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Abstract The phase field method is a versatile simu-
lation framework for studying initiation and propaga-
tion of complex crack networks without dependence
to the finite element mesh. In this paper, we discuss
the influence of parameters in the method and provide
experimental validations of crack initiation and propa-
gation in plaster specimens.More specifically, we show
by theoretical and experimental analyses that the reg-
ularization length should be interpreted as a material
parameter, and identified experimentally as it. Quali-
tative and quantitative comparisons between numeri-
cal predictions and experimental data are provided. We
show that the phase field method can predict accurately
crack initiation and propagation in plaster specimens
in compression with respect to experiments, when the
material parameters, including the characteristic length
are identified by other simple experimental tests.
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1 Introduction

Simulation of crack initiation and growth in brittle
materials such as concrete, cement or rocks is a major
concern for predicting the strength and durability of
structures made of these materials. One issue lies in the
prediction of the onset of cracks in brittle materials: the
classical Griffith theory of brittle fracture fails to pre-
dict crack initiation in un-notched specimens (Francfort
and Marigo 1998). On the other hand, damage mod-
els with softening suffer from strong drawbacks when
implemented in numerical solving methods such as the
finite element method, like mesh dependency and lack
of convergence of the fracture energy as the element
size goes to zero (Pietruszczak and Mroz 1981; Bazant
and Belytschko 1985). This has been shown to yield
from a loss of ellipticity of the associated mechanical
problem (Triantafyllidis and Aifantis 1986; Lasry and
Belytschko 1988; De Borst et al. 1993). To circumvent
these issues, regularization schemes must be applied,
such as nonlocal damage models (Pijaudier-Cabot and
Bazant 1987; Bazant and Pijaudier-Cabot 1988) and
higher-order deformation gradient schemes (Peerlings
et al. 1996; Lorentz and Benallal 2005). Another pos-
sibility is to introduce cohesive layers in the mod-
els which are then numerically solved via cohesive
finite elements (Xu and Needleman 1994; Camacho
and Ortiz 1996; Zhou and Molinari 2004). Cohesive
elements require cracks to follow the element bound-
aries of the mesh. Other techniques like XFEM (Moës
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et al. 1999; Belytschko and Black 1999; Daux et al.
2000) require a pre-existing crack and are not well
adapted to complex cracks morphologies due to the
underlying level-set functions needed to describe the
displacement jump. Finally, wemention a newmethod,
called Thick Level-Set method (TLS) (Bernard et al.
2012; Cazes andMoës 2015) in which a level-set func-
tion is employed to separate the undamaged zone from
the damaged one, andwhere the crack is a consequence
of the damage front motion, allowing crack initiation.

Recently, the phase field method has been proposed
in Bourdin (2007), Eastgate et al. (2002), Francfort and
Marigo (1998), Hakim and Karma (2009), Hofacker
and Miehe (2013), Kuhn and Müller (2010), Miehe
et al. (2010) and Spatschek et al. (2006) (only to name
a few). It employs a diffuse approximation of discon-
tinuities related to cracks and is consistent with brittle
fracture through a modified variational principle. This
technique is able to simulate brittle crack initiation and
propagation without dependence to the mesh in a clas-
sical FEM framework. It allows handling very com-
plex, multiple crack fronts and branching in both 2D
and 3Dwithout ad hoc numerical treatment. In Nguyen
et al. (2015, 2016), the authors have demonstrated the
capability of the method to simulate crack onset and
propagation in complex image-based models, as such
obtained by segmenting 3D X-Ray computed tomog-
raphy images of real materials like concrete.

