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Abstract The second Sandia Fracture Challenge
illustrates that predicting the ductile fracture of Ti-
6Al-4V subjected to moderate and elevated rates of
loading requires thermomechanical coupling, elasto-
thermo-poro-viscoplastic constitutive models with the
physics of anisotropy and regularized numerical meth-
ods for crack initiation and propagation. We detail
our initial approach with an emphasis on iterative cal-
ibration and systematically increasing complexity to
accommodate anisotropy in the context of an isotropic
material model. Blind predictions illustrate strengths
and weaknesses of our initial approach. We then revisit
our findings to illustrate the importance of including
anisotropy in the failure process. Mesh-independent
solutions of continuum damage models having both
isotropic and anisotropic yields surfaces are obtained
through nonlocality and localization elements.

Keywords Titanium alloys · Ti-6Al-4V · Fracture ·
Failure · Localization · Anisotropy · Viscoplasticity ·
Void evolution · Thermomechanical · Regularization ·
Nonlocality · Surface elements

Through this work, we seek to illustrate Sandia Cal-
ifornia’s modeling approach to the Sandia Fracture
Challenge 2 (SFC2). The first four sections of the paper,
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Initial approach, Constitutive modeling, Modeling the
challenge geometry, and Blind predictions, attempt to
encapsulate our values, intuition, and simulated under-
standing spanning the brief period of the competition.
We then revisit our predictions in light of new physics
and mesh-convergent (regularized) numerics in Revis-
iting the challenge problem and Regularization of the
failure process, respectively. Finally, Conclusions and
future work illustrates aspects of the physics, numer-
ics, and processes needed for a team to model ductile
fracture.

1 Initial approach

The material, time scale, and mode of loading dictated
our approach to solving Sandia Fracture Challenge
2. Provided experimental data and literature advocate
models that incorporate rate dependence (Follansbee
and Gray 1989), temperature dependence (Adminis-
tration 2013), and anisotropy in both the yield stress
(Hammer 2012) and the hardening. Void evolution
must include multi-axial nucleation, growth, and coa-
lescence. The low thermal conductivity of titanium
and the time scales for characterization and testing
requires thermomechanical coupling and implicit time
integration. Local material softening requires regular-
ized methods for solution.

We used the Sierra multi-physics finite element
analysis software suite to capture the required physics
and numerics for solution. We modeled the solid
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mechanics response with an implicit solution scheme
in the Sierra/SolidMechanics (SierraSM) application,
a Lagrangian, 3D code (Sierra/SM Development Team
2015). SierraSM contains a versatile library of contin-
uumand structural elements, and an extensive library of
material models. For all SFC2 related simulations, we
used eight-noded hexahedral elements with full inte-
gration of the deviatoric stress response and volume-
averaging of the hydrostatic stress response. The base-
line mesh had element side lengths on the order of
170µmin failure regions. Tomodel crack initiation and
propagation, we initially removed elements from the
simulation according to a continuum damage model.
Exploratory studies were also conducted with regu-
larized methodologies (nonlocality, surface elements).
Unstable modes of fracture were resolved with implicit
dynamics (HHT time integrationwith numerical damp-
ing Hilber et al. 1977).

2 Constitutive modeling

In the absence of a model that could capture all of the
desired physics, we used the SierraSM isotropic Elasto
Viscoplastic (EV) material model for the simulations
in our blind predictions because it contains most of the
physics required to accurately model the SFC2 chal-
lenge problem, such as rate and temperature depen-
dence, and damage evolution under stress states with
and without positive triaxiality. However, since the EV
model does not support anisotropic plastic behavior, the
anisotropy evident in the provided data was included
through other means, as described in detail in the fol-
lowing section. An anisotropic Hill plasticity model
was later modified to include damage evolution. The
new approach is described in the section devoted to
revisiting the challenge problem.

The EV plasticity model, a variation of the model
presented in Bammann et al. (1995), is an internal state
variable model for describing the finite deformation
behavior of metals. The EV model incorporates strain
rate and temperature sensitivity, as well as damage,
and tracks history dependence through the use of inter-
nal state variables. The kinematics and thermodynam-
ics for the model are presented in Brown and Bam-
mann (2012), which are based on the previous work
by Kröner (1960), Lee and Liu (1967), Bammann and
Aifantis (1987), and Coleman and Gurtin (1967). In its
full form, the model has considerable complexity, but

most of the material parameters and resulting behavior
are optional. Although the full kinematics will not be
presented, a multiplicative decomposition of the defor-
mation gradient is used,

F = FeF pFθ Fφ, (1)

where Fe and F p represent the elastic and plastic por-
tions of the deformation, and Fθ and Fφ represent the
portions due to thermal expansion and porosity evolu-
tion, respectively.

Let Vr , and Vφ denote an elementary volume in the
reference configuration and the voided configuration,
and Vv denote the volume of voids in the voided con-
figuration. In what follows, we assume in the reference
configuration, Vr is fully dense, unloaded, and at room
temperature. Then

Vφ = Vr + Vv. (2)

The damage is then defined as

φ = Vv

Vφ

. (3)

To simplify some of the derivations that follow, a dam-
age measure relative to the reference configuration is
defined as

φ̃ = Vv

Vr
, (4)

from which it follows that

φ̃ = φ

1 − φ
. (5)

The damage can then be written as the product of the
number of voids per volume η = N

Vr
, and the average

void volume vv:

φ̃ = ηvv. (6)

The form of the material model specific to our use
for SFC2 will now be outlined for the simplified case
of uniaxial tension. For this simplified case, the stress
evolves according to

σ̇ =
(
Ė

E
− φ̇

1 − φ

)
σ + E (1 − φ)

(
ε̇ − ε̇p

)
(7)
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where E is Young’s modulus, ε is the total strain, εp is
the plastic strain, and φ is the damage, defined as the
void volume fraction. The effective Young’s modulus
Eeff is assumed to be a function of temperature θ and
damage, in the form

Eeff = E(θ)(1 − φ). (8)

The flow rule is defined by

ε̇p = f sinhn
(

σe
1−φ

− κ

Y
− 1

)
(9)

where σe is the effective stress; Y is a material para-
meter representing the rate independent, initial yield
stress; f and n are material parameters that govern the
material rate dependence; and κ is the isotropic harden-
ing variable for the material, which evolves according
to a hardening H minus dynamic recovery Rd model
originally proposed by Kocks and Mecking (1979):

κ̇ = κ
μ̇

μ
+ (H − Rdκ) ε̇p. (10)

where μ represents the temperature-dependent shear
modulus. Although the effective shear modulus in the
homogenized material decreases with damage through
a factor 1−φ, the isotropic hardeningvariable is defined
in the matrix material. Although f , n, H , and Rd can
be temperature-dependent functions, they were treated
as constants in all simulations performed in this work.
Heat generation due to plastic work is calculated with

q̇ = βσ ε̇p (11)

where thematerial parameter β is the fraction of plastic
work dissipated as heat.

