
ing the frictional effect using the theoretical formulas
derived by Mi et al. (1998), as attached in “Appen-
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Fig. 6 Geometry of the
ENF composite specimen

Table 1 Mechanical
properties of
quasi-unidirectional
glass/polyester composites
(Ozdil et al. 1998)

Ply longitudinal modulus E1 34.7 GPa

Ply transverse modulus E2 8.50 GPa

Out-of-plane modulus E3 8.50 GPa

Inplane shear modulus G12 4.34 GPa

Out-of-plane shear modulus G13 4.34 GPa

G23 3.27 GPa

Poisson’s ratio v12 0.27

v13 0.27

v23 0.30

Mode-II delamination fracture toughness Gc
II 0.496 ± 0.135 N/mm ([0◦]6)

0.976 ± 0.071 N/mm ([±30◦]5)
1.485 ± 0.158 N/mm ([±45◦]5)

Table 2 Geometry sizes of
glass/polyester composite
specimens (Ozdil et al.
1998)

Case Layup 2L (mm) b (mm) 2h (mm) a0 (mm)

A [0◦]6 100 20 4.38 25

B [±30◦]5 100 20 7.30 25

C [±45◦]5 100 20 7.30 25

Fig. 7 Three finite element
models for the ENF
laminate with loads and
boundary conditions. a
Coarse mesh model, b
middle mesh model, c fine
mesh model
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Table 3 Number of the
bulk and cohesive elements
for three mesh models and
three layups

Layup Number of bulk
elements

Number of cohesive
elements

Sizes of bulk elements:
length × width × height
(mm × mm × mm)

Coarse mesh

Case-A 2688 336 1.78 × 2.5 × 0.73

Case-B and C 4480

Middle mesh

Case-A 4800 600 1.0 × 2.5 × 0.73

Case-B and C 8000

Fine mesh

Case-A 6720 840 0.71 × 2.5 × 0.73

Case-B and C 11,200

dix 4”. Second, coarse mesh size leads to numerical
oscillation at the decreasing stageof load–displacement
curves (Xie and Waas 2006; Liu and Islam 2013; Liu
et al. 2015). The main reason arises from the sudden
release of strain energy and the instantaneous failure of
elements in the intralaminar materials, leading to non-
physical limit points in the form of a snap-through or
a snap-back situation in the load–displacement curves.
However, oscillation does not represent large loss of
accuracy for load responses. By comparing Fig. 8 with
9, fine mesh sizes along the direction of crack propaga-
tion helps to alleviate the oscillation largely by captur-
ing the sudden release of strain energy during decreas-
ing stage more precisely. It is believed finer mesh sizes
can eliminate the oscillation completely. Besides, the
viscous parameter c produces very small impact on the
oscillation, compared with large sensitivity for mesh
sizes. However, it is noted too large value for c will
lead to inaccurate results indeed due to additionally
dissipated viscous energy, but too small value for c
will add the convergence difficulty. From Figs. 8 and 9,
c = 1e−4 is a good choice in this research for achiev-
ing favorable combination of numerical convergence
and accuracy, which is used in the following analysis.
In summary, robust and accurate results can be obtained
as long as mesh sizes and viscous constant are properly
selected.

Third, the effect of normal stiffness Kn on the load–
displacement curves using two mesh models for Case-
A laminate is shown in Fig. 10. It is found when Kn is
larger than 9000N/mm3or smaller than 3000N/mm3,
convergence becomes difficult at c = 1e−4. By com-

Fig. 8 Effect of the viscous constant c on the load–displacement
curves for Case-A laminate at φ = 0◦ and τmax = 30MPa using
middle mesh model

Fig. 9 Effect of the viscous constant c on the load–displacement
curves for Case-A laminate at φ = 0◦ and τmax = 30MPa using
fine mesh model
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Fig. 10 Effect of the normal stiffness on the load–displacement
curves for Case-A laminate at φ = 0◦ and τmax = 30MPa using
fine and middle mesh models

Fig. 11 Load–displacement curves for Case-A laminate using
three friction angles and middle mesh model

parison, Kn = 3000−9000N/mm3 leads to good con-
vergence at c = 1e−4. Thus, Kn = 6000N/mm3 is
adopted in the following analysis.