However, the method requires choosing a regular-
ization parameter related to the smeared approximation
of discontinuities. This parameter induces a character-
istic length l in the model which must be chosen by
the user. In Amor et al. (2009), he showed that a rela-
tionship can be established between l and at least two
other material parameters. This seems consistent with
a recent crack initiation criterion of Leguillon (2002)
where two material parameters need to be identified
for predicting crack onset. In the present work, we
follow this line and show that l may be interpreted
as a material parameter and should be deduced from
experimental material parameters identification when
available. We validate this by comparing simulations
of crack initiation with experiments on drilled plaster
samples, where the material parameters, including l,
have been identified in other simple experimental tests
(Romani et al. 2015). Experimental data provided in
Romani et al. (2015) have been used to provide refer-
ence solutions associatedwith onset of cracks in plaster
structures containing drilled holes in compression or

in three-point bending of a beam. We also discuss the
influence of other numerical parameters on the solution
provided by the phase field method such as the size of
load increments and the mesh size. Note that comple-
mentary results related to this work can be found in a
recent paper by Mary et al. (2015).

In the following, we first give a brief summary
of the phase field method in Sect. 2. In Sect. 3,
we discuss the influence of the main parameters in
the numerical method on the predicted mechanical
response of cracked structures and show more specifi-
cally the relationship between the regularization para-
meter in the phase field method and some material
parameters. In Sects. 4, 5 and 6, we provide quali-
tative and quantitative comparisons between experi-
mental data of crack initiation in plaster samples with
simulations.

2 Mechanical model and numerical simulation
method

In the following, the basic concepts of the phase field
method are briefly summarized. For more details and
practical implementation aspects, the interested reader
can refer to Miehe et al. (2010) and Nguyen et al.
(2015). The phase field method is based on a regu-
larized formulation of a sharp crack description. A reg-
ularized variational principle describing both the evo-
lution of the mechanical problem and of an additional
field d describing the damage (called phase field), is
discretized by a finite element procedure and a stag-
gered algorithm , chosen here due to its easier imple-
mentation. The method alleviates the shortcomings of
remeshing crack geometry by using a fixed mesh and a
regularized description of the discontinuities. In addi-
tion, crack initiation can be modeled in a straightfor-
ward manner. In contrast to volume damage models,
usually implemented in nonlinear codes, such regular-
ized approach is directly connected to the brittle crack
theory of crack propagation. In the present work, the
phase field method has been implemented in a in-house
code both in 2D and 3D.

In the phase field method, assuming small strains,
the regularized form of the energy describing the
cracked structure is expressed by:

E(u, d) =
∫

Ω

W (u, d)dΩ + gc

∫
Ω

γ (d)dΩ, (1)
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whereW is the density of the elastic energy, depending
on the displacements u(x) and on the phase field d(x)
describing the damage of the solid, gc is the fracture
resistance and γ (d) is the crack energy density, defined
by γ (d,∇d) = 1

2l d
2 + l

2∇d · ∇d (see e.g. Miehe et al.
2010; Nguyen et al. 2015).

Applying the principle of maximum dissipation and
energy minimization (Francfort and Marigo 1998) to
(1) yields the set of coupled equations to be solved
on the domain Ω associated with the structure, with
boundary δΩ and outward normal n, to determine d(x)
and u(x), ∀x ∈ Ω:

⎧⎨
⎩
2(1 − d)H − gc

l

{
d − l2Δd

} = 0 in Ω,

d(x) = 1 on Γ,

∇d(x) · n = 0 on ∂Ω,

(2)

and

⎧⎨
⎩

∇ · σ (u, d) = f in Ω,

u(x) = u on ∂Ωu,

σn = F on ∂ΩF .

(3)

In (2), Γ refers to the crack surface, l is the regu-
larization parameter. The history strain energy density
function H(t) is introduced to describe a dependence
on history (Miehe et al. 2010) and possible loading-
unloading. This function reads:

H(x, t) = max
τ∈[0,t]

{
Ψ + (x, τ )

}
, (4)

In (4), Ψ + is the tensile part of the elastic strain
density function serving to model unilateral contact. It
is defined as

Ψ +(ε) = λ

2

(〈Tr(ε)〉+
)2 + μTr

{(
ε+)2}

, (5)

where ε is the linearized strain tensor and 〈x〉± =
(x ± |x |) /2 and ε± are compression and tensile parts
of the strain tensor (see e.g. Miehe et al. 2010; Nguyen
et al. 2015). The choice of the numerical parameter
l is a central issue in the method, which is precisely
discussed in the present work.

