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Abstract In this paper we review the peridynamic
model for brittle fracture and use it to investigate crack
branching in brittle homogeneous and isotropic mate-
rials. The peridynamic simulations offer a possible
explanation for the generation of dynamic instabili-
ties in dynamic brittle crack growth and crack branch-
ing. We focus on two systems, glass and homalite,
often used in crack branching experiments. After a
brief review of theoretical and computational models
on crack branching, we discuss the peridynamic model
for dynamic fracture in linear elastic–brittle materials.
Three loading types are used to investigate the role
of stress waves interactions on crack propagation and
branching. We analyze the influence of sample geome-
try on branching. Simulation results are compared with
experimental ones in terms of crack patterns, propaga-
tion speed at branching and branching angles. The peri-
dynamic results indicate that as stress intensity around
the crack tip increases, stress waves pile-up against the
material directly in front of the crack tip that moves
against the advancing crack; this process “deflects” the
strain energy away from the symmetry line and into the
crack surfaces creating damage away from the crack

Electronic supplementary material The online version of
this article (doi:10.1007/s10704-015-0056-8) contains
supplementary material, which is available to authorized users.

F. Bobaru (B) · G. Zhang
University of Nebraska-Lincoln, Lincoln, NE 68588-0526,
USA
e-mail: fbobaru2@unl.edu

line. This damage “migration”, seen as roughness on
the crack surface in experiments, modifies, in turn, the
strain energy landscape around the crack tip and leads
to preferential crack growth directions that branch from
the original crack line. We argue that nonlocality of
damage growth is one key feature in modeling of the
crack branching phenomenon in brittle fracture. The
results show that, at least to first order, no ingredients
beyond linear elasticity and a capable damage model
are necessary to explain/predict crack branching in brit-
tle homogeneous and isotropic materials.

Keywords Dynamic fracture · Crack branching ·
Brittle fracture · Peridynamics · Nonlocal methods

1 Introduction

As mentioned in Cox et al. (2005), at some scale, all
fracture is dynamic. The dynamics of atomic bond rup-
ture plays a role in crack propagation evenwhen a crack
at themacroscopic scale appears to be advancing quasi-
statically. As the atomic bond rupture is a dynamic
process, the authors of the review article (Cox et al.
2005) state that “the dynamic fracture problem is the
most fundamental in the science of fracture”. Dynamic
fracture covers largely disparate spatial scales: on the
smallest scale, dynamic fracture can help us understand
how the introduction of nanostructures can affect the
ultimate strength of amaterial, while at the geophysical
scale we can understand the conditions required for a
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fault in the earth’s crust to lose stability and produce a
massive earthquake.

Dynamic fracture has been studied from several dif-
ferent angles by researchers from different communi-
ties. Two main lines of attack for understanding this
problem have been atomistic modeling (classical and
quantum) and continuum mechanics modeling.

Atomistic modeling has sometimes produced puz-
zling results (Zhou et al. 1996). For example, crack
branching cannot be reproduced by 2D atomistic
models (Procaccia and Zylberg 2013), as branch-
ing attempts lead to one of the branches to eventu-
ally arrest. Three-dimensionality has been proposed
as a potential solution for achieving crack branching
in atomistic models of amorphous materials. Further
studies that used realistic crystalline potentials have
failed to reproduce experimental results (Hauch et al.
1999; Bouchbinder et al. 2014). Somewhat surpris-
ingly, atomistic simulations seem to require quantum
mechanical calculations in order to enable an accu-
rate quantitative description for mode I crack propa-
gation (the simplest mode of fracture) at low speeds
of a single crack in single crystal silicon (Kermode
et al. 2008). The complexity of dynamic fracture
in amorphous or polycrystalline materials is signifi-
cantly enhanced by the physical interplay of multiple
length scales due to the presence of microdefects or
grain boundaries. For these types of problems, atom-
istic or quantum calculations cannot yet provide any
answers.