The effects of the friction coefficient μs , cohesive
strength τmax and mesh size on the load–displacement
curves for three cases are shown in Figs. 11, 12, 13,
14, 15, 16, 17, 18 and 19. Numerical results by the
proposed model are also compared with the analyti-
cal results. For angle-ply laminates, equivalent mod-
uli (Theotokoglou and Vrettos 2006) are used for ana-
lytical solutions. First, Schön (2000) measured the
friction coefficient for the epoxy with frictional slid-
ing against metal, where the friction is related to
the shear deformation or fracture of the polymer sur-

Fig. 12 Load–displacement curves for Case-A laminate using
three cohesive strengths and a middle mesh model and b fine
mesh model

Fig. 13 Load–displacement curves for Case-A laminate using
three mesh models

face. They obtained the friction coefficients 0.2–0.7
in the rubber region. In this research, we take three
friction angles φ = 0◦, 15◦ and 30◦ and three fric-
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Fig. 14 Load–displacement curves for Case-B laminate using
three friction angles and middle mesh model

Fig. 15 Load–displacement curves for Case-B laminate using
three cohesive strengths and a middle mesh model and b fine
mesh model

tion coefficients are calculated as μs = tan φ = 0,
0.27 and 0.54, respectively. From Figs. 11, 14 and
17, the frictional effect appears at the initial unstable

Fig. 16 Load–displacement curves for Case-B laminate using
three mesh models

Fig. 17 Load–displacement curves for Case-C laminate using
three friction angles and middle mesh model

delamination stage a = L and large friction coef-
ficient leads to large peak load and slight oscillat-
ing load response. After the stable delamination stage
is reached, the difference between the load curves
using different friction coefficients becomes large, rep-
resented by large contact area and frictional energy
dissipation. Besides, the frictional effects are larger
for angle-ply Case-B and C laminates than unidirec-
tional Case-A laminate. Second, take Case-A laminate
for example, the delamination starts and the crack-tip
energy dissipates as the displacement Δ increases to
about 3.1mm. As the crack propagates from a = 25
to 35mm, the load response starts to change suddenly.
From Δ = 3.1 to 5.5mm displacements, the unsta-
ble delamination is represented by oscillating load
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Fig. 18 Load–displacement curves for Case-C laminate using
three cohesive strengths and a middle mesh model and b fine
mesh model

Fig. 19 Load–displacement curves for Case-C laminate using
three mesh models

response. After Δ = 5.5mm displacement, the sta-
ble delamination stage appears and the frictional effect
increases. Third, the stiffness of specimens increases
slightly when τmax adds. In addition, τmax also affects
the peak load for three cases, as shown in Figs. 12,
15 and 18. However, large value τmax = 50MPa
will lead to convergence difficulty and oscillating load
responses during the unstable delamination. Fourth,
from Figs. 13, 16 and 19, the load curves using three
mesh models (element side sizes along the crack prop-
agation direction are 1, 1.8 and 2.5mm respectively)
are consistent. Although fine mesh model helps to
eliminate the numerical oscillation, computational effi-
ciency should also be considered, especially at large
τmax.