Moving to a multiaxial formulation, the EV model
accounts for damage evolution through two mecha-
nisms, namelyvoid nucleation andgrowth.Voidgrowth
is driven by stress triaxiality while void nucleation is
dependent on J3 and J2 allowing for damage accu-
mulation in pure shear stress states. Similar to Horste-
meyer and Gokhale (1999), void nucleation is modeled
according to

η̇ = ηε̇pN1

[
4

27
− J 23

J 32

]
(12)

where N1 is a material parameter. The deviatoric stress
si j invariants are given by

J2 = 1

2
si j si j (13)

and

J3 = 1

3
si j s jkskl . (14)

In the absence of nucleation, growth of existing voids
is assumed to occur according to the relation proposed
in Cocks and Ashby (1980) and subsequently used
in Bammann et al. (1995):

φ̇ =
√
2

3
ε̇p

1 − (1 − φ)m+1

(1 − φ)m
sinh

[
2 (2m − 1)

2m + 1

〈p〉
σe

]

(15)

where m is the damage exponent, p is the trace of the
Cauchy stress σi j and σe = √

3J2. We can re-express
damage evolution in terms of the average void volume
vv and the void density η,

v̇v =
√
2

3
ε̇p

1

η
(1 + ηvv)

[
(1 + ηvv)

m+1 − 1
]

· sinh
[
2 (2m − 1)

2m + 1

〈p〉
σe

]
. (16)

By an argument analogous to the one derived in Brown
and Bammann (2012), the effect on the average void
volume of newly nucleated voids of volume vvo can be
included in the following manner:

v̇v =
√
2

3
ε̇p

1

η
(1 + ηvv)

[
(1 + ηvv)

m+1 − 1
]

· sinh
[
2 (2m − 1)

2m + 1

〈p〉
σe

]
− (vv − vvo)

η̇

η
. (17)

The first term accounts for growth under positive triax-
iality, whereas the second term can reduce the average
void volume due to addition of smaller voids into the
population. This latter effect is neglected in Horste-
meyer and Gokhale. Taking the time derivative of
Eq. (6), we get

˙̃
φ = η̇vv + ηv̇v (18)

which, through combination with Eq. (17) leads to the
evolution equation for damage under nucleation and
growth:
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˙̃
φ =

√
2

3
ε̇p

(
1 + φ̃

) [(
1 + φ̃

)m+1 − 1

]

× sinh

[
2 (2m − 1)

2m + 1

〈p〉
σe

]
− η̇vvo (19)

or relative to the total volume,

φ̇ =
√
2

3
ε̇p

1 − (1 − φ)m+1

(1 − φ)m

× sinh

[
2 (2m − 1)

2m + 1

〈p〉
σe

]
+ (1 − φ)2 η̇vvo. (20)

Equations (12) and (20) must be solved in order to
track the evolution of damage, whereas Eq. (17) is
unnecessary since the average void volume can be
post-processed at any given time step using Eqs. (5)
and (6). The final form is very similar to the damage
evolution in Nahshon andHutchinson (2008), although
they do not explicitly provide evolution equations for
either average void volume or void density. The dam-
age model requires the definition of the initial damage
φ0, the initial size of newly-nucleated voids vvo, and
the initial void count per volume η0.

Void coalescence is modeled through φcoal . The
material point is unloaded for φ ≥ φcoal . In contrast
to surface elements, elements are removed (element
death) whenever any integration points satisfy the coa-
lescence criterion, since stabilization of fully integrated
formulations is problematic with loaded and unloaded
integration points.

Although not used directly for our blind predictions,
a rate and temperature independent, Hill plasticity (HP)
materialmodel (Hill 1948)was used to guide our choice
of EV material model parameters. The HP model is an
anisotropic material model where the yield criterion
takes the form

f 2Y
(
σi j

) ≡ F (σ22 − σ33)
2 + G (σ33 − σ11)

2

+ H (σ11 − σ22)
2 + 2Lσ 2

23

+ 2Mσ 2
31 + 2Nσ 2

12 = σ̄ 2
e

(
εp

)
(21)

where σi j are the stress components in the principal
material directions and the coefficients F, G, H, L,
M and N relate the yield stresses of the material in
each principal material direction to the Hill effective
stress σ̄e. In SierraSM (2015), the yield coefficients are
not explicitly specified. Instead the ratios of the yield
stresses in each material direction are defined relative
to a reference yield stress σ̄Y such that

Rii = σ
y
ii

σ̄Y
(22)

and

Ri j = √
3
τ
y
i j

σ̄Y
(23)

where σ
y
ii and τ

y
i j are the yields stresses in the normal

and shearmaterial directions, respectively. These ratios
are then used to calculate the yield surface coefficients.
During SFC2, the HP material model did not include
themicromechanics of void nucleation and growth, and
consequently, could not be used for blind predictions.

2.1 Iterative calibration

Since different material parameters often have a simi-
lar effect on the simulation load displacement curves,
several simulations can be required to determine the
appropriate parameter to elicit the desired effect from
the models. To avoid this convolution of material para-
meters and physics, the calibration process involved an
iterative approach where the complexity of the mate-
rial model was increased as needed to capture char-
acteristics evident in the available data. Initially, the
yield (Y , f , and n) and hardening (H and Rd ) para-
meters, as defined in Eqs. (9) and (10) respectively,
were calibrated to the provided pre-peak load tensile
data using a non-linear, least squares algorithm where
the objective function consisted of the error between
the provided experimental data and model data. Since
the rate dependence for the initial yield stress is not
uniquely constrained by two data points, we used rate
dependence data from Follansbee and Gray (1989) to
supplement the data at two rates provided for the chal-
lenge. As shown in Fig. 1, the isothermal tension test
simulations with this initial parameter set matched the
experimental data well before peak load, but did not
yield structural softening sufficiently after peak load.

