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Abstract An over-the-counter methodology to pre-
dict fracture initiation and propagation in the challenge
specimen of the Second Sandia Fracture Challenge is
detailed herein. This pragmatic approach mimics that
of an engineer subjected to real-world time constraints
and unquantified uncertainty. First, during the blind
prediction phase of the challenge, flowand failure locus
curves were calibrated for Ti–6Al–4V with provided
tensile and shear test data for slow (0.0254mm/s) and
fast (25.4mm/s) loading rates. Thereafter, thesemodels
were applied to a 3D finite-element mesh of the non-
standardized challenge geometry with nominal dimen-
sions to predict, among other items, crack path and
specimen response. After the blind predictions were
submitted to SandiaNational Labs, theywere improved
upon by addressing anisotropic yielding, damage initi-
ation under shear dominance, and boundary condition
selection.
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1 Introduction

Modeling crack initiation and propagation in an alloy
can be donewithmyriad computational techniques. For
example, within the finite element method alone, cohe-
sive zones, porous metal plasticity (i.e. GTN), and geo-
metrically explicit crack growth can all be employed
to model failure. Given all of these methods, it would
seem that predicting crack growth is a fairly trivial
task; however, this is not always the case. One sober-
ing example is the First Sandia Fracture Challenge
(SFC1).

SFC1 (Boyce et al. 2014) was conceived by San-
dia National Laboratories to probe the scientific com-
munity’s ability to model crack growth in a non-
standardized geometry made from a well-documented
structural stainless steel. The geometry resembled a
compact-tension specimen with three holes positioned
beyond the notch (creating a multiaxial stress state for
the crack to traverse). Several participants predicted
the incorrect crack path, and while manufacturing dis-
crepancies indiscernible to the naked eye contributed
to these incorrect predictions, it was apparent that the
modeling community as awhole lackedwhat SFC1was
probing for—a method to model accurately the evolu-
tion of a crack amidst a significant degree of mode-
mixity.
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The Second Sandia Fracture Challenge (SFC2) was
announced inMay 2014, approximately two years after
SFC1 was announced. The geometry and material,
though different from those in SFC1, presented similar
challenges to the new set of participants. Again, Sandia
asked teams tomodel crack growth in a novel geometry
which was configured specifically to produce multiax-
ial stress states that would obfuscate damage evolution.
In this paper, one team’s efforts to predict crack growth
in theSFC2challengegeometry are detailed.This team,
dubbed “TeamC” in the SFC2 lead article (Boyce et al.
2016), employed off-the-shelf tools and engineering
judgment under considerable time constraints to pre-
dict failure in the specimen. Mimicking a full work
week, approximately twenty man-hours were used to
establish the blind predictions and an additional twenty
were used to improve upon these predictions. While no
newmethods were developed, this pragmatic approach
is representative of how engineers operate in industry
wherein time and budget restrictions oftentimes trump
more comprehensive, detailed investigations. Herein,
this methodology is described, employed to establish
blind predictions, and improved upon to arrive at more
accurate predictions of failure history. In Sect. 2, the
blind predictions are established by calibrating flow
and failure locus curves with provided tensile and shear
test data. In Sect. 3, the blind predictions are compared
against experimental data. Finally, in Sect. 4, they are
improved by readdressing items such as anisotropic

yielding, damage initiation under shear dominance, and
boundary condition selection.

2 Establishing blind predictions

2.1 Overview

The organizers of SFC2 asked participants to model
fracture in the specimen shown in Fig. 1c, which will
subsequently be referred to as the “challenge spec-
imen”. It was loaded at two loading rates: 0.0254
and 25.4mm/s. Sandia’s quantities of interest (QOIs)
included peak loads and corresponding notch openings
(COD1 and COD2 labeled in Fig. 1), crack path, and
expected load versus COD profiles for each loading
rate. While all relevant details pertaining to SFC2 are
included herein, the reader is encouraged to refer to the
SFC2 lead article (Boyce et al. 2016) for an exhaustive
account of challenge regulations, experimental setups
and results, and modeling approaches.

