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Abstract In the context of the second Sandia Fracture
Challenge, dynamic tensile experiments performed on
a Ti–6Al–4V alloy with a complex fracture specimen
geometry are modeled numerically. Sandia National
Laboratories provided the participants with limited
experimental data, comprising of uniaxial tensile test
and V-notched rail shear test results. To model the
material behavior up to large plastic strains, the flow
stress is described with a linear combination of Swift
and Voce strain hardening laws in conjunction with the
inversemethod. The effect of the strain rate and temper-
ature is incorporated through the Johnson–Cook strain
rate hardening and temperature softening functions.
A strain rate dependent weighting function is used to
compute the fraction of incremental plastic work con-
verted to heat. The Hill’48 anisotropic yield function is
adopted to capture weak deformation resistance under
in-plane pure shear stress. Fracture initiation is pre-
dicted by the recently developed strain rate dependent
Hosford–Coulomb fracture criterion. The calibration
procedure is described in detail, and a good agreement
between the blind prediction and the experiments at two
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different speeds is obtained for both the crack path and
the force–crack opening displacement (COD) curve. A
comprehensive experimental and numerical follow-up
study on leftover material is conducted, and plastic-
ity and fracture parameters are carefully re-calibrated.
A more elaborate modeling approach using a non-
associated flow rule is pursued, and the fracture locus
of the Ti–6Al–4V is clearly identified by means of four
different fracture specimens covering a wide range of
stress states and strain rates. With the full character-
ization, a noticeable improvement in the force–COD
curve is obtained. In addition, the effect of friction is
studied numerically.

Keywords Sandia Fracture Challenge · Ductile
fracture · Dynamic · Shear localization · Hosford ·
Triaxiality · Lode angle · Ti–6Al–4V

1 Introduction

In 2012, Sandia National Laboratories (SNL) announ-
ced an intriguing round robin challenge for the fracture
mechanics community. Thirteen participating teams
were providedwith a limited number of elementary test
data on a typical stainless steel sheet and asked to make
a blind prediction of crack initiation and propagation
for a modified compact tension specimen with a round
starter notch and three randomly distributed holes sub-
jected to tensile loading (Boyce 2014). A variety of
modeling approaches were taken; from porous plastic-
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ity (Cerrone et al. 2014 and Nahshon et al. 2014) to
extended finite element methods (Zhang et al. 2014)
and damage indicator models uncoupled from plastic-
ity (Gross and Ravi-Chandar 2014; Neilsen et al. 2014;
Pack et al. 2014). This was an opportunity for the com-
munity to evaluate their current modeling capability
and identify missing information essential to improve
prediction. After fully characterizing spare material,
Pack et al. (2014) pointed out that an accurate descrip-
tion of the hardening behavior at large strains is crucial
in capturing localization and subsequent crack devel-
opment.

The successful completion of the first challenge was
followed by the second challenge in 2014 (Boyce et al.
2016), examining the effect of dynamic loading on
ductile fracture of a titanium alloy Ti–6Al–4V sheet.
Two loading speeds were selected: 0.0254mm/s for the
slow loading case and 25.4mm/s for the fast loading
case. Besides data from basic uniaxial tensile tests on
dog-bone shaped specimens (engineering stress–strain
curves at the two loading speeds), only results of V-
notched rail shear tests (force–displacement curves at
the two loading speeds) were additionally provided.
The shear test was suggested by former participants to
further characterize the material behavior under shear
dominant loading. The geometry of the challenge spec-
imen was S-shaped with two circular notches and three
different-sized holes. The participants were asked to
report their numerical prediction of crack paths as well
as force–crack opening displacement (COD) curves.
Answers were allowed to include upper and lower
boundaries.

Ductile fracture of metallic materials is one of the
most common failuremodes, ranging from the integrity
of a large structure such as buildings, bridges, and
off-shore installations to the safety of automobiles,
ships, and aircrafts. Ductile fracture on a microscopic
scale is understood as a consequence of void nucle-
ation, growth, and coalescence. Various approaches
have been taken to model this phenomenon. The the-
ory of porous plasticity, introduced by Gurson (1977),
mathematically formulates the aforementioned micro-
mechanism by incorporating the effect of a current
void volume fraction on the macroscopic plastic flow.
Fracture is said to occur when the void volume frac-
tion reaches a critical value. The original model was
enriched by Tvergaard and Needleman (1984) and
Nahshon and Hutchinson (2008). The latter modifica-
tion was particularly aimed at accumulating damage

due to void shearing,whichwas also considered byXue
(2008). Another avenue for modeling ductile fracture
was introduced by Lemaitre (1985) who used the idea
of an effective stress carried by an effective area of a
damagedmaterial and derived that the elastic properties
are altered accordingly. The other group of modeling
methods uses a damage indicator concept. Herein, elas-
tic and plastic properties remain unaffected, and frac-
ture is said to occur once a damage indicator reaches
a critical value. Typical examples include McClintock
(1968), Rice and Tracey (1969), Bai and Wierzbicki
(2010), and Lou et al. (2012). Recently, Roth andMohr
(2014) developed a strain rate dependent Hosford–
Coulomb fracture initiation model, which was initially
proposed by Mohr and Marcadet (2015) in a strain rate
independent form.

Furthermore, the innate anisotropy of thin struc-
tures, due to the manufacturing process (e.g. rolling),
has also been a research topic of interest to the metal
forming community. To address this effect, Hill (1948)
suggested a quadratic anisotropic yield function for
orthotropic materials, while Barlat et al. (2003) intro-
duced a linear transformation to the well-known Hos-
ford (1972) plasticity for aluminum sheets. To cap-
ture the pronounced anisotropy in yield stresses and
plastic strain ratios, Stoughton (2002) proposed a
non-associated flow rule with two quadratic poten-
tials. Furthermore, Huh et al. (2013) showed that the
plane anisotropy of advanced high strength steel sheets
exhibits strain rate dependence.

A wide variety of models for dynamic loading have
been studied extensively in the literature. They can
be divided into physics-based models (Kocks et al.
1975; Zerilli and Armstrong 1987; Khan and Huang
1992; Rusinek and Klepaczko 2001; Voyiadjis and
Abed 2005), which are usually inspired by thermody-
namics and dislocation dynamics, and phenomenologi-
cal/empiricalmodels.Oneof themost popular phenom-
enological models is based on the work by Johnson and
Cook (1983). Herein a multiplicative decomposition of
the flow stresses from a strain, strain rate, and temper-
ature term is postulated. It has been shown in several
pieces of work that it provides a reasonable prediction
of temperature-dependent viscoplastic response up to
large strains (e.g.Clausen et al. 2004; Smerd et al. 2005;
Verleysen et al. 2011; Erice et al. 2012). Recently, Roth
and Mohr (2014) coupled the Johnson–Cook plasticity
model with a combined Swift–Voce strain hardening
function and a non-associated anisotropic flow rule,
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obtaining very good results for two different advanced
high strength steels.

The present paper describes in detail the modeling
efforts made by the Impact and Crashworthiness Lab-
oratory (ICL) at Massachusetts Institute of Technol-
ogy (MIT) for the second Sandia Fracture Challenge.
In the following section, the plasticity and fracture
models chosen to model the titanium alloy are briefly
reviewed. Next, the calibration procedures based on the
limited number of test data provided by SNL are com-
prehensively presented. The sequence of deformation
predicted by blind simulation is thoroughly analyzed
and compared with the experimental results that were
disclosed to the participants after the blind prediction.
In the fourth section, a full characterization of the Ti–
6Al–4Valloy is performed. It comprises of an extensive
testing program at slow and fast loading speeds, includ-
ing uniaxial tensile tests in three in-plane directions and
four types of fracture experiments, and the recalibra-
tion of the plasticity and fracture models. Finally, the
simulation results of the challenge specimen geometry
based on the more advanced calibration of the material
models are evaluated and discussed.

2 Rate-dependent plasticity and fracture model

This section is devoted to presenting the constitutive
law and the fracture model that were used to describe
the plasticity and fracture response of the Ti–6Al–4V
sheet.