Therefore, structural softening at higher plastic
strains was incorporated through additional model
parameters. Structural softening can be accomplished
through increasing the dynamic recovery parameter or
through thermal softening due to conversion of plas-
tic work to heat. Since structural softening was more
significant in the higher strain rate experiments, ther-
mal effects were assumed to cause the observed post-
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(a)

(b)

Fig. 1 Model calibrations of the provided a fast rate and b slow
rate tensile experimental data. Black-outlined circles represent
the experimental data and color circles represent the calibrated
model data for various thermal boundary conditions. a Fast rate:
25.4mm/s. b Slow rate: 0.0254mm/s

peak loadbehavior.Usingdata available inMMPDS-08
(Administration 2013), temperature dependence was
added to the initial yield stress and the elastic mate-
rial properties. MMPDS-08 also provided data for
adding temperature dependent thermal parameters such
as thermal conductivity, thermal expansion and specific
heat to theTi-6Al-4Vmaterialmodel. Sources in the lit-
erature for the material parameter β in Eq. (11) exhibit
significant inconsistencies. Three of these sources pre-
sented β as a function of plastic strain, each with dif-
fering trends and bounds (Macdougall and Harding
1999;Nemat-Nasser et al. 2001;Galan et al. 2013).Due
to these inconsistencies and the inability of thematerial
model to accommodate β as a function of plastic strain,
we chose β = 0.8 based on engineering judgment and
simulation results.

The addition of thermal properties to the calibra-
tion simulations required the investigation of thermal
boundary conditions. Figure 1 shows simulation results

for four different thermal boundary conditions: (1)
isothermal with no heating due to plastic work, (2)
coupled thermomechanical with heating due to plastic
work, conduction, radiation and natural convection, (3)
coupled thermomechanical with heating due to plastic
work and conduction, and (4) strictly mechanical with
adiabatic heating due to plastic work. For condition (2),
conservative approximations were made for the nat-
ural convection coefficient and emissivity to increase
the effects of these boundary conditions on the sim-
ulations. An infinite plate model (Çengel 2007) pro-
vided the natural convection coefficient of 12.0 W

m2K
and the emissivity was set at a constant value of 0.31.
These simulation results demonstrate that the tension
test simulations require a coupled thermo-mechanical
model for both rates. Specifically, the adiabatic bound-
ary condition is sufficient for the fast rate test but a
coupled model with conduction is required to model
the slow rate. These findings stem from the fact that a
large region of the tensile specimen, the gauge section,
deforms homogeneously prior to necking. Despite con-
duction into the grips for the slow rate, the temperature
still increases ∼30 ◦C. Since the shear test and chal-
lenge specimen simulations are much different ther-
mal boundary value problems than the tension test, all
further simulations using the EV material model were
coupled with conduction.

After the plasticity material parameters were cali-
brated, damage was added to the material parameter
set through the void growth damage model in Eq. (15).
The damage parameters were chosen based on prior
experience with the material model and a study of the
model sensitivity to the damage exponentm. A value of
m = 6 caused the simulations to fail at a similar point as
the experimental data; however, due to variability in the
data, this parameter had high uncertainty. Adding the
void growth damagemodel completed the material cal-
ibration to the provided tension test data. Figure 2a con-
tains results from the calibrated tension simulations.

The next calibration iteration focused on the shear
test.Using thematerial parameters calibrated to the ten-
sion data, a model of the shear test did not accurately
predict the yield behavior of the specimen thus indi-
cating that the material exhibits an anisotropic yield
surface. Since the material model does not support
an anisotropic yield surface, a separate material para-
meter set was calibrated to the shear data. By reduc-
ing the initial yield parameter Y by 17% to obtain a
shear yield Y s = 411MPa, the shear simulation results
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(a)

(b)

Fig. 2 Comparisons of the calibrated models to the tension and
shear experiments for the fast and slow loading rates. a Tension
data and calibrated model results. b Shear data and calibrated
model results

improved and compared well to the test data. Addi-
tionally, since the triaxiality driven void growth model
cannot evolve damage in pure shear, sensitivity studies
for the void nucleation parameters led to the selection
of the appropriate N1, φ

η
0 and η0 parameters needed

to capture the shear test. Adding these void nucleation
parameters to the damage model had no effect on the
tension test simulations. Figure 2b contains the cali-
brated shear simulation results. Table 1 lists thematerial
parameter values for both the tension and shear para-
meter sets where the only difference between the ten-
sion and shear parameters sets are the yield stresses Y t

and Y s , respectively. Through this iterative calibration
process we span moderate triaxialities in the necked
tensile specimen to nearly pure shear in the shear spec-
imen. Although the components of the damage model
have been partitioned into triaxiality-driven growth and
shear-dominated nucleation, we seek to employ the
model for void evolution under mixed-mode (tension–
shear) loadings. The quality of our blind predictions

Table 1 Calibrated material parameters

Y t = 493MPa Y s = 411MPa H = 3084MPa

Rd = 13 β = 0.8 f = 1 × 10−6

n = 26 m = 6 N1 = 54

φ0 = 1 × 10−4 φ
η
0 = 2 × 10−5 η0 = 5

φcoal = 0.15

will hinge on the extent to which our models are cal-
ibrated to experimental data that reflect the fields that
evolve in the challenge geometry.

Since a local damage model was initially used for
both calibration and prediction, the same element size,
approximately 170µm, was employed for the baseline
challenge prediction. Although this does not remedy
the mesh-dependence in the solution, a common ele-
ment size attempts to establish a baseline discretization
for field resolution. The bifurcation of the solution is
fundamentally addressed in latter sections in which we
eliminate the mesh dependence of the solution using
nonlocality and surface elements that regulate the fail-
ure process to a plane.