The methods detailed herein to predict fracture ini-
tiation and propagation in the challenge specimen are
fairly commonplace. Abaqus/Explicit (Simulia 2011)
was used to drive the simulations on a consumer-grade
Intel processor. The tensile and shear calibration speci-
mens and challenge specimen were modeled with their
nominal (as-drafted) dimensions, Fig. 1. The contin-
uum, the well-known titanium alloy Ti–6Al–4V, was

Fig. 1 SFC2 tensile
specimen (a). SFC2 shear
specimen (b). SFC2
challenge specimen (c).
Given dimensions are
nominal and in millimeters.
Dimensions between
specimens not to scale.
Nominal thickness of all
three specimens is
3.124mm
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modeled as linear elastic isotropic with the von Mises
yield criterion. The two calibration specimens were
used to tune the hardening rule, a tabular function of
plastic strain. Damage was initiated when a material
point reached a critical equivalent plastic strain, the
magnitude of whichwas dictated by a function of stress
triaxiality. Damage was modeled by way of an abrupt
exponential degradation of element stiffness.

2.2 Material models

2.2.1 Elastic response

The tensile test results presented in the SFC2 lead
article displayed negligible elastic anisotropy. Conse-
quently, a linear elastic isotropic material model was
adopted to model the elastic response in all three spec-
imens. The Young’s modulus, E, and Poisson’s ratio,
ν, were taken to be 114GPa and 0.34, respectively. It is
noteworthy that any relevant thermal effects (i.e. depen-
dence of E on temperature) were neglected during the
study.

2.2.2 Hardening laws

For both the slow (0.0254mm/s) and fast (25.4mm/s)
loading rates, yielding in shear started at approximately
a 12% lower von-Mises stress than in tension. This is
an indication of anisotropic yielding; however, during
the blind prediction phase of the challenge, it was not
entirely clear how to accommodate this anisotropy in
the plastic response. The flow curves calibrated from
the tensile and shear tests for both loading rates are
given in Fig. 2. The curves were derived iteratively—
for each curve, the tabular data was incrementally
adjusted until a reasonable fit was established with the
corresponding test. All four flow curves consisted of 21
data points; linear interpolation was used between the
entries. A simple power law was used for the extrapo-
lation of the flow curves out to large strains:

σ = A · εn (1)

where, for example, A = 1261 MPa and n = 0.09 for
the shear flow curve under the slow loading rate.

The anisotropic Drucker–Prager yield criterion was
initially considered, but due to lack of time for cal-
ibration, it was eventually passed over for a simpler
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Fig. 2 Calibrated flow curves

approach. Preliminary elastic–plastic analyses of the
challenge specimen revealed that when assigned to the
entire mesh, both the tensile and shear flow curves con-
sistently favored theA–C–F failure path.Note that rigid
body pins with friction were used for these analyses (to
be discussed in greater detail in Sect. 2.3.1). Assum-
ing material isotropy, the failure path certainly seemed
insensitive to flow curve selection, but anisotropy sim-
ply could not be neglected. Although theA–C–F failure
path was consistently favored, the authors expected the
B–D–E–A path due to the combined shear and tensile
loading ahead of the notch B. This was in contrast to
the portion of the specimen beyond the notch A whose
loading was primarily tensile. Because the shear tests
had a lower ultimate strength than their tensile counter-
parts, it was assumed that the shear-dominance ahead
of B would favor crack growth.

To establish upper bound and best (“expected”) pre-
dictions for Sandia, the flow curves from the tensile
tests (with their higher yield stresses) were exercised,
favoring the A–C–F path. To establish lower bound
predictions, the challenge specimen was split into two
regions.Theflowcurve from the shear testwas assigned
to the shear-stress controlled region (beyond the lower
notch including theB–D–E–Apath), and the flowcurve
from the tensile test was assigned to the axial-stress
controlled region (beyond the upper notch including
the A–C–F path), respectively, Fig. 3a. This favored the
B–D–E–A path. The fact that the best (“expected”)
prediction clashed with the authors’ own expected
crack path deserves an explanation. During the pre-
diction phase, no simulation save for the aforemen-
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Fig. 3 a Flow curve assignment to establish lower bound pre-
dictions: red demarcates shear-stress controlled region and gray
demarcates axial-stress controlled region. b Stress triaxiality at
predicted time of initiation (A–C–F) for slow loading rate

tioned lower-bound prediction (which, by virtue of
hindsight, was admittedly too invasive) and an analysis
with physically unrepresentative boundary conditions
(to be discussed in Sect. 2.3.1) indicated B–D–E–A.
Consequently, A–C–F was reported to Sandia to be
the “expected” crack path while the authors anticipated
either result from the tests.