2.1 Material

The material chosen for the challenge is a 3.124 mm
thick mill-annealed sheet of a Ti–6Al–4V alloy, the
most commonly used titanium alloy due to its sig-
nificantly improved strength over a pure metal state.
Its chemical composition is given in Table 1. It is an

Table 1 Alloying elements of the Ti–6Al–4V alloy sheet (all in
wt%)

Al V C Fe O N Y

6.02 3.94 0.01 0.19 0.16 0.04 < 50 ppm

alpha plus beta alloy,meaning that the hexagonal close-
packed phase and the body-centered cubic phase co-
exist. The alloy is known to exhibit a high yield stress,
a relatively low strain hardening, and a moderate strain
rate sensitivity. Its wide applications cover airframes,
vessels, fasteners, blades, and forgings. Notable prop-
erties include its excellent biocompatibility.

2.2 Rate-dependent plasticity model

The plastic behavior of the Ti–6Al–4V sheet is
described by a conventional theory of metal plastic-
ity in continuummechanics, namely a yield function, a
flow rule, and a hardening law, closely following Roth
and Mohr (2014). The following subsections briefly
explain a specific model used for each constituent.

2.2.1 Yield function

The simple yet effective Hill’48 quadratic yield func-
tion (Hill 1948) is chosen to account for the in-plane
anisotropy of the sheet. Hereinafter, we make use of
the notation proposed by Mohr et al. (2010).

f = σ̄Hill − k = √
(Pσ) · σ − k (1)

The Mandel–Voigt notation is used to represent the
symmetric Cauchy stress σ, while k denotes the defor-
mation resistance that defines the boundary of an elastic
set. P describes the positive definite 6×6 matrix in the
case of a general three-dimensional stress state.

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 P12 − (1 + P12) 0 0 0
P12 P22 − (P12 + P22) 0 0 0

− (1 + P12) − (P12 + P22) 1 + 2P12 + P22 0 0 0
0 0 0 P44 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)
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The expanded form for Eq. (1) reads as

σ̄Hill =
√

σ 2
11 + P22σ

2
22 + (1 + 2P12 + P22)σ

2
33 + 2P12σ11σ22

−2(P12 + P22)σ22σ33 − 2(1 + P12)σ33σ11 + P44σ
2
12 + 3σ 2

23 + 3σ 2
31

. (3)

The yield stress ratios for uniaxial tension in three
typical directions i.e. rolling, diagonal, and transverse
directions (RD,DD, andTD, respectively) and for equi-
biaxial tension or pure shear determine three indepen-
dent parameters, P12, P22 and P44. For the special case
of P12 = −0.5, P22 = 1 and P44 = 3, the well-known
von-Mises J2 isotropic yield function is obtained.

2.2.2 Flow rule

To incorporate the effect of a different directionality
of the r-values from the yield stresses without losing
advantages of quadratic functions, Stoughton (2002)
introduced a potential function g in addition to the yield
function f and assumed that the direction of the plastic
flow is aligned with the stress derivative of the plastic
flow potential g. Thus, a non-associated flow rule is
obtained.

dεp = dλ
∂g[σ]
∂σ

with

dεp = [
dε

p
11 dε

p
22 dε

p
33 dγ

p
12 dγ

p
23 dγ

p
31

]T
(4)

dγ
p

i j denotes the plastic engineering shear strain. Based
on the notation proposed by Mohr et al. (2010), the
plastic flow potential is written as

g = √
(Gσ) · σ. (5)

G can be obtained by replacing Pi j in Eq. (2) with Gi j .
It is noted that the non-associated flow rule reduces
to an associated one for G12 = P12, G22 = P22, and
G44 = P44.

The equivalent plastic strain increment d ε̄p is
defined as work-conjugate to the equivalent stress
through the identity

σ · dεp = σ̄Hilld ε̄p. (6)

2.2.3 Hardening law

The isotropic hardening function k in Eq. (1) governs
the growth of the radius of the yield surface. With
dynamic loading conditions being considered in the

second Sandia Fracture Challenge, the model proposed
by Roth and Mohr (2014) is employed. The deforma-
tion resistance k uses the equivalent plastic strain ε̄p,
the equivalent plastic strain rate ˙̄εp, and temperature T
as internal variables. Inspired by the work by Johnson
and Cook (1983), themodel suggests themultiplicative
decomposition of the three effects:

k[ε̄p, ˙̄εp, T ] = kε[ε̄p]kε̇[˙̄εp]kT [T ]. (7)

The strain hardening function kε reads as

kε[ε̄p] = αA
(
ε̄p + ε0

)n

+ (1 − α)
(

k0 + Q
(
1 − e−βε̄p

))
. (8)

It is a linear combination of a power law (Swift 1952)
and an exponential law (Voce1948) using theweighting
parameterα. Equation (8) proved tobe suitable for large
strains beyondnecking for awidevariety of steels (Roth
and Mohr 2014; Marcadet and Mohr 2015; Pack and
Marcadet 2016).

The strain rate hardening function kε̇ and the tem-
perature softening function kT are in the standard
Johnson–Cook form and read as

kε̇[˙̄εp] =
{
1 f or ˙̄εp < ε̇0

1 + C ln
[ ˙̄εp

ε̇0

]
f or ˙̄εp ≥ ε̇0

, (9)

kT [T ] =
{
1 f or T < Tr

1 −
(

T −Tr
Tm−Tr

)m
f or Tr ≤ T ≤ Tm

(10)

with the strain rate sensitivity C , the reference strain
rate ε̇0, the temperature softening exponent m, the ref-
erence temperature Tr , and themelting temperature Tm .
Note that both functions reduce to unity for ˙̄εp < ε̇0
and T < Tr , respectively.

2.3 Temperature evolution

To account for the increase in temperature due to plas-
tic work, a fully coupled thermo-mechanical analysis is
normally required, treating the temperature as an exter-
nal state variable. Even though this is often neglected
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because of higher computational costs or uncertain-
ties in the boundary conditions, temperature softening
plays an important role in the post-necking behavior of
amaterial. As shown inRoth andMohr (2014), a purely
mechanical analysis is used, treating the temperature as
an internal state variable determined from

ρC pdT = ω[˙̄εp]ηk σ̄Hilld ε̄p. (11)

Herein, ρ, C p, and ηk are density, heat capacity and
theTaylor–Quinney coefficient, respectively.The strain
rate dependent conversion factorω[˙̄εp] varies smoothly
from the isothermal condition (ω = 0) with complete
heat dissipation to the adiabatic condition (ω = 1)
where no time is allowed for dissipation:

ω[˙̄εp] =

⎧
⎪⎨

⎪⎩

0 for ˙̄εp < ε̇i t

( ˙̄εp−ε̇i t)
2
(3ε̇a−2 ˙̄εp−ε̇i t)

(ε̇a−ε̇i t )
3 for ε̇i t ≤ ˙̄εp ≤ ε̇a

1 for ε̇a < ˙̄εp

.

(12)

ε̇i t , greater than zero, indicates the isothermal limit
below which no temperature increase takes place, and
ε̇a , greater than ε̇i t , defines the adiabatic limit beyond
which the conversion of plastic work into heat is max-
imized. It is stressed that ˙̄εp in the above formulae rep-
resents a local strain rate at each material point and is
not a function of the global loading speed. For addi-
tional information, the reader is referred to Roth and
Mohr (2014).

2.4 Rate dependent Hosford–Coulomb fracture
initiation model

For the numerical prediction of fracture initiation, the
strain rate modified version of the Hosford–Coulomb
model (Roth andMohr 2014) is used. It is supported by
the results of a computational localization analysis of
a unit cell by Dunand and Mohr (2014). The Hosford–
Coulomb model presents a very similar fracture enve-
lope to the modified Mohr–Coulomb model (Bai and
Wierzbicki 2010), but it is mathematically and physi-
cally more consistent with the chosen plasticity model.
More specifically, the stress triaxiality and Lode angle
dependent hardening law (Bai and Wierzbicki 2008)
does not have to be applied in transforming stress at
fracture to strain at fracture.