In (3), σ = ∂W
∂ε

is the second-order Cauchy stress
tensor, f are body forces and u and F are prescribed
displacements and forces on the corresponding bound-
aries ∂Ωu and ∂ΩF , respectively. The symbols ∇(.)

and ∇ · (.) denote gradient and divergence operators,

respectively. The constitutive law is expressed (see e.g.
Nguyen et al. 2015) by:

σ =
(
(1 − d)2 + k

) {
λ 〈Trε〉+ 1 + 2με+}

+ λ 〈Trε〉− 1 + 2με− (6)
where k is a small numerical parameter to avoid loss of
stability in case of fully damaged elements.

Equations (2)–(3) are solved by a standard FE pro-
cedure in a staggered scheme at each time step (load
increment). More theoretical and practical details can
be found e.g. in Miehe et al. (2010) and Nguyen et al.
(2015).

3 Discussion on the influence of input parameters
in the numerical simulations

In this section,wediscuss the influenceof the numerical
parameters on the simulation results.More specifically,
we study the influence of: (a) themesh size, (b) the load-
ing increments size, (c) the regularization parameter l in
(2). For this purpose,we consider a benchmark problem
with features similar to that of the experimental tests
studied in the following. The benchmark described in
Fig. 1 consists into a drilled sample subjected to com-
pression. Compression tests are often preferred to ten-
sile ones in civil engineering because of their better sta-
bility during crack propagation (see e.g. Sammis and
Ashby 1986; Wong et al. 2006). More details about the
real corresponding experimental test are provided in the
following. The geometry of the sample and boundary
conditions are depicted in Fig. 1. The material para-
meters have been chosen as E = 12GPa, ν = 0.3
and gc = 1.4N/m from the experimental values pro-
vided in Romani et al. (2015). Plane strain conditions
are assumed.

3.1 Influence of the mesh size

In a first test, we investigate the convergence of the
mechanical response with respect to mesh refinement.
In all examples of this work, linear elements have been
used, i.e. triangles in 2D and tetrahedra in 3D. Here,
the regularization parameter is fixed to l = 0.1mm.We
discuss in the following how to choose this parameter.
It has been shown in Miehe et al. (2010) that given l,
the criterion

h ≤ l/2 (7)
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Uy = U
_

Fig. 1 Benchmark problem for analyzing the influence of
numerical parameters on the simulation results: geometry and
boundary conditions
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Fig. 2 Convergence of the solution with respect to mesh size

must be fulfilled. Monotonic compressive displace-
ment increments of ΔU = −1 × 10−4 mm have been
prescribed for 250 load increments. Then we have
performed several simulations using refined meshes,
where the characteristic size of the elements vary
between h = 0.01mm and h = 0.1mm. Let us define
the overall critical axial stress σ ∗ as the ratio of the y-
component of the resultant force prescribed at the top
of the sample to the area of its upper face, when dam-
age reaches the value d = 1 for the first load increment
at some node in the mesh (i.e. stress associated to the
onset of the first crack). We study in Fig. 2 the con-
vergence of this quantity with respect to mesh size. A
clear convergence is observed, with results becoming
mesh independent when condition (7) is fulfilled. This
confirms the results of Miehe et al. (2010).

3.2 Influence of the load increments

Next, we analyze the influence of the load increment
ΔU in the numerical simulation on the mechanical
response. We have used several load increments from
ΔU = 1.5×10−3 mm toΔU = 3×10−5 mm. Results
are presented in Fig. 3. In Fig. 3b, we study the evolu-
tion of σ ∗ with respect to ΔU and can note the related
convergence: the variation of σ ∗ is below 2%when the
increment goes from 5.10−5 to 3.10−5 mm. This con-
firms the stability of the easy-to-implement staggered
algorithm as soon as sufficiently small loading steps
are used. Too large steps tend to delay the initiation
of damage and thus harden the overall response of the
structure.