Delamination growth processes for Case-A laminate
are shown in Fig. 20. The crack length-load displace-
ment curves by discussing the effects of the friction
coefficient and layup are shown in Figs. 21 and 22. The
contours of shear stress τ13 for three cases at differ-
ent stages are shown in Figs. 23, 24 and 25. The crack
tip and the crack propagation length are determined by
detecting the dislocated paired nodes for cohesive ele-
ments in Fig. 20 and the high-gradient area for the shear
stress τ13 in Fig. 23. First, we approximately divide
the whole delamination process into the fast delamina-
tion stage from a = 25mm at Δ = 3.1mm to about
a = 45mm at Δ = 3.6mm, and the unstable delam-
ination stage from a = 45 to 55mm at Δ = 4.0mm,
and the stable delamination stage at a > 55mm for
Case-A laminate. Second, the frictional effect is not
distinct for the unidirectional Case-A laminate, which
is represented by a small change of the shear stress
τ13 when the friction coefficient increases. However,
the frictional effect becomes distinct for angle-ply
laminates as shown in Figs. 11, 14 and 17. Table 4
lists the bending strengths by comparing the effects of
the layup, friction coefficient and cohesive strength. It
is shown that large friction angle and cohesive strength
lead to large strength, especially for angle-ply lami-
nates. Third, the crack propagation rate is faster for
Case-B laminate than that for Case-C laminate because
the displacement Δ increases from 2.3 to 3.2mm for
Case-B laminate and from 3.7 to 4.9mm for Case-
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Fig. 20 Delamination
growth processes for
Case-A laminate at the
displacement a 3.11mm, b
4.34mm and c 8.79mm
respectively at
τmax = 30MPa and
φ = 45◦ using middle mesh
model

Fig. 21 Layup effect on the crack propagation rate at τmax =
30MPa using middle mesh model

Fig. 22 Frictional effect on the crack propagation rate at τmax =
30MPa using middle mesh model
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Fig. 23 Contours of the
tangential stress τ13 at the
displacement a 3.12mm, b
3.65mm, c 4.85mm and d
8.95mm respectively for
Case-A laminate at φ = 0◦
and τmax = 30MPa using
middle mesh model

Fig. 24 Contours of the
shear stress τ13 at the
displacement a 3.12mm, b
3.65mm, c 4.85mm and d
8.95mm respectively for
Case-A laminate at φ = 15◦
and τmax = 30MPa using
middle mesh model
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Fig. 25 Contours of the
shear stress τ13 at the
displacement a 3.12mm, b
3.65mm, c 4.85mm and d
8.95mm respectively for
Case-A laminate at φ = 30◦
and τmax = 30MPa using
middle mesh model

C laminate as the crack propagates from a = 25 to
50mm.

The effect of the superimposed traction μ |Tn| in
Eq. (8) on the load–displacement curves are shown
in Fig. 26. For unidirectional Case-A laminate, μ |Tn|
has almost no effect on the load–displacement curves,
but becomes a little more distinct for angle-ply Case-
C laminate. By comparison, the introduction of μ |Tn|
decreases the load-bearing ability slightly after the lam-
inate enters into the unstable delamination stage for
Case-C laminate.

4 Concluding remarks

This paper originally proposes a cohesive/friction cou-
pled model for the mode-II shear delamination of
angle-ply adhesive composite joint based on a modi-
fied Xu and Needleman’s exponential cohesive model.
The tangential friction is assumed to appear after the
initial tangential cohesive failure, and the exponen-
tially increased tangential friction is superimposed onto
the tangential cohesive traction to describe continu-

ous transition from the cohesive state to the frictional
state explicitly. Then, a frictional slip criterion and a
slip potential function as well as a numerical algorithm
using FEA are proposed to solve the updated normal
and tangential tractions and stiffnesses. Some impor-
tant numerical issues for the proposed model are dis-
cussed in the FEA including the numerical interpola-
tion technique for the cohesive element, the numerical
convergence and the frictional contact algorithm based
on the discrete contact domain. Numerical results on
the [0◦]6, [±30◦]5 and ±45◦]5 angle-ply end-notched
flexure (ENF) composite specimens demonstrate the
proposed model by comparing the analytical results.
The main purpose of numerical calculations is to dis-
cuss the effects of the friction coefficient, tangential
cohesive strength and normal contact stiffness on the
load responses and delamination mechanisms of com-
posites. It is shown the frictional effect becomes dis-
tinct after the unstable delamination for angle-ply lam-
inates, leading to slightly stronger load-bearing ability.
The proposed model and numerical technique will be
applied to the frictional delamination for a series of
aircraft structures.
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Table 4 Bending strengths predicted using proposed model (Unit: N)