2.4.1 Characterization of stress states

The fracturemechanics community has longbeenusing
the stress triaxiality η as the main scalar variable that
characterizes a current stress state. It is defined as the
ratio of mean stress σm to the von-Mises equivalent
stress σ̄VM.

η = σm

σ̄VM
, where σm = σ11 + σ22 + σ33

3
and

σ̄VM =
√
3

2
σ′ : σ′ (13)

σ′ denotes the second-order deviatoric Cauchy stress
tensor. This concept reflects a fundamentalmicroscopic
mechanism that ductile fracture is a result of void
nucleation, growth, and coalescence.However, unusual
dependence of strain to fracture on η between simple
shear to simple tensionobservedbyBaoandWierzbicki
(2004) inspired Xue (2007) to introduce the second
measure of stress state, the Lode angle parameter θ̄ , as
the other key variable to control ductility.

θ̄ = 1 − 6θ

π

(−1 ≤ θ̄ ≤ 1
)

(14)

where θ = 1

3
cos−1

(
27

2

J3
σ̄ 3

VM

)
(
0 ≤ θ ≤ π

3

)

J3 = det
(
σ′) = 1

3
σ′ · σ′ : σ′

The two isotropic stress parameters η and θ̄ uniquely
determine the direction of a stress vector in the three-
dimensional isotropic principal stress space.

2.4.2 Hosford–Coulomb fracture initiation model

Mohr and Marcadet (2015) postulated that an initially
un-cracked ductile solid under proportional loading
conditions loses its local load bearing capacity, and a
macroscopic crack initiates when a critical stress value
B is reached by a linear combination of the Hosford
equivalent stress and the normal stress on the plane on
which the maximum shear stress occurs.

σ̄Hosford + c (σI + σIII) = B (15)

Herein, σI and σIII are the maximum and the minimum
principal stresses. Through coordinate transformation
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one can obtain an expression for ε̄ pr
f in the mixed space

of stress and strain in the form of Eq. (16):

ε̄
pr
f [η, θ̄ ] = b(1 + c)

1
n f

[{
1

2
(( f1 − f2)

a+(( f2− f3)
a

+ ( f3 − f1)
a)

} 1
a + c(2η + f1+ f3)

]− 1
n f

(16)

with

f1[θ̄] = 2

3
cos

[π

6

(
1 − θ̄

)]
,

f2[(θ̄] = 2

3
cos

[π

6

(
3 + θ̄

)]
,

f3[θ̄] = −2

3
cos

[π

6

(
1 + θ̄

)]
.

The main parameters of the model are {a, b, c}: the
Hosford exponent a, controlling the effect of the Lode
angle parameter θ̄ , the friction coefficient c, controlling
the effect of the stress triaxiality η, and the parameter
b, a multiplier controlling the overall magnitude of the
strain to fracture. The exponent n f is used to transform
the equivalent stress at fracture σ̄ f to the equivalent
strain ε̄

pr
f with a simple power hardening law.

σ̄ f = A
(
ε̄

pr
f

)n f
(17)

This assumption allows for the concise analytical
expression of the fracture criterion in Eq. (16) and
reduces computational time without the need to per-
form additional Newton–Raphson iterations with an
actual strain hardening law in Eq. (8).

Roth and Mohr (2014) extended the formulation in
loose analogy to Johnson and Cook (1983) to incor-
porate the effect of strain rate on fracture through the
parameter b:

b = b0

[

1 + γ ln

( ˙̄εp

ε̇0

)]

when ˙̄εp > ε̇0 (18)

The strain to fracture for uniaxial tension at low
strain rates is given through b0 > 0,while the strain rate
sensitivity of the fracture initiation model is governed
by the parameter γ ≥ 0.

Non-proportional loading conditions, for which η

and θ̄ vary, are treated by means of a simple linear
damage accumulation rule in Eq. (19).

D =
∫ ε̄p

0

d ε̄p

ε̄
pr
f [η, θ̄ , ˙̄εp]

(19)

The damage indicator D varies from the initial value
D = 0 to themaximumvalue of D = 1, for which frac-
ture initiation occurs. It is worth mentioning that Eq.
(19) recovers the cumulated equivalent plastic strain to
fracture ε̄

f
p = ε̄

pr
f [η, θ̄ , ˙̄εp] for proportional loading

paths.

3 Blind simulation of second Sandia Fracture
Challenge problem

In this section, the methodology to simulate the second
Sandia Fracture Challenge problem based on a very
limited number of experimental data is described.

3.1 Model calibration based on SNL experimental
results

3.1.1 Plasticity model parameter identification

Figure 1b summarizes the results of uniaxial tensile
tests on dog-bone shaped specimens (Fig. 1a) cut at
0◦ and 90◦ with respect to the sheet rolling direc-
tion (RD and TD, respectively). The experiments were
performed by SNL at two different loading speeds of
0.0254 and 25.4 mm/s. The nominal strain in the axial
direction was measured by a 25.4 mm extensometer,
and the corresponding strain rates were about 0.0006
and 0.6/s, respectively. Young’s modulus was calcu-
lated to lie in the range of 112 ∼ 115GPa, and the Pois-
son’s ratio (ν = 0.342) was taken from the MatWeb
LLC webpage.

Without the result from the 45◦ direction (DD) pro-
vided to the participants, almost identical hardening
curves between the two orthogonal directions suggest
a possible isotropy of the material. Hence, initially a
von Mises yield surface with P12 = −0.5, P22 = 1,
and P44 = 3 was assumed.

Because of the lack of additionalmeasurements such
as the nominal strain in the width direction, the Lank-
ford ratios could not be calculated, and as a conse-
quence an associated flow rule, enforcing normality
of the incremental plastic strain tensor to the yield
function, was assumed. This is achieved by setting
G12 = P12, G22 = P22, and G44 = P44 in Eq. (5).

To perform numerical analysis for further calibra-
tion, the constitutive law and the fracture model from
Sect. 2 were implemented into Abaqus/Explicit using
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Fig. 1 a Dog-bone
specimen for uniaxial
tensile tests; b engineering
stress–strain curves of the
3.124 mm Ti–6Al–4V alloy
sheet in rolling and
transverse directions at slow
(0.0254 mm/s) and fast
(25.4 mm/s) loading speeds
provided by Sandia
National Laboratories

(a)

(b)
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 RDs_fast ~ 0.6/s
 TDs_fast ~ 0.6/s

±

±

a VUMAT user subroutine (Abaqus 2016). Exploiting
the symmetry of the dog-bone specimen with a large
radius of curvature of R= 14287.5 mm in Fig. 1a, only
one eighth of its geometry was discretized using three-
dimensional brick elements with reduced integration
(C3D8R) (see inserted figure in Fig. 3). It is empha-
sized that the Hosford–Coulomb fracture criterion is
intended to predict the onset of fracture, not the propa-
gation even though it can simulate propagation as a con-
secutive re-initiation. Therefore, a symmetric model of
the specimen is allowed even though a finally separated
piece showed an asymmetric fracture surface. Very fine
elements (0.1×0.1×0.1mm3)were used in the critical
area of necking based on a convergence study as indi-
cated by Dunand and Mohr (2010). Zero displacement
boundary conditions were applied to the symmetry
planes.Careful attentionwaspaid to applying avelocity
profile resulting in the same engineering strain versus

time relation at the position of the 25.4 mm extensome-
ter as obtained from the experiments by SNL.

As mentioned before, the participants were allowed
to report a lower and an upper boundary for the blind
prediction. Therefore, two separate sets of hardening
parameters were identified with the following method-
ology:

• The highest and lowest engineering stress–strain
curves in RD at 0.0006/s from the set of tests pro-
vided by SNL are chosen. After converting each
curve to true stress–plastic strain, the parameters of
the Swift law (A, ε0, n) and theVoce law (k0, Q, β)

are calibrated separately to each curve using a least
square fit. As an example, the result for the highest
case (specimen RD2) is illustrated in Fig. 2, show-
ing a very good agreement.