3.3 Choice of the regularization parameter l

In the following, we show that the regularization para-
meter l in (2) depends on material parameters. To illus-
trate this point, we consider a bar under uniaxial trac-
tion as depicted in Fig. 4. We assume that the Poisson
ration is zero. In this configuration and in the absence
of initial defects, the damage distribution is assumed to
be homogeneous, i.e. ∇d(x) = 0.

Assuming an isothermal process, the reduced form
of the Clausius-Duhem inequality can be written as:

A .

d ≥ 0 (8)

where

A = −∂E

∂d
(9)

is the thermodynamic force associated with d and
.

d
denotes derivative with respect to time t . We assume
that the evolution of the damage parameter d is gov-
erned by the simple negative threshold function

F(A) = A ≤ 0, (10)

such that when F(A) < 0 no evolution of damage
occurs. The principle of maximum dissipation requires
the dissipationA .

d to bemaximumunder the constraint
(10). By using the method of Lagrange multipliers, we
define the Lagrangian as:
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Fig. 3 Convergence of the
solution with respect to the
displacement increments in
the numerical simulation: a
load-displacement curve; b
σ ∗ for various displacement
increments
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L = −Aḋ + λF(A) (11)

where λ is the Lagrange multiplier associated with the
constraint (10).MinimizingL under the constraint (10)
yields the Kuhn-Tucker equalities:

∂L
∂A = 0, λ ≥ 0, F ≤ 0, λF = 0. (12)

The left-hand equation in (12) gives λ = ḋ. Then
for ḋ > 0, F(A) = 0 = A = − ∂E

∂d , which leads to
(see more details in Nguyen et al. 2015):

F = 2(1 − d)Ψ + − gcδγ (d) = 0. (13)

In (13), δγ (d) is given by δγ = d
l − lΔd (Miehe

et al. 2010), where Δd is the Laplacian of d. For a uni-
form damage parameter as in the considered 1D prob-
lem, δγ reduces to δγ = d/ l.

For uniaxial tension, and assuming k 
 0 we can
write from (6):

σ = g(d)Eε, Ψ + = 1

2
Eε2, (14)

with g(d) = (1 − d)2. Then using (13), we obtain the
relation:

(1 − d)Eε2 − gc
l
d = 0. (15)

The strain and stress can then be expressed by:

ε(d, l) =
√

gcd

lE(1 − d)
, (16)

σ(d, l) =
√
d(1 − d)3

√
Egc
l

. (17)

Fig. 4 1D problem for the
analysis of the phase
method in an initially
homogeneous situation

The maximum value of the stress with respect to d
is given by:

σc = Arg

{
sup

d=[0 1]
σ(d, l)

}
(18)

which is reached for d = 1/4, corresponding to the
critical value of the stress σc:

σc = 9

16

√
Egc
3l

(19)

and of the strain:

εc =
√

gc
3l E

(20)

These obtained formulations are similar with the
result in the work of Amor et al. (2009). Analyses
leading to similar relationships can also be found in
Kuhn et al. (2015), Benalla andMarigo (2007), Borden
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Fig. 5 Evolution of the
solution with respect to the
regularization parameter l: a
Load-displacement curve; b
σ ∗ versus l
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et al. (2012) and Pham et al. (2011). From these expres-
sions, it is clear that the critical stress will increase as
l decreases. In the limit of l tending to zero, i.e., when
the phase-field formulation coincides with the dis-
crete fracture formulation, the crack nucleation stress
becomes infinite. This observation is consistent with
the predictions of Griffith’s theory, which only allows
for crack nucleation at stress singularities. Equation
(20) gives a relationship between l and the material
parameters, namely the Young modulus, E , the Grif-
fith critical surface energy, gc, and a value of the tensile
strength σc determined experimentally, and denoted in
that case by σ

exp
c , which now refers to the critical stress

leading to rupture in a uniaxial uniform tension test:

l = 27Egc

256
(
σ
exp
c

)2 . (21)

Note that this relation holds for uniaxial traction
without damage gradient and only provides an esti-
mation for l but clearly shows that l can be linked to
material parameters. From the values of gc and σ

exp
c

identified experimentally in Romani et al. (2015) for a
plaster material, i.e. E = 12GPa, σc = 3.9MPa and
gc = 1.4N/m we obtain l 
 0.1mm.