Layup Middle mesh size,
φ = 0◦, τmax

τmax = 30MPa,
Middle mesh size

τmax = 30MPa, φ = 0◦

10 MPa 30 MPa 50 MPa φ = 15◦ φ = 30◦ Coarse mesh size Fine mesh size

[0◦]6 399.9 505.9 569.9 511.5 519.4 484.9 481.6

[±30◦]5 814.8 1028.4 1181.1 1077.1 1124.1 1048.9 1044.9

[±45◦]5 808.3 1049.0 1136.8 1085.8 1127.9 1034.4 1046.4

Fig. 26 Numerical results by considering the effect of the
superimposed tangential traction μ |Tn | for Case-C laminate at
τmax = 30MPa using middle mesh model
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Appendix 1: Cohesive/friction contact algorithm
using FEA

By referring to the return mapping algorithm, the
updated tangential traction Tt and the consistent tan-
gential stiffness Kt are solved by the followingNewton
iterations:

(a) After the tangential cohesive softening appears, the
trial tangential traction is calculated as

T tr(i+1)
t = T (i+1)

t

(
[[u]]tr(i+1)

t (e) = [[u]](i+1)
t − [[u]](i)t (p)

)

+ μ |Tn |(i+1)
(
[[u]]tr(i+1)

n(e) = [[u]](i+1)
n − [[u]](i)n(p)

)

(12)

where [[u]]t > 0 and [[u]]n < 0 are the normal
and tangential displacement jumps at the begin-
ning of new (i+1)th increment, and [[u]](i)n(p) and

[[u]](i)t (p) are the normal and tangential plastic dis-
placement jumps at the end of i th increment.

(b) If T tr(i+1)
t ≤ μs |Tn|(i+1), the tangential stiff-

ness Kt

(
[[u]](i+1)

t = [[u]]tr(i+1)
t (e)

)
and the tan-

gential traction Tt = T tr(i+1)
t = Tt

(
[[u]](i+1)

t

= [[u]]tr(i+1)
t (e)

)
in Eq. (5) are calculated. There is

no plastic loading and slip for the contacted inter-
face.

(c) If T tr(i+1)
t > μs |Tn|(i+1), the plastic loading and

frictional slip appear. After the initial value for

λ = 0 is given, the following Newton iterations
are performed to solve the updated elastic displace-
ment jump [[u]](i+1)

t (e) and the plastic displacement

jump [[u]](i+1)
t (p)

T (i+1)
t = τmax

√
2 exp (1)

∣∣∣[[u]](i+1)
t (e)

∣∣∣
δt

exp

⎡
⎢⎣−

(
[[u]](i+1)

t (e)

)2

δ2t

⎤
⎥⎦ > 0,

|Tn|(i+1) = Kn

∣∣∣
(
[[u]](i+1)

n(e)

)∣∣∣ > 0,

F = T (i+1)
t + μ(i+1) |Tn|(i+1) − μs |Tn|(i+1) ,

G = T (i+1)
t + βs |Tn|(i+1) ,

F + ∂F

∂
λ
d
λ + · · · = 0

⇒ d
λ = −F/dt > 0

⇒ 
λ(i+1) = 
λ(i) − F (i+1)/d(i+1)
t > 0,
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d(i+1)
t = ∂F

∂
λ

∣∣∣∣
(i+1)

= K (i+1)
t + βs

(
μ(i+1) − μs

)
Kn < 0,

μ(i+1) = μs
exp

(
d(i+1)

)− 1

exp (1) − 1
,

K (i+1)
t = τmax

δt

√
2 exp (1)

× exp

⎡
⎢⎣−

(
[[u]](i+1)

t (e)