• Due to their mathematical formulation (the Swift
law based on a power function and the Voce law
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Fig. 2 True stress–plastic strain curve from the uniaxial tensile
test that showed highest stress level at slow and fast loading
speeds. Observe an excellent fit of the Swift (red) and the Voce
(blue) law for the slow speed case

with an exponential function saturated to k0 + Q),
the two laws show a completely different response
in the post-necking regime. Thus, a linear combi-
nation of the two functions [Eq. (8)] is sought to
control the shape of the hardening curve after neck-
ing without changing its early part. The combina-
tion factor α is determined by an inverse method,
optimizing it until the engineering stress–strain
response at 0.0254 mm/s is accurately predicted
up to fracture elongation. Assuming no dynamic
effects for this low loading speed, rate hardening
and thermal softening features are turned off, allow-
ing for the exclusive determination of α. It has to be
noted, as will be shown in Sect. 4, that this assump-
tion underestimates the evolution of the strain rate
and consequentially may lead to an overestimation
of the parameter α. Figure 3 shows the results of
the two calibrated α values for the upper and the
lower boundary, based on the experimental scatter
with the longest/shortest fracture elongation.

The strain rate sensitivity parameter C was calculated
from the ratio of the true stress for the fast experiment
( ˙̄εp = 0.6/s) to the slow one ( ˙̄εp = 0.0006/s) at
ε̄p = 0. For this equivalent plastic strain, the strain rate
effect can already be observed in the higher yield stress,
while temperature softening has not yet come into play.
The reference strain rate, aswell as the isothermal limit,
was chosen to be ε̇0 = ε̇i t = 0.0006/s. The reference
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Fig. 3 Comparison of the engineering stress–strain curves from
uniaxial tensile tests between experiments (dots) and simulations
(lines) at 0.0254 (light grey) and 25.4 mm/s (black) for upper and
lower boundary cases. The equivalent plastic strain is also shown
as a function of the engineering strain for the upper boundary
case. Inserted is the finite elementmodel for a dog-bone specimen

and initial temperature were set to Tr = T0 = 293K.
The two remaining model parameters, the adiabatic
limit ε̇a and the temperature softening exponent m,
were simultaneously optimized with an inversemethod
to match the engineering stress–strain curve for the fast
loading case at 25.4 mm/s. Note that the uniqueness
of two parameters was assured by confirming that no
other combination could achieve a comparably satis-
factory fit. Other general properties such as Tm, ρ, C p ,
and ηk were taken from the MatWeb LLC webpage.
Table 2 gives an overview of the calibrated parameters,
and a comparison of the experimental and the simulated
engineering stress–strain curves is given in Fig. 3. In
addition, for the upper boundary, the evolution of the
equivalent plastic strain ε̄p at the most deformed and
thus critical element is also plotted. It reveals a positive
effect of the strain rate on the ductility of the material
andwill be used in the calibration of the fracturemodel.

Besides the uniaxial tensile tests in RD and TD,
SNL provided additional experimental data from V-
notched rail shear tests to the participants (Fig. 4a, b),
allowing for the examination of the material behavior
under shear dominant loading. However, SNL stated
in the challenge package provided to the participants
that noticeable slippage of the specimens occurred dur-
ing the experiments. Additionally, the test data con-
tains non-negligible bending and rotation of fixtures
due to the displacement measurement using LVDT
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Table 2 Hardening model
parameters of the 3.124 mm
Ti–6Al–4V alloy sheet for
the upper/lower boundary

Values in brackets are the
results of the full calibration
of the material

A (MPa) ε0 n k0 (MPa)

1408/1393 0.01613/0.01763 0.07937/0.07955 1016/1011

(1380) (0.01500) (0.07300) (1020)

Q (MPa) β α C

160.5/147.2 26.41/24.94 1.400/1.200 0.01517/0.01605

(153.4) (25.74) (1.184) (0.01908)

ε̇a (1/s) m ε̇0 = ε̇i t (1/s) T0 = Tr (K)

0.6000/1.000 0.7900/0.7400 6.000E−4 293.0

(1.540) (0.7882) (1.000E−3)

Tm (K) ρ(kg/m3) C p(J/kgK) ηk

1900 4430 5.263E2 0.9000

attached to the fixtures. Instead of trying to capture
these very complex boundary conditions in a numeri-
cal simulation, a different modeling approach was pur-
sued.An idealized engineeringmodelwas created, only
discretizing the gauge section of the specimen (see
inserted figure in Fig. 4c). The boundaries on both
sides of the model were assumed not to rotate. This
ideal boundary condition was compensated by scaling
up displacement in the simulation such that the elastic
part of the simulation could match that of the experi-
ment. Figure 4c depicts the comparison of the force–
displacement curve between the simulation and the
experiment for the slow loading speed (0.0254 mm/s).
P44 = 3, obtained based on the uniaxial tensile tests
in RD and TD in the early step of the calibration, sig-
nificantly over-estimated the overall force level. This
suggests that the actual deformation resistance of the
material under shear is much lower than that under ten-
sion in RD or TD. With an inverse method, P44 = 3.9
was determined. This observation is in accordancewith
thewell-known fact that theTi–6Al–4Valloy possesses
poor shear strength. It was further verified that the
change in P44 does not alter any simulation results for
dog-bone specimens: in this geometry, shear stresses
are only present in very limited regions and one order
of magnitude lower than the axial stresses, thus of neg-
ligible influence.

3.1.2 Fracture model parameter identification

In the previous section, it was shown that after care-
ful calibration the engineering stress–strain curves for

the uniaxial tensile tests could be accurately predicted
for the slow and the fast case. Following a hybrid
experimental–numerical approach (Dunand and Mohr
2010) to calibrate the fracture model, the loading his-
tory, comprising of the evolution of the stress triax-
iality η, the Lode angle parameter θ̄ , the equivalent
plastic strain ε̄p, the strain rate ˙̄εp, and temperature
T, was extracted from the so-called critical element,
the element exhibiting the highest equivalent plastic
strain ε̄p at fracture elongation. For the dog-bone spec-
imen, it is located at the center on the mid-plane as
indicated by a white dot on the necked cross section in
Fig. 5b.

Due to the profound experimental and numerical
uncertainties in the V-notched rail shear test, espe-
cially inconsistency of boundary conditions, it was
not included in the calibration of the fracture model.
Instead, the fracture parameters {a, c, n f } governing
the shape of the fracture envelope were taken from
the ICL’s material database for a similar titanium alloy
(Tancogne-Dejean et al. 2016). It has to be noted that
without these parameters, an accurate calibration of the
fracture model solely based on uniaxial tensile tests
remains nearly impossible. Additional information
from specimens with different geometries is required
to fully calibrate the fracture model as further shown in
Sect. 4.

The remaining parameters b and γ , controlling the
overall strain to fracture and the strain rate dependence
of the fracture model, were calibrated using the simu-
lation results for the uniaxial tensile tests at different
speeds in a two-step procedure:
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Fig. 4 a V-notched shear
specimen; b photo of a
specimen installed in
fixtures used for the
V-notched rail shear test; c
comparison of the
force–displacement curve
from slow V-notched rail
shear test between an
experiment (VP2, dots) and
simulations for P44 = 3.0
(black line) and P44 = 3.9
(red line). Additionally, the
finite element model of the
specimen gauge section is
shown

(a)

(b) (c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

30

35

Fo
rc

e 
[k

N
]

Displacement [mm] 

 Exp_VP2_Slow
 Sim_P

44
=3.0

 Sim_P
44

=3.9

• First, the evolution of the stress triaxiality η, the
Lode angle parameter θ̄ , and the equivalent plastic
strain ε̄p at the critical element for the slow speed
case is extracted up to fracture elongation, which is
assumed to be the instant of crack initiation (black
solid line in Fig. 5a, b). The parameter b is then
optimized with the strain rate effect switched off
(γ = 0) such that the damage indicator D [Eq.
(19)] is as close as possible to unity at the end of
the loading path.