It is noteworthy that during the prediction phase, nei-
ther damage nucleation/propagation laws nor boundary
conditions had been considered in great detail; as dis-
cussed later in this paper, these would prove decisive
in favoring the experimentally-consistent failure path.

2.2.3 Damage initiation and propagation laws

A failure locus curve (FLC) was leveraged to model
damage in the titanium alloy, effectively decoupling
damage from plasticity. The FLC, an empirically
derived exponential limit curve, takes root in themicro-
void-based empirical criteria given by McClintock
(1968), Rice and Tracey (1969), Hancock andMacken-
zie (1976), and Atkins (1997). The FLC can be a func-
tion of strain rate, stress triaxiality, thickness, tempera-
ture, and normalized third deviatoric invariant (aka the
Lode angle parameter), to name a few; however, due
to lack of experimental data and time, the FLC cali-
brated for this study was simply a relationship between
equivalent plastic strain at damage initiation and stress
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Fig. 4 Failure locus curves. Note that each faint dashed-dotted
line represents the evolution of strain as a function of stress tri-
axiality at the presumed location of failure

triaxiality, ε̄
pl
f (η). When the equivalent plastic strain

at a material point equaled ε̄
pl
f (η), the material point

began to evolve damage. Dubbed “estimated” here-
after, the FLC was calibrated using the slow tensile
and shear test data. The stress triaxiality levels in the
challenge specimen were predicted to be in the range
between 0.2 and 0.6 (Fig. 3b), but the tensile and
shear tests only provided data at stress triaxiality val-
ues 0.8 and 0.0, respectively, at time and location of
predicted initial failure. Consequently, the remainder
of the locus had to be estimated using recommenda-
tions from Ohata and Toyoda (2004), Fig. 4. Informed
by the shear test results wherein samples subjected
to the faster loading rate failed at lower strains, this
locus was decreased by 20% to give a FLC for the
fast loading rate. After the blind prediction phase, a
second FLC given by Giglio et al. (2013) for room-
temperature Ti–6Al–4V under quasi-static loading was
considered, Fig. 4. This particular FLC was calibrated
by considering several test specimens which, collec-
tively, interrogated a considerable range of stress triax-
ialities. Dubbed “Giglio” hereafter, it was reduced by
20%also to give a locus appropriate for the fast loading
rate.

The FLC addresses how damage initiates in the dis-
cretization. Damage evolves according to an entirely
different criterion. Due to lack of experimental data,
damage was assumed to evolve based on a critical frac-
ture energy, G f , criterion with exponential softening:
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d = 1− exp

(
−

∫ ū pl

0

σ̄y ˙̄u pl

Gf

)
(2)

where ˙̄u pl is the rate of change of the effective plastic
displacement, ū pl , σ̄y is the effective yield stress, and d
the damage variable wherein d = 1 represents complete
failure. The critical fracture energy was assigned to be
10 N/mm based on the authors’ experience; however,
the specimen’s response was, on the whole, insensitive
to this value. In this scheme, cracks are not modeled
as geometrically explicit features. Rather, once an ele-
ment’s stiffness has degraded beyond acceptable limits,
it is removed from the discretization. With subsequent
element deletions, new free surface is introduced and a
faceted “crack” or “discontinuity” forms.

2.3 Modeling details

2.3.1 Geometry and boundary conditions

The nominal dimensions of the tensile, shear, and chal-
lenge specimen were considered during the prediction
phase. It is noteworthy that during SFC1, some of the
dimensions of the challenge specimens were beyond
drawing tolerances. This did not seem to be the case for
SFC2—as-machined dimensions of the challenge spec-
imens were reported during the prediction phase, and
no dimension was beyond drawing tolerances. Given
more time, a sensitivity analysis could have been con-
ducted on the as-machined specimens to ensure that the
nominal dimensions were indeed representative, but
because no specimen was beyond design tolerances,
this study was not a high priority.