In the next test, we show numerically that the
mechanical response does not converge with respect
to the parameter l. An unstructured mesh with mini-
mal element size hmin = 0.01mm is employed around
the hole where the cracks should initiate, and with
maximal element size hmax = 1mm away from the
hole, such that mesh size ensures numerical conver-
gence of the computations for all values of l consid-
ered hereafter. The displacement increment is chosen
as ΔU = 10−4 mm. In Fig. 5a, the evolution of the

z

y

x

U = Uy

160 mm

40
 m

m
130 mm

15
 m

m

Fig. 6 3D 3-point bending test: geometry and boundary condi-
tions

solution with respect to the regularization parameter l
is plotted for different values of l ranging from 0.025
to 0.5mm. In Fig. 5b, the stress required to onset the
first crack σ ∗ is plotted versus l. While the force-
displacement curve in Fig. 5a seems to converge when
l decreases (indeed towards a purely elastic response),
it is obvious that this is not the case for the value of
σ ∗. This test illustrates the fact that the regularization
parameter l must be identified as a material parameter,
i.e. each value of l will lead to a different response of
the structure.

4 Experimental validation: three-point bending
test

4.1 Pre-notched beam

In this test, we validate the phase field solution on
an experimental 3-point bending test of a beam con-
taining an initial crack of length 15mm. The geome-
try, dimensions, and boundary conditions of the struc-
ture are depicted in Fig. 6. The material is dry plaster,
composed of plaster powder of the Siniat Company
named Prestia Profilia 35�. The plaster sample prepa-
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Fig. 7 3-point bending test, crack evolution (damage variable d(x)) for two prescribed displacements:U = 0.15mm andU = 0.18mm

ration are detailed in a previous work (Romani et al.
2015). In the mentioned study, the material parameters
have been identified experimentally and are the same
as in the previous example: E = 12GPa, ν = 0.3,
gc = 1.4N/m and σ

exp
c = 3.9MPa, which give the

value of l = 0.1mm from (21). Note that here the
Poission ratio is non zero and the problem is not one-
dimensional, thus (21) only provides an estimation for
l. In addition, it is worth noting that the derivation of
(21) is only valid for a benchmark case involving homo-
geneous displacements and d(x) field before fracture
nucleation.

The z−component of displacementsU is prescribed
along a line in the middle of the upper face, while the
all components of displacements are blocked along two
lines on the lower face (see Fig. 6).

Three-dimensional simulations havebeen conducted.
A refined mesh was constructed using tetrahedral ele-
ments, with hmax = 3mm and hmin = 0.05mm in
the region of expected crack path, to satisfy the con-
dition hmin ≤ l/2. Monotonic compressive displace-
ment increments of ΔU = −5 × 10−4 mm have been
prescribed as long as d < 0.9 in all elements and
ΔU = −5 × 10−5 mm as soon as d > 0.9 in one
integration point. The crack propagation evolution is
depicted in Fig. 7 for two loading stages.

Figure 8 provides the load-displacement curve
obtained from the simulation. The critical load Fr is
defined as the maximum resultant load before soften-
ing due to crack propagation. We compare this critical
load with the experimental values provided in Romani
et al. (2015) for several samples in Fig. 9 and can note
that we obtain a good agreement for the values of Fr
with respect to experiments.
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Fig. 8 Load-displacement curve for the 3-point bending test:
numerical model
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Fig. 9 Critical load for the 3-point bendingproblem: comparison
between experiments and numerical predictions

4.2 Un-notched beam

We investigate now the capability of the phase field
method to provide a correct estimated value of σ

exp
c
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Fig. 10 2D 3-point bending test of non cracked beam:Geometry
and boundary conditions
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Fig. 11 Tensile strength for the 3-point bending problem: stress–
displacement curve of the critical element

for crack initiation in a structure different from the one
in which the critical stress σ num

c was identified. For
this purpose, we consider an un-cracked beam under
three-point bending, as depicted in Fig. 10.