• Second, the loading paths are obtained from the
fast case (red solid line in Fig. 5a, b), additionally
including the evolution of the strain rate ˙̄εp. The
strain rate sensitivity parameter γ is finally cali-
brated in the same way as b.

Figure 5a, b shows the calibrated fracture model
for the upper boundary case in the three-dimensional
space of η, θ̄ , and ε̄p and its plane stress projection
in the space of η and ε̄p, respectively. Circular dots
denote the predicted onset of fracture by the Hosford–
Coulomb model. It is worth mentioning that the frac-
ture parameters obtained from the lower boundary plas-
ticity parameters yielded higher ductility than those
from the upper boundary ones. Therefore, only one
set of fracture parameters obtained from the latter was
kept and applied to both the upper and lower plasticity
cases in order to obtain the lowest possible response
of the material based on the conservatism in a design
standpoint. The fracture parameters are summarized in
Table 3.
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(a)

(b)

Fig. 5 Representation of the calibrated fracture model for the
upper boundary case together with loading histories to failure of
dog-bone specimens at slow (solid black line) and fast (solid red
line) speeds. The predicted onset of fracture by the Hosford–
Coulomb fracture model is indicated by solid dots. a three-
dimensional envelopes for three exemplary strain rates; b two-
dimensional loci for the plane stress condition in the space of the
stress triaxiality η and the equivalent plastic strain ε̄p

3.2 Numerical simulation of fracture challenge
geometry

The geometry of the challenge specimen is shown
in Fig. 6a. To easily report a crack path, notches,
holes, and outer edges are named alphabetically. The

Table 3 Fracturemodel parameters of the 3.124mmTi–6Al–4V
alloy sheet

a b c n f γ

1.15 1.22 0.0608 0.117 0.0142

(1.24) (0.970) (0.0500) (0.0465) (0.0800)

Values in brackets denote the parameters from the additional full
calibration of the material

detailed dimensions of the specimen given in Fig. 10 of
Boyce et al. (2016) were used for finite element mod-
eling, not taking into account machining tolerances.
Exploiting the geometrical symmetry, only half of the
specimen thicknesswasmodeled. Due to the time limit,
a mesh convergence study for the challenge geometry
was not pursued. Instead, the critical areas around the
notches and holes were discretized with brick elements
(C3D8R) of the same size and aspect ratio (1:1:1) as
used for the dog-bone specimens to minimize a poten-
tial mesh size sensitivity. Fifteen elements were used
over half the thickness. The resulting finite element
mesh is shown in Fig. 6b. The total number of nodes
and elements is about 820,000 and 760,000, respec-
tively.

Two pins, considered to be an analytical rigid cylin-
der with the same radius as the upper and the lower
hole of the specimen, were used to transmit the dis-
placement to the specimen. A frictionless tangential
interaction property was assigned between the speci-
men and the two rigid pins. A penalty contact algo-
rithm was chosen instead of a kinematic one, because
the nodes on the z-symmetric planewere involved in the
boundary condition as well. The upper pin was fixed,
and the lower pin was pulled down at 0.0254 mm/s
for the slow case and at 25.4 mm/s for the fast case
as determined by SNL. The velocity was accelerated
from zero to these target values for one tenth of total
simulation time that resulted in the translation of the
lower pin of about 6.5 mm, which is consistent with a
usual experimental condition. The cross-head is indeed
accelerated, and its displacement is not all transmitted
to the specimen in the early stage due to the compli-
anceofmechanical systems in the testingmachine (note
that the actual velocity profile of the lower pin in chal-
lenge experiments was not provided by SNL). This also
ensures that unnecessary noise in the quantity of inter-
est such as the reaction force at the fixed upper pin is
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Fig. 6 a Geometry and
designations of the
challenge specimen; b finite
element mesh of the
challenge specimen

(a) (b)
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removed by smooth transition from elastic to plastic
domain.

Crack initiation was modeled using the element
deletion technique, and propagation was considered
to be a consecutive crack re-initiation. In total, four
cases were simulated consisting of the upper and lower
boundary cases at slow and fast loading speeds.

3.3 Comparison of challenge geometry experiments
and simulations

Experiments on the challenge geometry were per-
formed by SNL, and the results were unveiled after
all participants had submitted their blind prediction of
the crack path and the force–COD1 curve. Two inde-
pendent labs at SNL, the Solid Mechanics Lab and the
Materials Mechanics Lab, tested a total of 11 samples
for the slow loading condition and 8 samples for the fast
loading condition. All but one sample in the slow test
failed by the path B-D–E–A. SNL pointed out that the
outlier case (A–C–F) was attributed to the pronounced
non-flatness of the specimen.

3.3.1 Crack initiation and propagation

All four simulations performed by the MIT team, both
upper and lower boundary cases at slow and fast speeds,

consistently predicted a crackpath ofB–D–E–A, agree-
ing with the experimental results. Figure 7 visualizes a
representative deformation and crack development for
the slow upper boundary case by means of the damage
indicator. In the early stage, plastic deformation results
mainly from stress concentration around notches and
holes. The ligament between A and C is deformed by
tension whereas two ligaments between B and D and
D and E undergo combined shear and tension. Addi-
tional global displacement leads to a localization of the
deformation in the narrow band of sheared ligaments.
This is due to the material’s weak deformation resis-
tance under in-plane shear. The two ligaments finally
fail almost at the same time. Using a high-speed camera
(20,000 fps), the team from the University of Texas at
Austin performed follow-up experiments for the slow
case. They revealed that the upper ligament between
D and E breaks first, followed almost immediately by
the breakage of the B–D ligament (Gross and Ravi-
Chandar 2016). This interesting observation is captured
by the presentedmodeling approach as shown in Fig. 8.
The element on the boundary of the hole D in the liga-
ment between D and E on the mid plane (red circle) is
deleted first, indicating the onset of fracture. The two
sheared ligaments crack completely in the next frame.
This phenomenon was also observed in the simula-
tion of the fast loading case, but it needs to be further
validated experimentally. Finally, the combination of
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Fig. 7 Sequence of damage accumulation and crack development for the slow upper boundary case with P44 = 3.9 on the mid-plane
(contour is for the damage indicator D interpreted as percentage of ductility that material point already consumed)

Fig. 8 Distribution of the damage indicator D for the slow upper
boundary case when the first element is deleted. This shows that
fracture initiates on the lower boundary of the ligament between
D and E on the mid-plane

bending and tension applied to the remaining ligament
between E and A leads to ultimate failure.

For comparison, the sequenceof deformation assum-
ing a von Mises yield surface (P44 = 3.0), is also

simulated and shown in Fig. 9. The increased defor-
mation resistance under shear stress favors necking in
the A–C ligament. As a result, the crack initiates there
and propagates to the backside edge F. This finding
re-emphasizes the importance of a thorough material
characterization under shear.

However, the use of an anisotropic Hill’48 yield cri-
terion is not the only solution andmay not be correct, as
P44 ends up also influencing the yield stress under ten-
sion in other directions, e.g. 45◦ direction (DD).Bai and
Wierzbicki (2008) showed that Al2024–T351 despite
its isotropy could not be entirely described with the J2
plasticity theory. They proposed a new plasticity model
that has a flow dependence on the stress triaxiality η

and the Lode angle parameter θ̄ , thus capturing a weak
shear strength without altering the nature of isotropy.

3.3.2 Force–COD curve

Figure 10 shows the comparison of the force–COD1
curves between the simulations for the upper (solid red
line) and the lower boundary case (solid blue line) and
all experiments showing a B–D–E–A crack path (grey
lines). The prediction made by other participants can
be found in Fig. 22 of Boyce et al. (2016).

The overall shape of the curves and the force lev-
els are predicted with a high level of accuracy. To
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Fig. 9 Sequence of damage accumulation and crack development for the slow upper boundary case with P44 = 3.0 on the mid-plane

be more quantitative, the force level at COD1 = 1
and 2 mm are overestimated by 7.02 (5.34%) and
2.10% (0.65%) for the slow speed and by 5.66 (4.15%)
and 2.07% (0.16%) for the fast speed in the case of
the upper (lower) boundary simulation. The maximum
force is also slightly over-predicted by 6.30 (3.60%)
and 2.22% (0.07%), respectively. This slight overesti-
mation might have originated partially due to incom-
plete description of plasticity and dimensional discrep-
ancy between actual specimens and the finite element
model.