3 Modeling the challenge geometry

Modeling of the challenge specimen required careful
attention to the geometry, mesh, boundary conditions,
and material response. All simulations consisted of
models constructed at the nominal dimensions accord-
ing to the specimen drawings. For the mesh, the ele-
ment type and size was previously described. A view
of themesh is shown in Fig. 3. The following focuses on
our selection of the appropriate boundary conditions,
incorporation of the aforementioned anisotropic yield
response of the material, and failure representation.

The solid mechanics boundary conditions consisted
of a symmetry boundary condition along the half-
thickness plane of the specimen and approximations
of the pin boundary conditions in the test. Frictional
contact was not modeled in SierraSM due to the time
constraints of the project conflictingwith the significant
computational overhead of solving contact. Instead,
frictionless pins were approximated by a half-pin con-
tiguously meshed into the specimen with the center
node line having prescribed displacements. The top pin
centerline was fixed and the bottom pin centerline was
displaced downward with a rate corresponding to the

123



Sandia fracture challenge 2 185
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COD2

F

A

E

B

Fig. 3 On the left, Block 2 is outlined in red on the undeformed
model geometry. Hole and notch labels are included for desig-
nations of the crack path. On the right, the deformed geometry
is shown after the crack has propagated into the upper hole in an
unstable manner

test rates.As stated previously, themodels for both rates
were coupled and included heating due to plastic work.
The thermal boundary conditions included symmetry
at the half-thickness plane and conduction through the
body.

After determining the appropriate boundary condi-
tions, we incorporated the anisotropic yield surface into
the challenge specimenmodel. Initial simulations using
the EV material model using the tension calibrated
yield stress Y t predicted that the specimen would fail
in the upper notch through ligaments A–C–F. Since the
material exhibits anisotropic yield behavior, we cal-
ibrated the HP material model to the data to deter-
mine where the challenge specimen would plastically
localize and ultimately fail. The calibrated HP mater-
ial model has identical hardening behavior to the EV
material model and σ̄Y is Y t scaled by the EV rate
function depending on the plastic strain rates observed
in the simulation. All yield stress ratios are set to 1
except for the shear yield ratio in the in-plane direc-
tions which is R12 = 0.87. The challenge specimen
simulations using the HP material model localized in

the lower notch through ligaments B–D–E–A which
illustrates the importance of the anisotropic yield sur-
face in predicting the correct crack path for this prob-
lem. Without the HP material model, we would have
predicted an incorrect crack path.

Since the EV material model cannot accommodate
an anisotropic yield surface, the model of the specimen
was split into two element blocks: Block 1 with a yield
corresponding to the tension initial yield Y t and Block
2with a lower yield Y s∗ = 441MPa since that region is
initially predominantly in shear. Figure 3 depicts Block
2 outlined in red with the remaining elements belong-
ing to Block 1. Since the stress state in Block 2 does not
directly correspond to that of the failure region in the
shear model, a simulation of the challenge specimen at
the slow rate using the HP material model influenced
the selection of Y s∗ = 441MPa. Due to the slow rate
simulation being nearly isothermal, a direct compari-
son of challenge geometry simulations using the EV
material model could be made to simulations using the
HP material model. As a result, the correct Y s∗ was
determined through a calibration process where Y s∗
was varied until the global load displacement curves
between the two models agreed. Figure 4 shows the
load versus COD1 curves for Y s∗ values correspond-
ing to the shear test yield, the calibrated value used
in the blind predictions, and 452MPa. During the Y s∗
calibration, the HPmaterial model was still in develop-
ment andwould not converge after peak load; therefore,
the model results after peak load were ignored for the
calibration process.

With all material parameters and boundary con-
ditions determined, efforts shifted toward obtaining

Fig. 4 Effect of Y s∗ on the challenge specimen simulation load
versus COD1 curves and a comparison to the challenge specimen
simulation using the HP material model

123



186 K. N. Karlson et al.

implicit solutions throughout the failure process. The
initial attempt was to automatically apply element
death to elements when damage reached φcoal . How-
ever, the nonlinear, implicit dynamics solution could
not converge to acceptable residuals (<10−8 times the
L2 norm of the reaction forces) at the onset of element
death. Therefore, an alternative approach was taken
where blocks of elementswere removedmanually once
the majority of elements in the blocks had damage
near φcoal . In this manual element removal process,
the simulations were stopped, the element blocks with
the appropriate damage were removed, the new geom-
etry was relaxed in a quasi-static simulation with arti-
ficially high numerical damping, and then the problem
was restarted at the point previous to the element block
removal. This process was used to obtain the blind pre-
dictions and suggested that the crack propagated unsta-
bly through ligaments B–D and D–E. To verify this
unstable crack propagation, simulations using local-
ization elements (described in section devoted to regu-
larization) seeded along the crack path were used. The
simulations with localization elements yielded implicit
solutions through the entire crack propagation process
without manual element removal and showed that the
cracks propagated unstably. Since the thermal solution
application in Sierra does not currently support local-
ization elements, these simulations were only used to
provide insight into the crack propagation process and
were not used to provide our predictions for the chal-
lenge problem.

4 Blind predictions

Using the material model parameters and boundary
conditions specified in the previous sections, the chal-
lenge specimen model predicted failure through crack
path B–D–E–A for both rates. For both rates, the
crack propagated unstably throughB–D–E, as shown in
Fig. 3, while the remaining ligament carried load until
tensile failure occurred much further into the simula-
tion (375s for the slow rate and 0.36 s for the fast rate).
More specifically, the crack initiated at the plane of
symmetry in notch B and then propagated through lig-
ament B–D and ligament D–E, respectively. The crack
propagation took place over approximately 12ms for
the slow rate and approximately 60µs for the fast rate.