With regards to boundary conditions, the shear spec-
imen required special consideration simply because the
shear test was novel and nontrivial. To model the fix-
ture’s action on the specimen, all contact nodes on the
specimen were tied to a rigid body. It is noted that
during the experiments, the shear specimens slipped
in the grips. Although this could have been mod-
eled explicitly, Sandia’s provided first-order correc-
tion was employed to remove the contribution of this
compliance from the experimental data, thereby allow-
ing a one-to-one comparison between numerical and
experimental results. The challenge specimen, in turn,
showed significant sensitivity to how its pinsweremod-
eled. Pack et al. (2014) explored this issue in consid-
erable detail during SFC1 and determined that bound-

ary condition selection had no influence on the crack
path andminimal influence on the specimen’s response.
This did not seem to be the case for the SFC2 chal-
lenge specimen. Recall fromSect. 2.2.2 that theA–C–F
failure path was favored when the entire discretization
was assigned the same flow curve and the pins were
modeled as rigid bodies with friction. Replacing the
rigid pins with kinematic coupling constraints resulted
in the same path; however, frictionless rigid body pins
favored the B–D–E–A failure path.While failure along
B–D–E–A was expected based on good engineering
judgment, frictionless rigid body pins were deemed
unrepresentative of how the specimens were loaded in
the laboratory.

Ultimately, rigid body pins with friction (with a
coefficient of friction of 0.10 based on the authors’
experience) were employed for the final predictions
because (1) they were deemed more representative of
the loading configuration than frictionless pins and
(2) it was recognized that an inability to accommo-
date anisotropic yielding accurately was likely favor-
ing the A–C–F path. For example, it could have been
that all three types of boundary conditions favored the
same crack path assuming anisotropic yielding had
been accommodatedmore adeptly. The effect of amore
comprehensive treatment of anisotropic yielding is dis-
cussed in Sect. 4.

2.3.2 Mesh refinement

The influence of the mesh size on the fracture behavior
is expected as the FLC model belongs to the group of
local damage models. The mesh size effect becomes
more pronounced for lower material strain harden-
ing and higher stress triaxiality levels. Furthermore,
it is known that changes in element aspect ratio can
lead to different fracture modes (Besson et al. 2001).
Here, based on experience of team members with the
FLC model, the same mesh size of 0.2 mm was cho-
sen for tensile, shear, and notched regions of SFC
specimens. To study the effect of mesh size on the
load-displacement curve and fracture behavior of the
challenge specimen, two element sizes were investi-
gated: 0.1 mm and 0.5 mm. No significant difference in
load-displacement response, crack initiation, and path
was observed when using the finer mesh over the ref-
erence mesh (0.2 mm). However, the coarser mesh
resulted in delayed crack initiation with a 10–15%
increase in displacements for both loading rates. Up to
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the point of fracture onset, similar load-displacement
curves and the same crack paths were indicated for
all three meshes. The element employed was a linear
hexahedron with reduced integration (C3D8R).

2.3.3 Computational considerations

Abaqus/Explicit was the finite element solver for this
investigation. All simulations were run on a consumer-
grade 3.4GHz Intel processor. Typically, an analysis
of the 350k DOF challenge specimen model on four
cores took approximately 24h (wall clock) to complete.
Mass scaling was leveraged to achieve reasonable step
sizes. It was accomplished by increasing the density
by three orders of magnitude. Additionally, only half
of the specimen was modeled by virtue of symmetry
along the half-thickness plane. Finally, simulations of
the specimens subjected to the fast loading rate were
done quasi-statically; the effect of the faster rate over
the slower was reflected in separate flow and failure
locus curves.

3 Blind predictions

Blind predictions were submitted to Sandia National
Labs in earlyNovember 2014. The predictions are sum-
marized briefly below:

• The expected failure path for both loading rateswas
A–C–F.

• It was assumed that the B–D–E–A failure path
would be favored based on good engineering judg-
ment. However, hampered by an inability to accom-
modate anisotropic yielding accurately, A–C–F
was submitted to Sandia as the “expected” failure
path.

• Teamsweregiven theoption tobound their expected
predictions. The upper bound predictions were
reported to be the same as expected. The lower
bound, in turn, reflected the B–D–E–A failure path
and a 1.5-times larger COD at failure.

Shortly after the predictions were submitted, Sandia
disseminated the results of the nineteen laboratory tests
to the participants. Ten of the eleven challenge speci-
mens subjected to the slow loading rate failed as B–
D–E–A while all eight subjected to the fast loading
rate failed as B–D–E–A. The load versus COD profiles
from both the experiments and simulations are given
in Fig. 5. Comparing the expected blind predictions to
the experimental results, the predicted maximum load
and COD1 (see Fig. 1) at failure were off by approxi-
mately 15%. The lower bound-predictions, beingmore
representative of eighteen of nineteen tests, captured
maximum load within an error band of 5%, but the
predicted COD1 at failure was approximately 2-times
higher than observed.Moreover, for both sets of predic-
tions, the predictions were too stiff during loading, an
indication that the boundary conditions perhaps needed
to be amended.
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Fig. 5 Load versus COD profiles from experimental data and blind predictions for slow (a) and fast (b) loading rates
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4 Improving blind predictions

4.1 Sources of discrepancy

There were three significant sources of uncertainty that
compromised the blind predictions: anisotropic yield-
ing, damage initiation, and boundary conditions. With
the benefit of hindsight and additional time to conduct
more comprehensive sensitivity studies, these epis-
temic uncertainties were quantified and reduced. This
process is discussed herein.