However, the COD1 at crack initiation, which is
identified by a sudden drop in force, is overshot by
a non-negligible amount for the slow case. The lower
and the upper boundary case over-predict the COD1 by
47.4 and 57.8%, respectively. In contrast, the fast case
is predicted more accurately. The upper boundary pre-
diction overshoots by 20.2%, and the lower boundary
prediction is within the experimental scatter.

A close examination of the results reveals that the
poor prediction of the COD1 at crack initiation is
caused by an inaccurate calibration of not only the frac-
ture model but also the plasticity model. Three main
aspects are:

• First, the dependency of fracture loci on η and
θ , represented by the parameters {a, c, n f }, relied
entirely on the material database. Similar alloys
can possess entirely different fracture properties
depending on detailed plasticity properties, caused
by different manufacturing process and heat treat-

ment. The only type of fracture experiment used in
the calibration process was the dog-bone shaped
specimen whose stress state lies away from the
shear-dominant state revealed to be critical in the
challenge specimen. The V-notched rail shear tests
without slippage would have led to more accurate
description of ductility of the alloy.

• Second, for the slow case the effect of the strain
rate cannot be completely ignored once necking
takes place. Recall that the determination of the
weighting factor α in Sect. 2.2 was solely based
on the engineering stress–strain curve for the slow
speedwith the rate sensitivity and thermal softening
turned off. The calibration of α, m, and ε̇a should
have been performed simultaneously for the engi-
neering stress–strain curves for both the slow and
the fast speed, as will be shown in Sect. 4.

• Third, ductile fracture is a local phenomenon as
a consequence of significant plasticity. Therefore,
plasticity in large deformation i.e. the hardening
curve in the post necking regimeplays a very impor-
tant role. It was pointed out by many researchers
(e.g. Pack et al. 2014; Marcadet and Mohr 2015)
that the plasticity calibration based on a dog-bone
specimen does not allow for an accurate prediction
of large deformation in other specimen geometries
or structural components. Necking in a dog-bone
specimen is governed mainly by material imper-
fection rather than the geometry itself due to its
parallel gauge section. Instead, a flat specimenwith
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Fig. 10 Comparison of force–COD1 curves between experi-
ments and simulations: a at the slow speed; b at the fast speed

symmetric circular cutouts (a notched tension spec-
imen) is recommended.

4 Full characterization of plasticity and fracture
properties based on additional experiments

After the blind round robin, SNL provided the ICL
with a leftover sheet from the challenge to conduct
additional experiments and fully characterize the Ti–

6Al–4V alloy. This section introduces a new testing
program, corresponding numerical simulations, and a
more advanced calibration technique to characterize
the material in a wide range of stress states and strain
rates.

4.1 Experimental program performed at MIT

4.1.1 Experimental setup

It canbe seen from the challengegeometry that there are
two competing fracture mechanisms: tensile fracture
along A–C–F and shear-dominant fracture along B–D–
E–A. Hence, the additional testing program consists of
four types of specimens extracted mainly in RD of the
sheet (Fig. 11) that cover a wide range of stress state
probable in the challenge specimen including uniaxial
tension, plane strain tension, and pure shear:

• Uniaxial tension (UT) specimens with a 40 mm
long and 10 mm wide gauge section. These were
extracted at 0◦, 45◦, and 90◦ with respect to the
sheet rolling direction (RD, DD, and TD, respec-
tively).

• Notched tension specimens (NT) with a 20 mm
wide gauge section, which is reduced to a width
of 10 mm in the center by circular cutouts. Two
different notch radii of R = 20 mm (NT20) and
R = 6.67 mm (NT6) were considered.

• Specimens with a central hole (CH). These speci-
mens with a 20 mm wide gauge section feature an
8 mm diameter hole in the center.

• Smiley shear (SH) specimenswith the 20mmwidth
and two shape-optimized gauge sections obtained
by the methodology described in Roth and Mohr
(2016).

The SH specimens were cut by a wire EDM, while
all other geometries were machined with a CNC end
mill. A random speckle pattern was applied to the sur-
face of specimens prior to testing to allow for the accu-
rate measurement of the relative displacement between
two points on the shoulders of specimens (blue dots in
Fig. 11), using digital image correlation (DIC) (VIC2D,
Correlated Solutions, SC). The initial distance between
these points was 8 mm for UT specimens and 30 mm
for NT, CH, and SH specimens.

All experiments were carried out on an Instron 8080
hydraulic testing machine equipped with custom-made
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Fig. 11 Specimens for the additional testing programat slowand
fast loading speeds. From left to right, specimens for: uniaxial
tension (UT), notched tension with R20 cutouts (NT20), notched
tension with R6.67 cutouts (NT6), tension with a D8 central hole

(CH), and smiley shear (SH). Blue solid dots highlight the posi-
tion of the virtual extensometer for relative displacement and
speed measurements; red solid dots highlight the position for
local axial strain measurements

high pressure clamps. To be consistent with the experi-
ments performed by SNL, two different testing speeds
were considered:

• Low speed, with a cross-head velocity of 2.4
mm/min (0.001/s) for UT (in all three directions)
and 0.4 mm/min for NT, CH and SH specimens.
Images for DIC were obtained using a 1300×1030
pixel monochrome camera with an acquisition fre-
quency of 1Hz.

• High speed, with a cross-head velocity of 2400
mm/min (1/s) forUT (only inRD) and 400mm/min
for NT and CH specimens. The images for DIC
were acquired at a frequency of 1000Hz using a
high speed camera (Phantom 7.3, Vision Research)
with a resolution of 800 × 600 pixels. The high
speed camera was triggered by a TTL pulse from
LabView’s Signal Express, thus assuring the syn-
chronization of data and images.

All experiments were performed at least twice for each
loading speed to ensure repeatability.

4.1.2 Experimental results

The true stress–strain curves measured fromUT exper-
iments in RD, DD, and TD for the strain rate of 0.001/s
are shown in Fig. 12. The material exhibits a much
weaker response in DD, for which the flow stress is
approximately 7% lower than for the other two direc-
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Fig. 12 True stress–strain curves from uniaxial tensile tests
in three different directions (RD, DD, TD) at the slow speed
(0.001/s) and in RD at the fast speed (1/s). Symbols denote exper-
imental results, while solid lines are from single element calcu-
lations

tions. This important information was not included in
the challenge package provided by SNL. The curves in
RDandTDare very similar andmatch those at 0.0006/s
in Fig. 1b. The corresponding Lankford ratios (i.e. plas-
tic strain ratios or r-values)were calculated fromplastic
strains in the axial and the width direction,

r = dε
p
w

dε
p
th

= − dε
p
w

dε
p
w + dε

p
ax

(20)
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Fig. 13 Comparison of the
force–displacement curve
and the evolution of local
axial engineering strain for
a NT20, b NT6, c CH, and
d SH specimen between
experiments (dots) and
simulations (solid lines) at
slow (grey and cyan blue)
and fast (black and navy
blue) speeds. Inserted
figures show the finite
element discretization
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resulting in r0 = 1.38, r45 = 3.76, and r90 = 2.88.
Figure 12 also shows the effect of the strain rate for
a UT specimen in RD. For a strain rate of about 1/s,
it exhibits an 11% higher yield stress than for a strain
rate of 0.001/s.

Figure 13 shows the results of NT and CH experi-
ments at slow and fast speeds aswell as SHexperiments
at the slow speed. The onset of fracture was determined
from the steep drop in the force–displacement curve.
It is worth mentioning that all experiments showed an
excellent repeatability in both the force–displacement
curve and the onset of fracture. Only for theNT20 spec-
imens, a noticeable deviation was observed in the onset
of fracture at the slow speed. Within the framework of
this article, the experiment with the shorter displace-
ment to fracture was used, which can be regarded as a
lower boundary.