The stress is evaluated numerically during the sim-
ulation in an element located on the known path of
the crack. The tensile strength σ num

c is defined as the
maximal stress evaluated numerically before softening
in the integration point of an element located in the
middle of the lower end, as depicted in Fig. 11. In the
present work, we have used linear finite elements, with
one Gauss integration point per element. From now on
and in all following examples, all material parameters
are the same as in the previous example and l is equal
to 0.1mm.Monotonic compressive displacement incre-
ments ofΔU = −2×10−3 mm have been used for 180
increments. We obtain a good agreement between the
value predicted numerically (σ num

c = 4.01MPa) and
the experimental value identified from another experi-
ment in Romani et al. (2015) (σ exp

c = 3.9 MPa).

100 mm 40
mm65

 m
m D mm

x

y

z U

Fig. 12 Plaster sample containing one cylindrical drilled hole:
geometry and boundary conditions for both experimental setup
and simulation

5 Experimental validation: compression of a
drilled plaster specimen containing a single
cylindrical hole

In the following, we investigate crack initiation and
propagation in a more involved test, and compare the
numerical prediction with experimental results pro-
vided in Romani et al. (2015). The objective is to evalu-
ate if the numerical model is able to predict accurately
the response of cracked structure in other configura-
tions than the ones used to identify the material para-
meters.

A drilled sample is considered, as depicted in Fig.
12. A thick plate contains one single cylindrical hole
with diameter D. Several samples with various hole
diameters, ranging from D = 3 to D = 6mm, have
been tested. The dimensions of the plate are 100mm×
65mm × 40mm. The material (plaster) is the same as
in the previous example. The sample is loaded in com-
pression. In the experimental tests, the load is applied
continuously at a speed of 0.2mm/min. Consistently,
the numerical calculations are run in the quasi static
regime, as for previous cases. PMMA plates were used
on top and bottom face to reduce the lack of planarity,
parallelism and friction conditions (Romani 2013) to
avoid stress concentration.

Experimental image correlation data were provided
in Romani et al. (2015), together with force mea-
surement to detect the crack experimentally. A high-
resolution camera (Baumer HXC20, progressive scan
sensor with 2048×1088 pixels), with a pixel size of
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Fig. 13 Crack path evolution near the cylindrical hole (D = 5
mm); a, b strain maps obtained with digital image correlation
for initial and loaded state (Romani et al. 2015), for 15.2 and

14.1MPa, respectively; c 2D simulation (plane strain); d 3D sim-
ulation (damage variable d(x))

5.5 × 5.5 μm2, and equipped with a ZEISS Makro-
Planar 100mm macro lens was used to continuously
acquire images of the specimen during loading at a
frame rate of 20Hz. As the detection of the crack onset
is not possible with naked eye, the recorded images
were processed by 2D digital image correlation (DIC)
techniques. Cracks are detected by high levels of local
xx−strain components, measured for a gage length
defined by the mesh of correlation points (20 pixels
spacing), which is the signature of the presence of dis-
placement discontinuities between two points of the
mesh.

The 2D technique of digital image correlation 2D-
DIC was used. When the sample is subjected to a com-
pressive load, two opposite cracks initiate on top and
bottom of the hole and grow from the cavity, in a direc-
tion parallel to the load. In Romani et al. (2015), the
experimental results have been compared to the semi-
analytical model of Leguillon (2002), which requires
numerical FEM computations to evaluate the stress
intensity factors. In the mentioned work, 2D FE sim-
ulations with plane strain assumptions were used. In
view of the dimensions of the sample and owing to
the fact the measurements are performed at the sur-
face of the sample, the plane strain assumption might
be questionable. For this purpose, we have performed
2D simulations with both plane strain and plane stress
assumption, as well as full 3D simulations. The bound-
ary conditionsmodel the experimental ones on the sam-
ple, and are described for the 3D case in Fig. 12: on
the lower surface (z = 0), the z-displacements are