Table 2 lists the maximum loads and CODs at crack
initiation for each rate and Fig. 5 displays the pre-

Table 2 Results predicted using the challenge specimen model

Displacement
rate (mm/s)

Peak load
(N)

COD1 @ crack
initiation (mm)

COD2 @ crack
initiation (mm)

25.4 20,310 2.966 2.644

0.0254 20,244 4.359 3.451

(a)

(b)

Fig. 5 The load versus COD1 predictions for the slow rate and
the fast rate. Lower, median and upper correspond to our lower
bound, nominal and upper bound predictions. a Fast rate COD1
predictions. b Slow rate COD1 predictions

dicted load versus COD1 for both rates. The upper and
lower bounds were chosen using intuition gained from
the calibration process. The only parameter change for
the lower bound prediction was decreasing Y s∗ to Y s .
The parameter changes for the upper bound prediction
included increasing Y s∗ to 451MPa, decreasing Rd to
12 and decreasing β to 0.6. The method described in
the previous section for obtaining an implicit solution
through unstable crack propagation led to the gaps in
the data for both the median and upper bound slow rate
simulations.
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Fig. 6 Comparison of temperatures predicted by the slow rate
simulation to experimental results. Position 1 is on ligament B–D
and position 2 on ligament A–C

Figure 6 compares temperatures predicted by the
simulation to measurements taken at two locations on
the challenge geometry for the slow rate. A similar
comparison could not be made for the fast rate due
to uncertainties in the experimental measurements. The
experimental temperature data and information regard-
ing its validity is reported in the main SFC2 article
(Boyce et al. 2016). In summary, the temperatures were
taken using thermocouples attached to the surface of
the challenge geometry at two locations: position 1 and
position 2. Position 1 is located approximately in the
center of ligament B–D and position 2 is located near
the center of ligament A–C.

Although the positions of the thermocouples were
not precisely known, the results show strong agree-
ment for the slow rate. The delayed onset of plastic
deformation in our predictions causes the simulation
temperature at position 1 to rise steadily until failure
at approximately 150s while the experimental tem-
perature results increase abruptly at 108s. This sharp
increase in temperature is believed to coincide with a
thermally driven localization process. A similar change
in the heating rate is evident in the simulation results
before failure; however, the temperature was sampled
on, and not adjacent, to the element block removed for
crack propagation.

5 Revisiting the challenge problem

As noted in the main article devoted to the San-
dia Fracture Challenge (Boyce et al. 2016), bound-
ary conditions, thermo-mechanical coupling, and plas-

tic anisotropy differentiated team predictions. In that
vein, we investigate the application of the pin loading,
the conversion of plastic work to heat, and inclusion
of both void nucleation and growth in the context of
an anisotropic yield surface. For these post-challenge
simulations, more robust implicit solver settings were
used which allowed for implicit solutions with crack
propagation through element death.

5.1 Modeling the pin boundary condition

During discussions at the SFC2 Summit (Boyce et al.
2016), disagreement about the appropriate treatment of
the pin boundary condition arose. Teams used contigu-
ously meshed pins that were either fixed/free to rotate
or they modeled the pins as separate bodies with fric-
tional contact. Since no experimental data was taken
relating to the pin boundary condition, simulations
were employed to determine the effects of these differ-
ent modeling approaches for the pins. Figure 7 shows
results from simulations using fixed and free contigu-
ously meshed pins. All other model parameters were
identical to those used for the median blind prediction.
The results from this investigation indicate that the free
pin assumption was more appropriate for this problem
since the more constrained pin boundary condition sig-
nificantly increases the stiffness of the system. This
increased system stiffness causes an increased slope in
the elastic portion of the COD1 curves, a higher peak
load for both rates and an earlier onset of crack initia-
tion. An effort was made to investigate frictional con-
tact for the problem; however, conclusive results could
not be obtained due to the numerical difficulties asso-
ciated with solving frictional contact in this problem.

Fig. 7 Effect of modeling the pin boundary condition as fixed
or frictionless for the challenge geometry simulations
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5.2 Sensitivity to uncertain material parameters

A sensitivity study of the material parameters with the
highest uncertainty (m, N1 and β) was performed to
determine if the predictions could be improved through
improvedmaterial parameter calibration. The results of
this study are shown in Figs. 8 and 9.

In Fig. 8, the fast rate simulation results are signifi-
cantly affected by β. When β = 1 the over prediction
of COD1 at crack initiation is reduced 6% and the adia-
batic assumption causes the simulation to under predict
COD1 at crack initiation by 10%. Our calibrated value
of β = 0.8 and its uncertainty could have had a nega-
tive effect on our predictions for the fast rate; however,
it does not account for all of the error in our predic-
tions and had no effect on the nearly isothermal slow
rate simulation.

Figure 9 illustrates the substantial effect the damage
parameters have on the simulation results. Increases in
both damage parameters can cause the onset of crack
initiation to occur at a lower COD1 for both simula-
tions, but this can lead to early failures in the shear and
tension simulations. For example, the nucleation para-
meter must be increased more than 100% for the chal-
lenge geometry simulations to match the experiments,
which causes the shear simulation to fail prematurely.
For void growth, a damage exponent of 9 causes the
challenge geometry simulations to initiate cracks at a
COD1 approximately 0.1mm greater than the maxi-
mum experimental value without negatively affecting
the tension simulations results. Our calibrated value of
m = 6 for the blind predictions is near the lower bound
for this parameter. An appropriate uncertainty quan-

Fig. 8 Effect of β on plastic localization and failure for the fast
rate challenge geometry simulation

(a)

(b)

Fig. 9 Effects of the void growth and void nucleation damage
parameters on the challenge geometry simulations. a Effects of
void growth parameter, N1. b Effects of void nucleattion para-
meter, m

tification study for the calibrations likely would have
identified this and resulted in improved predictions for
COD1 at crack initiation for both rates. Such a study
was not performed before submitting the predictions
due to time constraints.

5.3 Incorporating an anisotropic yield surface with
damage

The most apparent discrepancy in our approach to the
problem was our use of an isotropic plasticity model
to simulate a material with anisotropic yield and hard-
ening behavior. After the challenge, we added the EV
damage model to the existing Hill plasticity material
model in SierraSM in an effort to improve our pre-
dictions. Implicit in this assumption is that we can
decouple plastic anisotropy and void growth. In fact,
prior efforts with the EVmodel adopt this construction.
While the flow is rate and temperature dependent with
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Fig. 10 Location of crack initiation in the slow rate challenge
geometry simulation when using the EV material model (top)
and the HP damage material model (bottom)

internal variables that govern the hardening, the kinet-
ics of void growth in the EVmaterialmodel derive from
power-law creep (Cocks and Ashby 1980). Although
works have considered the effects of anisotropy and
void shape on void growth (Benzerga et al. 2004a, b;
Benzerga and Leblond 2010), we sought to incremen-
tally increase complexity for this challenge problem.
Focusing on the slow rate, we can ignore rate and tem-
perature dependence. Consequently, the new formula-
tion, Hill plasticity damage (HP Damage), retains the
decoupled damage evolution and incorporates a Hill
yield surface.