)2

δ2t

⎤
⎥⎦

×
⎛
⎜⎝1 −

2
(
[[u]](i+1)

t (e)

)2

δ2t

⎞
⎟⎠ < 0,

[[u]](i+1)
t (p) = [[u]]it (p) + 
λ(i+1) > 0,

[[u]](i+1)
t (e) = [[u]](i+1)

t − [[u]](i+1)
t (p) > 0,

[[u]](i+1)
n(p) = [[u]](i)n(p) + βs
λ(i+1) > 0,

[[u]](i+1)
n(e) = [[u]](i+1)

n − [[u]](i+1)
n(p) < 0,

d(i+1) = [[u]]ct (e)
[[u]]ct (e) − [[u]]0t (e)

(
1 − [[u]]0t (e)

[[u]](i+1)
t (e)

)

(13)

where 
(·) denotes the increment. It is shown
the return mapping algorithm ensures that the fric-
tional slip criterion meets the Kuhn–Tucker load
conditions λ̇ > 0 and F = 0.

Remarks Bathe and Chaudhary (1985), Simo et al.
(1986), Perić andOwen (1992) andWeyler et al. (2012)
proposed the penalty based frictional contact algo-
rithms. In their work, the tangential displacement jump
is divided into the elastic and plastic parts, and the pos-
itive normal and tangential penalty stiffnesses are used
in the return mapping algorithm. However, these algo-
rithms are not suitable for the cohesive/friction cou-
pled problem because of tangential cohesive softening
behavior. During numerical iterations in Eq. (13), the
tangential elastic displacement jump [[u]]t (e) increases
and the tangential traction Tt decreases, but the normal

elastic displacement jump
∣∣∣
(
[[u]](i+1)

n(e)

)∣∣∣ increases and
the normal traction |Tn| increases,which guarantees the
convergenceof the proposed algorithmat |F | < tol(tol
is the tolerance). In addition, it is noted the introduc-
tion of μ |Tn| helps to accelerate the convergence of

the proposed algorithm in Eq. (13) because
∣∣∣d(i+1)

t

∣∣∣

decreases and 
λ increases and |Tn|(i+1) increases.
Finally, the normal traction Tn = Tn

([[u]]n(e)
)
, the tan-

gential traction Tt = μs |Tn| and the tangential stiffness
Kt = Kt

([[u]]t (e)
)
are updated after convergence.

Appendix 2: 3D finite element formulation for cohe-
sive models

The node displacement dN in the global coordinate sys-
tem (1, 2, 3) is written as

dN = (d1x , d
1
y , d

1
z , d

2
x , d

2
y , d

2
z · · · d8x , d8y , d8z ) (14)

The relative displacement between top and bottom
surfaces is given by


uN = φdN = (−I12×12 I12×12
)
dN (15)

where I is the identity matrix and φ is a 12×24matrix.
The displacement at any point within the cohesive

element in the global coordinate system (1, 2, 3) is cal-
culated as


u (ξ, η) =
⎛
⎝


ux (ξ, η)


uy (ξ, η)


uz (ξ, η)

⎞
⎠

= H (ξ, η) 
uN = H (ξ, η) φdN = BdN
(16)

where H (ξ, η) is the 3 × 12 shape function and B is
the strain matrix.

The coordinate xN
R at any reference surface in the

deformed configuration is interpolated as

xN
R = 1

2

(
I12×12 I12×12

)
(xN + dN ) (17)

where xN is the initial node coordinate in the cohesive
element.