In all experiments, a force maximum is observed
before the onset of fracture, which indicates the duc-

tile nature of fracture. However, the shape of the curve
changes with the loading speed. The fast case shows
a significantly higher maximum force (positive strain
rate sensitivity), which occurs much earlier in the dis-
placement than for the slow case. This is followed by a
relatively rapid decrease in the force until the onset of
fracture. Note that in spite of different loading speeds,
the same specimen geometry exhibits the almost iden-
tical displacement to fracture, again with the exception
of the NT20.

To gather deeper insight into the deformation behav-
ior, an axial surface engineering strain was measured
with a 2 mm virtual extensometer lying on the longi-
tudinal axis of symmetry for NT specimens and 1 mm
away from the boundary of the central hole for CH
specimens, as depicted in Fig 11. These measurements
are plotted on the secondary axis of Fig. 13. All cases
but NT20 show an increase in the measured local engi-
neering strain with increasing loading speed.
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4.2 Full calibration of plasticity model

4.2.1 Numerical simulations and parameter
identification

All simulations were carried out using Abaqus/Explicit
with the aforementioned constitutive model imple-
mented throughVUMAT.Taking advantageof the sym-
metries of the specimens, only one eighth was modeled
with C3D8R elements for NT20, NT6, and CH spec-
imens whereas a quarter was discretized for the SH
specimen. The length of each finite element model cor-
responds to half the global extensometer, so that the
measured displacement history can be directly applied
to the nodes on the upper boundary of the model. Crit-
ical areas of the specimens were meshed with an ele-
ment edge length of about 0.1 mm and eight elements
through half the thickness.

The parameters for the plasticity model were deter-
mined as follows:

• The previously identified P matrix (P12 = −0.5,
P22 = 1.0 and P44 = 3.9) for the yield function is
maintained. Instead, this is validated by performing
single element calculations. More detailed explana-
tion is given in Sect. 4.2.2.

• Complete uniaxial tensile tests in three different in-
plane directions reveal a much softer flow stress
in DD. This tendency is different from the Lank-
ford ratios. Thus, a non-associated flow rule is cho-
sen. Using the measured Lankford ratios in conjunc-
tion with the analytical relationships from the non-
associated flow rule,

G12 = − r0
1 + r0

, G22 = r0
r90

1 + r90
1 + r0

and

G44 = 1 + 2r45
r90

r0 + r90
1 + r0

,

G12 = −0.58, G22 = 0.78 and G44 = 5.29. (21)

• Because the same hardening law as in Sect. 3 is
used, the Swift parameters {A, ε0, n} and the Voce
parameters {k0, Q, β} are determined from two
separate fits to the true stress–plastic strain curve at
0.001/s.

• Theweighting factorα of the combinedSwift–Voce
strain hardening law together with the strain rate
sensitivity C , the temperature softening exponent
m, and the adiabatic limit strain rate ε̇a are thenopti-
mized through inverse analysis for NT20 at slow

and high speeds, for which large plastic strains are
attained.

• The isothermal limit strain rate is chosen to be
ε̇i t = 0.001/s, which corresponds to the strain rate
of the slowUTexperiments. Otherwise, all parame-
ters from Sect. 3.1.1 are kept. Table 2 summarizes
the newly optimized parameters in brackets.

4.2.2 Comparison between experiments and
simulations

Normally, the yield stresses under uniaxial tension in
RD, DD, and TD and the equi-biaxial yield stress are
used to uniquely determine the P matrix. However, the
absence of this complete set of data in Sect. 3 led to P44

being inversely identified based on the V-notched rail
shear test.With the true stress–strain curve inDD avail-
able from the additional testing program, single ele-
ment calculations of uniaxial tension in three different
directions were performed and compared with experi-
mental results as illustrated in Fig. 12. A satisfactory
agreement in DD validates not only the previous cali-
bration but also the use of the Hill’48 quadratic yield
function for the Ti–6Al–4V alloy. It can be concluded
that a weak deformation resistance under shear loading
originates from anisotropy rather than the Lode angle
dependency. Remaining discrepancies are attributable
to the difference in the instantaneous hardening mod-
ulus between RD and DD. This anisotropic hardening
could be taken into account by a more complex plastic-
ity model such as the one proposed by Stoughton and
Yoon (2009).

Figure 13 demonstrates that the chosen plastic-
ity model with a new calibration is accurate to cap-
ture the important features of the specimens tested in
Sect. 4.1.1. Overall, the force–displacement curves for
NT and CH specimens were predicted with a high level
of accuracy. Not only the displacement at maximum
force but also the rate at which the force decreases was
predicted very precisely. A minor over-estimation for
the SH specimen is partially due to the limitation of the
Hill’48 quadratic yield function. Here, a more accu-
rate prediction of the force level could be achieved for
P44 = 4.4, but at the same time this would deterio-
rate the accuracy of the true stress–strain curve in DD.
To address this, a more elaborate construction of the
yield function would be required. It is also noted that
the experimental curve shows a substantial softening at
the end due to the formation of a narrow shear band,
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Fig. 14 Evolution of the strain rate and temperature as a function
of the equivalent plastic strain at the critical element of the NT20
specimen at slow and fast speeds

which could not be simulated by the current finite ele-
ment model.

On theother hand, excellent agreementwas achieved
in the evolution of the local engineering strains for
the fast loading cases, while they were slightly over-
predicted for the slow cases. Nevertheless, this indi-
cates that necking, the phenomenon preceding ductile
fracture, was modeled accurately. It is worth noting
that the local engineering strains at two different speeds
evolve differently early in the experiment. This behav-
ior, leading to the curves intersecting each other, was
captured in the simulations (navy and cyan blue lines
in Fig. 13).

4.3 Full calibration of fracture model

With the calibration and validation of the plasticity
model completed, the loading path to fracture was
extracted from the critical element in each simulation
using the methodology described in Sect. 3.1.2. Fig-
ure 14 gives an example of the evolution of the strain
rate and temperature as a function of the equivalent
plastic strain at the critical element of the NT20 speci-
mens. It can be observed that the strain rate increases by
approximately a factor of 5 over the initial strain rate.
For this reason, it is important to take into account the
effect of strain rate hardening even for the slow case.
The temperature remains constant for the slow case,
while it increases by approximately 150◦C for the fast
case. However, a thermocouple was not used in the

Fig. 15 Loading paths to fracture for the specimens included
in the additional testing program at slow (black lines) and fast
speeds (red lines). On each curve, the fracture strain predicted
by the rate-dependent Hosford–Coulomb model is indicated by
solid dots. Additionally, the fracture loci at three different strain
rates are illustrated

experiment, so quantitative comparison of temperature
was not performed.

Figure 15 shows the evolution of the equivalent plas-
tic strain ε̄p against the stress triaxiality η for all spec-
imen geometries. The slow cases are drawn in solid
black lines and the fast cases are plotted with solid red
lines. The predicted onset of fracture by the calibrated
rate-dependent Hosford–Coulomb fracture model is
denoted by solid dots. An accurate prediction was
achieved for the parameters a = 1.24, b = 0.97, c =
0.05, n = 0.0465, and γ = 0.08. In addition, the frac-
ture loci for the strain rates of ˙̄εp = 0.001/s (black
W-shaped curve), ˙̄εp = 1/s (red), and ˙̄εp = 100/s
(blue) are illustrated. Note that the loading path evolves
differently for the same geometry at different loading
speeds. This is mainly due to the change in harden-
ing behavior at different strain rates and temperatures.
For slow cases, the maximum force occurred at about
half the displacement to fracture, while for fast cases, it
was observed significantly earlier, which was followed
by a prolonged decrease in the force level. In addition
to that, due to the limited accuracy in predicting the
behavior of the SH specimen, the strain to fracture has
to be considered a lower boundary.

5 Discussion

Following the full calibration based on the comprehen-
sive experimental program, both the plasticity model
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Fig. 16 Contour plot of the
damage indicator D for the
challenge specimen on the
mid-plane just before crack
initiation at a the slow speed
and b the fast speed.
Observe the formation of a
shear band

(a) (b)

and the fracture model were applied to the chal-
lenge problem, using the same numerical method as
described in Sect. 3.2.