fixed and the x- and y-displacements are free. On the
upper end, the x- and y-displacements are free, while
the z-displacements are prescribed, with an increasing
value U during the simulation. Monotonic compres-
sive displacement increments of ΔU = −10−3 mm
are prescribed for first load increments and as soon
as d reaches 0.9 in one integration point of the Finite
Element mesh, we use ΔU = −10−4. A finite element
meshwith varying element size (hmin =0.05mmaround
the hole and hmax =0.25mm in the rest of domain) is
used.

In Figs. 13 and 14, we show a comparison of the
experimental digital image correlation technique used
to detect the crack evolution and the simulation, were
the damage field, associated with the crack, is depicted.
This case corresponds to a diameter D = 5mm. We
can note that the numerical solution based on the phase
field method can capture the crack initiation on top
and bottom of the hole and the vertical path of the two
cracks. In addition, the length of the crack for the given
load is accurately predicted (Fig. 13b, c).

In the simulations, the crack length is computed as
the distance between the last point for which d = 1 and
the hole boundary, assuming a straight crack. The same
procedure is employed in 3D. In Fig. 15 we quantita-
tively compare the crack length evolution with respect
to the applied load computed at the point where the
displacement is prescribed. Results for 2D plane strain
and plane stress, 3D simulations and experimental DIC
results are compared in Fig. 14. Figure 15 shows that
all three models provide a satisfying prediction for the
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Fig. 14 Crack propagation
at different values of the
applied stress around the
cylindrical hole:
comparison between
experiments (digital image
correlation) and simulations
(damage variable d(x))

Plane stress

Plane stress Plane strain

Plane strain

7.84 MPa

8.51 MPa

7.81 MPa7.89 MPa

8.47 MPa8.57 MPa

critical load corresponding to the onset of the crack.
However, we can note that during propagation, the
experimental evolution deviates from 2D predictions.
The 3D simulation is in that case in better agreement
with the experimental response for both top and bottom
cracks.

To analyze the influence of the diameter of the hole
on the stress at the time cracks onset, several samples
with diameters varying between 3 and 6mm have been
prepared and tested. Simulations have been performed
here also in 2D and 3D. Results are provided in Fig.
16. They show the good ability of the simulation model
to accurately predict the evolution of critical load σ ∗
(onset of the crack) with hole diameters and related
size effects. Size effects in the context of the phase

fieldmethodhave been investigated inKuhn andMüller
(2014). The quality of different strength criteria has
been examined with respect to experimental data for
samples with several hole diameters in Li and Zhang
(2006). In the mentioned work, the authors discussed
the validity of one, two and three parameters criteria to
model size effects.

6 Microcracking in a plaster specimen containing
a periodic distribution of cylindrical holes

In this last example, we investigate the microcrack-
ing of two plaster specimens containing many holes,
whose configurations are depicted in Fig. 17. In both
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Fig. 15 Evolution of the
crack length with respect to
the resultant stress on the
upper boundary, comparison
between models and
experimental data: a top
crack; b bottom crack
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Fig. 16 Stress associated with the cracks onset with respect to
the cylindrical hole diameter: comparison between experiments
and numerical simulation

cases, the diameter of the holes is D = 4mm. Config-
uration of Fig. 17a corresponds to a volume fraction of
12.2%, and in Fig. 17b to 13.5%. A FE adaptive mesh
with characteristic size hmin = 0.05mm has been used
around the holes, and larger elements whose size are
hmax = 0.5mm have been employed away from holes.
The whole mesh contains 905437 elements.