The displacement jump [[u]] at any point in the
cohesive element in the local coordinate system (ξ, η, ζ )

is written as

[[u]] = �T�u(ξ, η), � = (n, t1, t2) (18)

where� is the transformationmatrix where three com-
ponents are given by

n =
(

∂xR

∂ξ
× ∂xR

∂η

)
∥∥∥ ∂xR

∂ξ
× ∂xR

∂η

∥∥∥
, t1 =

∂xR

∂ξ∥∥∥ ∂xR

∂ξ

∥∥∥
, t2 = n × t1 (19)

where xR = H (ξ, η) xN
R is a point on the reference

surface. n is the normal direction and t1 and t2 are the
tangential directions.
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Finally, the node residual force vector f 24×1 and
the stiffness tensor K 24×24 of 3D cohesive elements
are defined by

f 24×1 =
∫ 1

−1

∫ 1

−1
BT�T T det Jdξdη (20)

K 24×24 = ∂ f
∂dN

=
∫ 1

−1

∫ 1

−1
BT�T Ds�Bdξdη

Ds =
[
Kn

Kt

]
(21)

Appendix 3: Mode-II shear delamination fracture
toughness of composites

Four methods for calculating the mode-II ERR are: 1
Compliance theory (Broek 1984), 2 Beam theory (Rus-
sell and Street 1982), 3 Modified beam theory (Carls-
son et al. 1986) and 4 Associative beam theory and
first-order shear deformation theory (Ozdil et al. 1998).
The mode-II delamination fracture toughness Gc

II is
determined using the initial delamination crack length
a = a0 and the corresponding experimental load value
P(Theotokoglou and Vrettos 2006).

Compliance theory (Broek 1984)

Load-line compliance C = Δ/P is defined, where Δ

is the displacement at the central loading point and P
is the applied load. The ERR GII takes the form

GII = P2

2b

∂C

∂a
(22)

where a is the actual crack length and b is the width of
the specimen.

Beam theory (Russell and Street 1982)

The load-line compliance CBT and the mode-II ERR
GBT

II are given by the beam theory

CBT = 2L3 + 3a3

8E1bh3
(23)

GBT
II = 9a2P2

16E1b2h3
(24)

where E1 is the longitudinal elastic modulus.

Modified beam theory (Carlsson et al. 1986)

Equations (25) and (26) were modified to include the
effect of transverse shear deformation

CSH = CBT + 1.2L + 0.9a

4bG13h
(25)

GSH
II = GBT

II

[
1 + 0.2

(
E1

G13

)(
h

a

)2
]

(26)

where G13 is the shear modulus.

Associated beam theory and first-order shear deforma-
tion theory (Ozdil et al. 1998)

By combining the laminate beam theory and the first
order shear deformation theory, the compliance and the
mode-II ERR are given by

CSBT = L3(d11)BC
6b

+ L(a55)BC
2bk

+ a3 [(d11)AB − (d11)BC]

12b

+ a [(a55)AB − (a55)BC]

4bk
(27)

GSBT
II = P2

8b2

{
a2 [(d11)AB − (d11)BC] + (a55)AB − (a55)BC

k

}

(28)

where k = 5/6 is the shear correction factor, AB is the
delaminated section, BC is a part of the intact section
of the ENF specimen in Fig. 6, and (d11)AB, (d11)BC,
(a55)AB and (a55)BC are the effective bending and shear
compliances, respectively.

To calculate CSBT and GSBT
II for the ENF specimen,

the effective bending and shear compliances are calcu-
lated according to the method proposed by Ozdil et al.
(1998).

Appendix 4: Analytical formulas for the load–
displacement curves for mode-II delamination of
ENF composites

According to the analytical formulas derived by Mi
et al. (1998), the load–displacement curve of the ENF
composite specimen is divided into three parts:

Curve − OB : Δ = P(2L3 + 3a30)

96E1 I
(29)

Curve − ABC(a < L) :

Δ = P

96E1 I

[
2L3 +

(
64Gc

IIbE1 I
)3/2

√
3P3

]
(30)

Curve − DE(a > L) :

Δ = P

24E1 I

[
2L3 −

(
64Gc

IIbE1 I
)3/2

4
√
3P3

]
(31)

123



Shear induced delamination of adhesive composite joint 155

where I is the second-order inertia moment and a0 is
the initial crack length.
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