Initially, no additional recalibration was performed
to populate the material parameters for the HP Dam-
age model. The hardening parameters used were taken
directly from the EV model hardening model and the
Hill yield surface employed to calculate the appropri-
ate value for Y s∗. The results for the updated yield sur-
face with the original material parameters are shown
in Figs. 10 and 11 in which the simulation results are
in good agreement with the data. A discrepancy is the
over-prediction of COD1 at crack initiation. In addition
to improving the global load-COD1 behavior of the
model, the addition of the Hill yield surface changes

Fig. 11 Improved results for the slow rate simulation using a
material model incorporating a Hill anisotropic yield surface and
a void growth and nucleation damage model

the location of crack initiation in the model as illus-
trated in Fig. 10. Experiments performed at UT Austin
by Andrew Gross and Ravi Chandar have shown that
for at least one test specimen the crack initiates in liga-
ment D–E and then propagates through ligament B–D.
The challenge geometry model with the HP Damage
material model displays the same behavior, showing
that the yield surface chosen to model ductile failure
problems can significantly affect simulation results.

This delay in crack initiation for the slow rate
simulation stemmed from the prior calibration of an
isotropic yield surface. Since the anisotropic yield sur-
face significantly affects the stress state after plastic
localization for the shear simulation, the N1 parameter
required recalibration. The recalibration resulted in a
revised value of N1 = 100. Figure 11 also shows these
improved results for the slow rate challenge geome-
try simulation using the HP Damage model and the
revised N1 parameter. With the correct material model
and revised damage parameter, the simulation results
lie within the experimental data.

6 Regularization of failure processes

Calibration, initial predictions, and revised predictions
were predicated on local damage using a baseline mesh
size for field resolution.Althoughwedid attempt to suf-
ficiently capture the fields governing crack initiation,
simulations in the post-bifurcation regime will exhibit
mesh dependence in the solution (de Borst 2004). One
needs to regularize the failure process through the addi-
tion of a length scale to yield a mesh-independent solu-
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Fig. 12 Mesh dependence that stems from local damage for the
EV material model employing blind parameters. The number
of elements spanning the half-thickness for the fast and slow
rates are 9 (baseline) to 36 (fine) and 9 (baseline) to 18 (fine),
respectively

tion. Although the prior section focuses on anisotropy
and targeted parameterization, the multiplicity of solu-
tions was not addressed. The noted mesh dependence
in the solution is illustrated for the fast and slow
rates in Fig. 12. These findings indicate that neither
a thermomechanical treatment nor the addition of rate-
dependence into the constitutive model is sufficient to
yield a mesh-independent solution.

To remedy matters, we introduce a length scale into
the fracture process through multiple methods. For the
fast rate, we examine a nonlocal method derived from
a variational principle. For the slow rate, we employ
surface elements for crack initiation and propagation.
In both cases, we use bulk constitutive models with the
dominant micromechanics to drive the failure process.
We assert that developing cohesive models for surface
separation that respect multiphysics, anisotropy, and
relevant state variables such as the triaxiality can be
quite difficult. Instead,we advocate general approaches
that leverage local constitutive models with the appro-
priate micromechanics for fracture and failure.

6.1 Variational nonlocal method

In the vein of nonlocality (Pijaudier-Cabot and Bažant
1987; Bažant and Jirásek 2002), a variational nonlo-
cal method was derived such that one can identify the
state variable that controls softening Z and pose a varia-
tional principle such that the stored energy is dependent
on a nonlocal state variable Z̄ . At a point, a Lagrange
multiplier enforces Z̄ = Z . When we minimize and

discretize, however, we derive an L2 projection for the
“coarser” Z̄ and the balance of linearmomentum for the
“fine” scale. If we assume that the basis functions for
the coarser discretization D are constant and discon-
tinuous, we obtain the nonlocal Z̄ as a simple volume
average of Z .

Z̄ = 1∫
D dV

∫
D
ZdV (24)

In this particular case, less is more. We do not want to
recover themesh-dependent solution inherent in Z with
a Z̄ . Instead,we seek to specify an additional discretiza-
tion (length scale) independent of the discretization for
Z . Because Z̄ is just an average, we can consider a
coarse domain to be a patch of fine scale elements hav-
ing volume V that is consistent with a prescribed length
scale l where V = l3. For example, onemight correlate
themeshdependence in the solutionwith scalar damage
φ. The variational nonlocal method would construct a
φ̄ for each nonlocal domain D. The stress would then
evolve from φ̄ and not φ. Please refer to Sun and Mota
(2014) for application to strain localization in 1D.

Domain decomposition algorithms (Devine et al.
2002) are invoked to construct coarse scale domains
of common volume. For parallel execution, the mesh
on each processor is partitioned into the requisite non-
local domains during initialization. Nonlocal averages
are calculated on the processor and no communica-
tion is necessary between processors. Initial findings
employing geometric partitioning illustrated a sensi-
tivity to domain shape. Although other researchers
have developed methods for domain decomposition
that focus on domain shape (Meyerhenke et al. 2009),
we gravitated towards clustering algorithms and the
resulting isotropy (Burkardt et al. 2002). Through
Lloyd’s algorithm, a Centroidal Voronoi Tesselation
(CVT) emerges through iterative K-means clustering
of seeded points inside the body which are indepen-
dent of the FE discretization. Details of the K-means
algorithm and guidelines for usability can be found
in the Sierra/SolidMechanics Capabilities in Develop-
ment Manual (2015).