As made evident by the relatively large discrepancy
between the expected and lower-bound predictions in
Fig. 5, the issue of anisotropy was the most critical.
It was clear that an inability to accommodate plastic
anisotropy favored the A–C–F path; however, based on
the outcomes of the experiments, the interplay between
tensile and shear-dominance throughout the specimen
had to be considered tomodel accurately failure history,
the effect of which is discussed in Sect. 4.2.

With regards to damage initiation, the lower-bound
prediction with its experimentally-consistent B–D–E–
A failure path demonstrated that the estimated failure
locus curves for both loading rates were insufficient as
damage initiated far too late in the analysis (approxi-
mately 2-times COD1 that observed in experiments).
In Sect. 4.3, the effect of adopting a failure locus that
is more appropriate in shear-dominant regimes (i.e. the
B–D–E–A failure path) is demonstrated.

Finally, with regards to boundary conditions, the
predictions did not account for some compliance as
the response was too stiff during early loading. Apart
from decreasing the Young’s modulus of the specimen
(which would be unphysical), the only means to cor-
rect the response during early loading was to reassess
boundary condition assignment, Sect. 4.4.

4.2 Anisotropic yielding: crack path

Anisotropic yielding was not accommodated accu-
rately during the prediction phase. This issue was
addressed shortly after submission of the blind predic-
tions to Sandia. The lower-bound predictions, wherein
the challenge specimen was split manually into tensile
and shear-dominant regimes and assigned flow curves
accordingly, achieved the desired B–D–E–A failure
path. Here, this discrimination of tensile and shear-
dominant stress states is done in a more automated

fashion.Comparing the tensile and shear tests, the shear
specimens yielded at a stress that was approximately
12% lower than their tensile counterparts. To induce
yielding due to shear earlier in the challenge specimens,
the tensile flowcurvewas leveraged in conjunctionwith
the “*POTENTIAL” option in Abaqus/Explicit. This
option exercises Hill’s (1948) well known extension
of the von Mises yield criterion. The aforementioned
12% reduction was achieved by setting the R12 para-
meter (corresponding to in-plane shear) to 0.88. The
effect of this modification, which was applied to the
models corresponding to the expected predictions, is
shown in Fig. 6 with curves labeled “R12 mod”. The
experimentally-consistent B–D–E–A crack path was
predicted; however, as in the lower-bound predictions,
the COD1 was over-predicted for both loading rates.
While this over-prediction is addressed in Sect. 4.3,
these results confirm that the incorrect A–C–F predic-
tion was the product of inaccurately accommodating
anisotropic yielding, and not necessarily boundary con-
dition selection.

4.3 Onset of damage

The estimated FLC was calibrated with the tensile and
shear test data; however, as discussed in Sect. 2.2.3,
the portions of the locus between stress triaxiality val-
ues 0 and 0.8 had to be estimated as neither test was
relevant in this range. This produced a FLC that accom-
modated an inordinate amount of plastic deformation
in the shear-dominant regime (i.e. the B–D–E–A fail-
ure path) before failure. Consequently, the Giglio FLC
was adopted as it gave more realistic failure strains for
low stress triaxialities. The effect of this modification
is shown in Fig. 6 with curves labeled “Giglio FLC”.
Note that these curves also reflect the R12-relatedmod-
ification discussed in the previous section. The Giglio-
FLC-induced failure is well within the experimental
scatter for both loading rates, confirming that the fail-
ure strains of the estimated FLC were approximately
2-times higher than they should have been in the shear-
dominant regime.