5.1 Improvement in prediction by full characterization

The crack path remained unchanged as B–D–E–A, and
the sequence of deformation, localization, and crack
development were very similar to what was observed
in the initial blind simulation (see Fig. 7). Figure 16
shows a damage distribution on the mid-plane right
before crack initiation for slow and fast speeds. It is
observed that deformation is localized along a narrow
band in both cases. The width of the localization band
in the fast case is much narrower than in the slow case.
This is because the strain rate within the band for the
fast case is well above the adiabatic limit ε̇a . As a result,
the temperature rise and the consequent softening are
more pronounced, leading to more localized deforma-
tion. Both cases show higher damage accumulation in
the ligament between D and E than in the ligament
between B and D. Figure 17 clearly demonstrates that
the ligament betweenDandEbreaks earlier for both the
slow and the fast case, which is in line with the exper-
imental observation for the slow case by Gross and
Ravi-Chandar (2016) (Fig. 17c). It is stressed that two
ligaments fracture almost with no time elapse, which
required a very tiny field output interval to capture the
moment.

The force–COD1 curves predicted by the new simu-
lations are plotted with green solid lines in Fig. 10. The
force level is still slightly over-predicted, but the shape
of the curves agrees very well with the experimental
data. A great improvement is obtained in the COD1 at
crack initiation. Its value at both loading speeds lies
well within the experimental scatter. Compared to the
fracture loci determined in Sect. 3.1.2 (Fig. 5b), a new
fracture calibration revealed a significantly lower duc-
tility at 0.001/swith amuchhigher strain rate sensitivity
(Fig. 15). This made it possible to improve the COD1
at crack initiation for the slow case without worsening
the prediction for the fast case. It has to be noted that all
simulations already slightly overestimate the slope in
the elastic region. This might have been caused by the
compliance of the cylindrical connector pins placed in
the lower and upper holes of the specimens. A simple
analogy can be made with two springs in series, where
the overall stiffness is less than that of a single spring.
Li et al. (2010) showed a possible strong influence of
the machine stiffness on the force–displacement curve
in their work.

5.2 Investigation of loading path at critical points

Figure 18 shows the loading path to fracture for two
critical elements for the slow (black) and the fast case
(red). The solid dots represent the predicted onset of
fracture from the model. Fracture starts in the center of
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(a) (b) (c)

Fig. 17 Moment of fracture of the D–E ligament ahead of the
B–D ligament: a finite element simulation for the slow speed
(contour plot of the damage indicator D just after the breakage

of the D–E ligament); b simulation for the fast speed; c experi-
mental evidence observed by the team of the University of Texas
at Austin (adapted from Fig. 90b in Boyce et al. 2016)

Fig. 18 Loading histories at two critical points in the D–E liga-
ment for slow (black) and fast speeds (red); one from the element
located in the center (solid line) and the other from the element
located on the lower boundary (dashed line)

the D–E ligament on the mid-plane for the slow case
with a stress state evolving from pure shear (η = 0) to
uniaxial tension (η = 1/3) (see black solid line). This
is in contrast to the blind prediction in Fig. 8. In the fast
case, fracture commences from the lower boundary of
the D–E ligament on the mid-plane with a stress state
changing from uniaxial tension to plane strain tension
(η = 1/

√
3) (see red dashed line). When examining

an element from the center of the D–E ligament on the
mid-plane (red solid line), one can observe that it fails
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Fig. 19 Comparison of force–COD1 curve between the sample
27 and simulations with four different friction coefficients all the
way to ultimate failure of the challenge specimen

almost at the same time and in a similar final stress
state. In general, the onset of fracture occurs under a
combined shear and tensile stress state for both speeds.

5.3 Effect of friction between pins and challenge
specimen

There have been a number of discussions among partic-
ipants over what boundary conditions are appropriate
to simulate the challenge problem such as modeling of
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(a) (b) (c)

(d) (e)

Fig. 20 Deformed configuration of the challenge specimen right before ultimate failure (contour plot indicates the distribution of
damage indicator): a experiment (sample 27); b µ = 0.0; c µ = 0.2; d µ = 0.4; e µ = 0.6

pins, friction between pins and the specimen, etc. This
section is devoted to partially addressing the issue of
friction coefficients.

The team E from France performed DIC analysis on
the video clip for the challenge sample 27 at the fast
speed provided by Sandia after the challenge ended.
This allows for the comparison of the force–COD1
curve between experiment and simulation even after the
COD gauge jumps off the sample due to catastrophic
crack propagation from B to E and subsequent vibra-
tion. The comparison with the simulations with four
different friction coefficients all the way to the ulti-
mate failure (breakage of the E–A ligament) is shown
in Fig. 19. It is clearly seen that the friction coefficient
does not have a noticeable effect on the COD1 at the
first crack initiation. It slightly increases the overall
force level. However, its influence becomes significant
in the later stage. Increasing friction shortens theCOD1
at the complete failure of the specimen. Frictionless
condition tracks the experimental result the best. The

oscillation on the force prediction is attributed to not
entirely removing the inertia effect by using explicit
time integration scheme and mass scaling. Figure 20
compares the deformed shape of the challenge speci-
men just before ultimate failure. The casewith zero fric-
tion matches the experimental shape most accurately.
With no doubt, a higher friction coefficient prevents rel-
ative rotation between two material blocks connected
to the E–A ligament more effectively, which changes a
dominant stress state in the E–A ligament. Therefore,
the COD1 at the complete failure is highly affected by
friction. A simple qualitative analysis casts one more
vote for the frictionless contact.

6 Conclusion

The ICL at MIT has successfully completed the sec-
ond Sandia FractureChallenge concerning an S-shaped
challenge specimenmade fromaTi–6Al–4V sheetwith
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two starter notches and three holes. A blind prediction
of the crack path and the force–COD1 curve during
the tensile test of the specimen at slow and fast load-
ing speeds was made, using a Hill’48 yield function
and a modified Johnson–Cook model incorporating a
combined Swift–Voce strain hardening law. Treating
temperature as an internal variable, its evolution was
approximated without solving thermal field equations.
The onset of fracture was predicted by a rate-dependent
Hosford–Coulomb fracture initiation model. After the
blind prediction, a leftover sheet was fully character-
ized with a comprehensive testing and modeling pro-
gram. A significant improvement in the prediction was
achieved. The key findings are summarized as follows.

1. In the framework of a non-associated flow rule, the
Hill’48 anisotropic yield function is able to pre-
dict the plastic anisotropy of the Ti–6Al–4V sheet
with great accuracy and computational efficiency.
To obtain an even higher level of accuracy, espe-
cially for uniaxial tension in the diagonal direction
and the smiley shear specimen, a more complex
yield function and anisotropic hardening could be
required.

2. An accurate description of the hardening curve at
large strains is crucial for predicting ductile frac-
ture. It is achieved by linearly combining the Swift
and theVoce strain hardening laws. It is emphasized
that the calibration should be based on notched ten-
sion rather than uniaxial tension (dog-bone) spec-
imens. Furthermore, even when treating temper-
ature as an internal variable instead of perform-
ing a fully-coupled thermo-mechanical analysis,
the Johnson–Cook strain rate hardening and tem-
perature softening functions are able to accurately
model the dynamic flow stress of the Ti–6Al–4V
sheet.

3. The strain rate dependent Hosford–Coulomb frac-
ture initiation model can accurately predict the
onset of fracture in the Ti–6Al–4V sheet at dif-
ferent strain rates. Besides the global crack path,
B–D–E–A, and the COD1 at fracture, the applied
plasticity and fracture modeling approach is able
to correctly predict the first crack initiation in the
D–E ligament.

4. The low yield stress under shear turns out to orig-
inate from anisotropy, so the effect of the Lode
angle can be neglected in the plasticity standpoint.
However, its influence on ductile fracture cannot

be ignored to ensure the accuracy of predicting the
onset of fracture.
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