6.2 Localization elements

Localization elements (Yang et al. 2005) are planar
elements that lie between bulk (volumetric) elements
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and can employ the same underlying bulk material
model. Localization elements are topologically similar
to cohesive surface elements (Klein et al. 2001; Foulk
et al. 2007) with kinematic constructions that incor-
porate strong discontinuities (Armero and Garikipati
1996). In contrast to cohesive methods that only con-
sider the displacement jump, the current approach also
takes into account the in-plane stretching through the
multiplicative decomposition of the deformation gra-
dient F such that F = F‖F⊥. Each portion of the
decomposition can be expressed as

F⊥ = I + �Φ�

h
⊗ N, F‖ = gi ⊗ Ĝ

i
(25)

where F‖ encapsulates in-plane stretching and F⊥
reflects the displacement jump �Φ� in the intermedi-
ate configuration which can be pushed to the current
configuration through �ϕ� = F‖�Φ�.

The jump is normalized by h which one can envision
as an element thickness or a characteristic length scale
governing separation. Quantities are considered to be
constant through the thickness h. The curvilinear basis
vectors in the reference and current configuration are
GA and gi , respectively. Given that N is constructed to
be normal to the in-plane basis vectors GA in the refer-
ence configuration, we can prove that the in-plane basis
vectors in the intermediate configuration are equivalent
to the in-plane basis vectors in the reference configu-
ration (ĜA = F⊥GA = GA). We can then express the
multiplicative decomposition as an additive decompo-
sition

F = F‖ + �ϕ�

h
⊗ N (26)

thus simplifying the initial formulation. We note that
because the length scale h is independent of the dis-
cretization, the methodology is regularized and ideal
for employing a local, softening material model to sim-
ulate the failure process. Currently, the crack path must
be specified a priori. Details of the implementation and
guidelines for usability can be found in the Sierra Solid-
Mechanics Users’ Guide (2015).

6.3 Application to fast and slow rates

Prior sections focused the importance of thermome-
chanical coupling for the fast rate of loading and

anisotropy for slow rate rate of loading. Although we
have finalized both the theoretical development and
implementation in our research environment, we do
not have surface elements that can accommodatemulit-
physics in our production environment (Sierra). Con-
sequently, we apply thermomechanical coupling, EV
material model, and the nonlocal method to the fast
rate of loading and constant temperature, mechanics,
HP Damage material model, and localization elements
to the slow rate of loading.

The length scales introduced by the nonlocalmethod
and localization elements generate the length scale gov-
erning the ductile failure process. We often refer to the
region of the body providing resistance as the process
zone. For the nonlocal method, the size of nonlocal vol-
ume lmaps to the process zone size l pz . For localization
elements, the length scale that normalizes the displace-
ment jump h indirectly yields a process zone sizewhere
l pz is some multiple of h. Provided the selected and
generated process zone sizes are small compared to all
the dimensions of the body, parameterization for spec-
imen geometries may be transferable to the challenge
geometry (Rice 1968).

Although one might hope to align the process zone
size with experimental observations, initial scoping
studies employing the EV material model yielded a
process zone size of l pz = 300µm. This resulted in a
nonlocal domain size of l = 300µmanda smaller char-
acteristic length scale for localization elements h = 50
µm. Figure 13 illustrates both the nonlocal domains
and the seeded surface elements employed to regular-
ize damage evolution.

We have selected length scales that generate process
zone sizes that permit resolution. Rather than tune the
length scales to match experiments, we have instead
chosen to select length scales that permit solution and
re-examine the fitting process for damage evolution
in light of the chosen method for regularization. We
acknowledge that both the choice of length scale and
the parameters governing damage evolution may not
be unique. In this section, however, our goal is to illus-
trate mesh convergence for mixed-mode ductile failure
processes. Future work might probe non-uniqueness in
light of convergent solutions.

The application of the variational nonlocal method
required a re-examinationof thefittingprocess for dam-
age evolution. In an effort to mitigate complexity, we
only revisited the criteria for coalescence φcoal . For
local damage, we selected φcoal = 0.15. Revised sim-
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Fig. 13 Discretization of the nonlocal domains and the seeded
surface elements employed to regularize the fast and slow rates,
respectively

ulations of tensile tests revealed that selecting φcoal =
0.05 with a nonlocal length scale l = 300µm was in
good agreement with experiments. A reduced value for
coalescence reflects the fact that we now require an
entire volume to reach φcoal rather than a single ele-
ment. As we refine the mesh, we still require the same
nonlocal volume to reach the same criterion for coa-
lescence. Because damage φ is the state variable that
leads to bifurcation, we have regularized the failure
process through an additional discretization (CVT) for
damage evolution that is independent of the FE dis-
cretization. The resulting parameterization and nonlo-
cal method applied to the challenge geometry is illus-
trated in Fig. 14.

Because the nonlocal region must be small com-
pared to the ligaments, and the element size must
resolve the nonlocal domain, the discretization required
for the nonlocal method can be substantial. Although
the baseline element size for local damage and the
localization elements is∼172µm, we consider a mini-
mum element size employed in the nonlocal method
to be 18 elements through the half-thickness of the
specimen which results in a mesh size of ∼86µm
and roughly 43 elements in each nonlocal domain. A
finer mesh having 27 elements through the half thick-
ness was also simulated with mesh sizes of ∼58µm

Fig. 14 Convergence of the nonlocal method with a length scale
of l = 300µm applied to the fast rate. The label blind* indicates
that the criteria governing coalescence φcoal was modified to
account for nonlocality. The fine and finer designations corre-
spond to 18 and 27 elements through the half-thickness of the
specimen

and roughly 125 elements in each nonlocal domain.
Although Fig. 14 does not illustrate global unloading,
both discretizations are unloading with nonlocal vol-
umes nearing the required damage for nonlocal coales-
cence. Fields for both the equivalent plastic strain εp
and the nonlocal damage φ̄ at crack nucleation are illus-
trated in Fig. 15.We note that only the nonlocal damage
evolves on the CVT discretization (through a volume
average). Fields such as the equivalent plastic strain
evolve smoothly throughout the domain. Although the
current nonlocal method is less smooth than tradi-
tional methods that employ overlapping nonlocal ker-
nels (Pijaudier-Cabot and Bažant 1987), the treatment
of the boundaries is quite natural. In contrast, overlap-
ping nonlocal kernels require rescaling at boundaries
and necessarily contain a boundary layer. The details
of boundaries are relevant for the current work and
other geometries because cracks tend to nucleate at the
boundaries of stress concentrations.