Of course, this switch to a different failure locus
curve begs the question whether or not the new FLC
reproduces the response of the calibration specimen
tests. Regarding the shear specimen specifically, com-
patibility is maintained. During the prediction phase,
by virtue of hindsight, the shear specimen was over-
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fast (b) loading rates. Note that “R12 mod” refers to R12 = 0.88

and the estimated FLC (Sect. 4.2). “Giglio FLC”, in turn, inherits
the R12 modification in addition to the Giglio FLC (Sect. 4.3).
The oscillations are a product of mass scaling

constrained. This induced an inordinate amount of plas-
tic strain in the critical element, thereby inflating the
estimated FLC in the shear domain. After the predic-
tions were submitted to Sandia, a more accurate treat-
ment was given to these boundary conditions; multi-
point constraints and springs elements were employed.
This prompted an alteration to the existing shear flow
curves whereby higher strain hardening was enforced
for large strains. With this new flow curve and “Giglio
FLC”, the response of the shear specimen was recov-
ered.

4.4 Boundary conditions: stiffness mismatch during
early loading

The corrections applied above have yet to address the
stiffness mismatch during early loading, presumably

the product of improper boundary condition selection.
Rigid body pins with friction were deemed the most
representative of the loading configuration during the
prediction phase; however, the resulting response was
too stiff. It is likely that during the tests, the loading
pins rotated in the loading holes, and thus rigid body
pins with a lower coefficient of friction would seem
to better facilitate this rotation. Frictionless rigid body
pins were reconsidered with the aforementioned R12
and FLC corrections for the slow loading rate, but the
response was nearly indistinguishable from those with
nonzero coefficients of friction, Fig. 7.

Team I of the SFC2 achieved conformity with the
response of the specimens during early loading by
employing kinematic boundary conditions on the top
and bottom halves of the top and bottom loading holes,
respectively (Boyce et al. 2016). The effect of replacing
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Fig. 7 Load versus COD profiles from experimental data and
post-prediction modifications for slow (a) and fast (b) loading
rates. Note that the curves labeled “Rigid Pins” and “Non-Rigid

Pins” reflect the modifications from Sects. 4.2 and 4.3 while
the latter incorporates the boundary condition modification dis-
cussed in Sect. 4.4

rigid body pins with these kinematic boundary condi-
tions is demonstrated in Fig. 7. Labeled “Non-Rigid
Pins”, the curves conform more closely to those of
the experiments during early loading for both rates.
The explicit analyses with relatively large step sizes
produced some noise resulting in deviations from the
experiments. This was purely a numerical artifact as an
implicit analysis of the same model for the slow load-
ing rate (see curve labeled “Non-Rigid Pins (imp)”)
achieved a smoother, more conformal response during
early loading.

5 Conclusions

During the blind prediction phase of the Second San-
dia Fracture Challenge, three factors precluded TeamC

from obtaining accurate predictions of failure for both
rates: anisotropic yielding, damage initiation under
shear dominance, and boundary condition selection.
During the prediction phase, it was unclear which
of the three was most dominant, and therefore the
blind predictions were made in the midst of a non-
negligible amount of epistemic uncertainty. To quantify
this uncertainty, the blind predictions were improved in
a systematic fashion. The following can be concluded
from this effort:

• The challenge specimen failed along a shear-
dominant crack path. Regardless of boundary con-
dition selection,when the specimenwas partitioned
into tensile and shear-dominant regimes (or the
yield surface scaled accordingly), the predicted
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crack path was the experimentally-consistent B–
D–E–A.

• The estimated failure locus curve from the ten-
sile and shear test data was inaccurate in shear-
dominant stress states; it gave inordinately high
failure strains for low stress triaxiality values.
Once a more appropriate failure locus curve was
employed (one that gave lower failure strains for
low stress triaxialities), failure occurredwell within
the experimental scatter.

• Stiffness mismatch during early loading was the
result of improper boundary condition selection.
Theprescribed rigid bodypinswith friction induced
too stiff a response.Kinematic boundary conditions
assigned to the top and bottom halves of the top
and bottom loading holes, respectively, produced
a more physically representative response during
early loading.

The procedures employed herein are fairly common-
place and representative of what an engineer in indus-
trymight leverage to solve such a problem. Oftentimes,
engineers are forced to compromise accuracy for expe-
diency in the presence of unquantified uncertainties.
Herein, with the benefit of hindsight, the epistemic
uncertainties encountered during the blind prediction
phasewere addressed, thereby strengthening the frame-
work.Of course, these fairly simplemethods should not
be leveraged indiscriminately to model fracture; how-
ever, as shown herein, when coupled with an adequate
understanding of the underlying stress state, they can be
employed to establish accurate predictions of fracture-
related phenomena.
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