2Dplane strain simulationwas conducted.Monotonic
compressive displacement increments are prescribed
on the top edge of the specimen, with ΔU =
−10−3 mm in the first 1000 increments and ΔU =
−5×10−5 mm in the last 1500 increments. The evolu-
tion of microcracking within the specimen is depicted
in Fig. 18. The simulation model captures well the
vertical propagation of the different microcracks. The
microcracks propagate faster near the left and right
boundaries than in the central region, probably because

of the influence of the free boundary conditions on
the lateral surfaces. In addition, there is also a slight
dissymmetry between upper and lower parts of the
sample (a), whose successive damage maps are repro-
duced in Fig. 18. This is linked to the absence of hor-
izontal symmetry for this sample. For sample (b), the
hole distribution is symmetric between upper and lower
parts, and the resulting simulated damage map is also
symmetric.

In Fig. 19 the microcracking pattern for the case
of porous fraction 13.5% is depicted and numeri-
cal simulations and digital correlation image obtained
in Romani (2013) are qualitatively compared. Glob-
ally speaking, the heterogeneity of the damage map
between central and lateral parts of the sample is nicely
captured by the computation. In Fig. 20, we com-
pare with more details the microcracking morphology
between the simulation and the experiment provided in
Romani (2013) and Romani et al. (2015), and note that
it is qualitatively captured, both regarding the vertical
propagation of the different cracks, and regarding the
non uniform propagation of the microcracks within the
sample.

To compare more quantitatively the predictions pro-
vided by the numerical simulation, we analyze the
effects of changing the configuration (volume fraction
and distribution) with respect to the stress required
to initiate the first cracks in the sample and to gen-
erate cracks around all holes. Again, the correspond-
ing experimental values have been provided in Romani
(2013). Comparisons are provided in Fig. 21. The
numerical simulationmethod is in good agreementwith
the experimental values.
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(a) (b)

Fig. 17 Plaster specimen containing a regular distribution of cylindrical holes: a surface fraction 12.2% and b surface fraction 13.5%
(Romani 2013)

Fig. 18 Plaster specimen
containing regular
distribution of cylindrical
holes: evolution of the
microcracking for different
compressive loads (damage
variable d(x)): a
U = 0.544mm; b
U = 0.594mm; c
U = 0.64mm; d
U = 0.67mm;

Fig. 19 Crack trajectory
comparison between the
present simulation (a) and
the experiment (b) provided
in Romani (2013) (damage
variable d(x)) for
U = 0.614mm
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Fig. 20 Qualitative
comparison of the
microcracking propagation
between the present
simulation and the
experiment provided in
Romani (2013) (damage
variable d(x)) for
U = 0.64mm

12.2 13.5
4

6

8

10

12

14

16

18

20

22

Porosity [%]

σ*
]a

P
M[

Experiments: Crack onset in first hole
Experiments: Crack on whole holes
Model: Crack onset in first hole
Model: Crack on whole holes

Fig. 21 Stress corresponding to crack onset within the speci-
men: comparison between experimental results and the numeri-
cal model for two porosities

7 Conclusion

In this work, we have discussed the choice of the para-
meters in the phase field method, which is a promis-
ing simulation tool for initiation and propagation of
cracks in brittle materials. More specifically, we have
analyzed the influence of the numerical parameters and
have validated the fact that the regularization parameter
describing the width of the smeared crack approxima-
tion is linked tomaterial parameters. The regularization
length then requires experimental measures to be iden-
tified. We have shown that the other numerical para-
meters (load increments, mesh size) lead to convergent
responses when they decrease. Then, from the knowl-
edge of the elastic parameters, of the fracture resistance

and of the regularization parameter of the phase field
method, essentially identified from experimental mea-
surements of critical stress in uniformly stressed sam-
ples, we have conducted several simulations, including
crack initiation and propagation in three-point bend-
ing beam and in drilled samples of plaster in compres-
sion. Remarkably, the phase field model is able to pre-
dict quantitatively crack paths, crack propagation mor-
phologies, and mechanical response with good agree-
ment regarding experimental results for other geomet-
rical configurations than the ones used to identify the
material parameters. Thus, the phase field method con-
stitutes a promising tool for prediction of strength in
brittle heterogeneous or lightweight materials for civil
engineering.
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