For the slow rate of loading, we employ localiza-
tion elements to regularize the solution. Initial findings
with the EV material model during blind predictions
for cases employing both the adiabatic and isothermal
assumption suggested that h = 50µm may be rele-
vant. Following the work of the prior section on revisit-
ing the challenge geometry, we incorporate anisotropy
through the HP Damage material model and investi-
gate both blind and revisited parameters. To ensure that
hexahedral elements do not bifurcate, damage evolu-
tion is precluded in the bulk. Void nucleation, growth,
and coalescence was only permitted in the localiza-
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Fig. 15 Field evolution for the equivalent plastic strain εp and
the nonlocal damage φ̄ at crack initiation in the challenge geom-
etry. In contrast to the smoothness of εp , φ̄ evolves on Centroidal
Voronoi Tesselation (CVT) independent of the FE discretization

tion elements. Paths were selected through the iterative
process of determining the plane of strain localization
via εp and then seeding that particular plane with local-
ization elements (and thus dictating the crack path).
After a couple of iterations, the localization elements
were well-aligned with the plane of localization dic-
tated by anisotropic plasticity. We note that the local-
ization process is sensitive to the plane of the local-
ization elements. Strain localization adjacent, but not
on, the selected plane will retard damage evolution.
One cannot obtain fields of physical significance and
predict crack initiation if the seeded localization ele-
ments do not align with the plane of localization. Con-
sequently, we believe the seeded plane to be accurate
for this particular loading. Future work will generalize
this capability through the adaptive insertion of local-
ization elements.

The results of simulations for both the blind and
revisited parameters are shown in Fig. 16 for the coarse,
baseline, and fine meshes having 3, 9, and 18 elements
through the half-thickness of the specimen, respec-
tively. For both sets of parameters, we are able to
achieve mesh convergence. In addition to examining
far-field behavior, we can also investigate convergence
in the local fields. Figure 17 not only illustrates con-

Fig. 16 A comparison of experimental findings and simulations
employing localization elements having a length scale of h =
50µm. Coarse, baseline, and fine discretizations reflect 3, 9, and
18 elements through the half-thickness of the specimen. Both the
blind and the revisited parameters illustrate convergence for finer
discretizations
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Fig. 17 Convergence in the field of damage φ at crack initiation
for both the blind and revisited parameters. The surface illustrated
spans hole D to E in Figure 13. The criteria for coalescence is
φcoal = 0.15. Localization elements provide a natural treatment
for surface separation in which both void nucleation and growth
dictate the physics of crack initiation and growth

vergence in the damage evolution at crack initiation,
but also reflects the aforementioned physics regarding
the role of void nucleation and growth. Because local-
ization elements leverage the input micromechanics,
the complexities of crack initiation within the interior
(N1 = 54) or on the surface (N1 = 100) are both
resolved and mesh convergent.
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7 Conclusions and future work

Through this work, we sought to develop tools and
approaches to predict the ductile fracture of Ti-6Al-4V
subjected to mixed-mode loading in a thermomechan-
ical environment.

1. Given observations regarding rate dependence,
temperature dependence, anisotropy, and damage
evolution under both tension and shear, we sys-
tematically increased complexity in the calibra-
tion process and included elements of anisotropy
through the spatial modification of an isotropic
yield surface.

2. Simulations revealed an intense competition bet-
ween the upper and lower notches. Findings at
slow rates revealed that an anisotropic yield sur-
face would localize in the lower notches (B–D, D–
E) while an isotropic yield surface would localize
in the upper notch (A–C).

3. Our blind simulations confirmed the importance
of thermomechanical coupling at elevated rates of
loading and the need to include anisotropy in mod-
eling the localization of rolled Ti-6Al-4V.

4. Subsequent investigations on the challenge geom-
etry for fast and slow rates shed light on the impor-
tance of plastic work and plastic anisotropy on
the localization of the deformation. For the fast
rates of loading, thermomechanical coupling under
increasing β align computations and experiments.
Slower rates of loading are insensitive to thermo-
mechanical coupling and reflect the need to incor-
porate an anisotropic yield surface. For both cases,
the localization of the deformation dictates crack
path. Employing the same parameters for damage
evolution, the predictions for the slow rate were
not only more accurate capturing the plateau of the
load-displacement curve but also confirmed experi-
mental observations for crack initiation in ligament
D–E rather than B–D.

5. Additional calibration and sensitivity studies illus-
trate that an increased emphasis on void nucleation
rather than void growth aligns predictions with far-
field measurements (load-COD1) and moves crack
initiation from near the notch to the center of the
second ligament.

6. A variational nonlocal method with a length scale
of l = 300µm was applied to thermomechani-

cal coupling and the EV material model to yield a
mesh-independent solution. A recalibration of the
criterion for coalescence φcoal for tensile samples
greatly increased the accuracy of prediction for the
challenge geometry.

7. Surface elements with a 3D deformation gradient
that accounts for both the displacement jump and
in-plane stretching/rotations and a length scale of
h = 50µm were applied to the HP Damage model
to obtain mesh convergent solutions for both the
blind and the revisited parameters.

Future work will seek to incorporate rate depen-
dence, temperature dependence, and anisotropy in both
the plasticity (yield, hardening) and the damage evo-
lution (nucleation, growth, coalescence). One cannot
understand the sensitivity of particular physics with-
out an ability to model a particular physics. Just as
one might find difficulty in decoupling the physics,
the employment of local damage models and the ensu-
ing conditions for bifurcation can obscure the physics
with the numerics (mesh dependence) of localization.
Both nonlocal and surface approaches included length
scales to regularize the solution. Having regularized
the solution, one can then begin to reliably investigate
the sensitivity of boundary conditions, geometry, and
the selected physics on the prediction. Rigorous stud-
ies that propagate uncertainty in the failure of metal-
lic structures (or specimens) require the resolution
of the dominant physics underpinned by regularized
methods.
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