In addition to theobstacles in predicting theobserved
behavior in dynamic brittle fracture with atomistic
modelsmentioned above, suchmodels have some obvi-
ous limitations (see Zhou et al. 1996): the small size
of the sample modeled (usually micrometer or submi-
crometer) and the short time scales that can be accessed
(usually nanoseconds). Cracks in brittle solids are con-
trolled by waves (Ravi-Chandar and Knauss 1984b)
and the influence of elastic waves bouncing from the
boundaries of the sample cannot be neglected if one
is to predict the behavior of growing cracks in such
solids. In trying to predict how cracks propagate in brit-
tle solids it is, therefore, essential to model the entire
sample, a feat not achievable by atomistic models. The
alternative then remainsmodeling at a continuum level.
Doubts about whether continuum approaches would
ever be capable in successfully modeling the evolu-
tion of dynamic cracks, through fragmentation, have
persisted for decades (Song et al. 2008). One source

for these doubts has been attributed to the breaking
down of linear fracture mechanics (LEFM) for regions
near the crack tip, as is reviewed in Bouchbinder et al.
(2014). A number of authors have introduced mod-
els that modify the classical picture by introducing a
certain region with nonlinear elastic behavior near the
crack tip as well of a length-scale (see Bouchbinder
et al. 2014). Such models have been successful in cor-
rectly representing the opening profile at the crack tip
in soft brittle materials (aqueous gels). It is not yet
knownwhether this approach is still valid in more stan-
dard brittle materials, like glass or glassy polymers, in
which there is no clear separation between nonlinear
elastic scales and dissipative ones (Bouchbinder et al.
2014).

The branching of a crack (splitting of a crack in
two or more cracks) is one of the characteristics of
dynamic brittle fracture (Bowden et al. 1967; Ramulu
and Kobayashi 1985). An increase in fracture sur-
face roughness is consistently observed in experiments
prior to branching (Ramulu and Kobayashi 1985). The
increase in fracture surface roughness is tightly con-
nected to crack path instability. Crack path instabili-
ties, in turn, have been proposed as being responsible
for the observed limiting crack speed in amorphous
brittle materials. This speed is well below the the-
oretical limiting speed, rarely reaching above 0.6 of
the Rayleigh wave speed (see Ravi-Chandar 2004, p.
191). The source of the observed instabilities has been
assigned to a number of potential mechanisms happen-
ing in the process zone around the crack tip:

– Ravi-Chandar and Knauss (1984a) suggested that
the process zone is significant even in nominally
brittle materials, and, in this zone, nucleation,
growth, and coalescence of microcracks occurs;
the dynamics of evolution of these processes trig-
gers microscopic path instabilities, that eventually
lead to crack branching. This mechanism has been
observed in glassy polymers like PMMA (seeRavi-
Chandar and Yang 1997) and polystyrene (see Hull
1999, p. 141) where conical markings are seen on
crack surfaces;

– Hull (1994) suggested that twisting and tiltingof the
stress vector on the crack front (thus mixed-mode
loading around the crack tip) due to microscale
variations in the symmetries results in crack path
instabilities, surface roughness and eventual crack
branching. This mechanism has been suggested for
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glasses or brittle epoxy resins in which the forming
of microcracks around the crack tip has not been
observed in experiments, and the stresses required
to activate the very small flaws near the crack tip
would have to approach the theoretical strength of
the material, thus making bond breakage at the tip
the more likely scenario (Beauchamp 1996; Hull
1999 p 145).

Crack path instabilities have been addressed in a
series of atomistic or theoretical investigations (e.g.
Buehler and Gao 2006; Livne et al. 2007). A vast lit-
erature on exposing various types of instabilities in
dynamic fracture is reviewed in Bouchbinder et al.
(2014), Fineberg and Bouchbinder (2015). In our opin-
ion, however, the actual mechanisms that trigger these
instabilities has not been clearly identified or satis-
factorily explained. Indeed, the authors of the review
article Bouchbinder et al. (2014) state: “is it quite
likely that the dynamics of the near-tip zone could
play an important role in unraveling the physical mech-
anisms driving instabilities of rapid cracks”. What
causes this instability and how is it generated? What is
the sequence of events that lead, in one case, to a crack
propagating straight, and in another case, instabilities
spring up and induce micro-branching and roughening
of the crack surface, and eventually macro-branching?

The crack propagation speed has been demonstrated
in experiments not to be the main reasons leading to
crack branching. The experimental evidence points to
the following likely scenario: when a critical stress
intensity factor is reached, the crack splits into two of
more branches, each propagating with about the same
speed as the parent crack but with a smaller process
zone (see Ravi-Chandar 2004, p. 214).

In this paper we aim to answer the following ques-
tions:

1. Is it possible to use a continuum model to predict
dynamic brittle fracture, in particular crack branch-
ing?

2. What is the minimal set of input data that is able
to reproduce the most important characteristics
observed in crack branching?

3. Are quantum calculations the only option for
explaining the dynamic instabilities that precede
crack branching?

4. What are the causes of the dynamic instabilities and
how do these lead to crack branching?

5. Why do cracks in amorphous materials branch well
before reaching propagation speeds close to the
Rayleighwave speed, the theoretical limiting speed
of mode I cracks?

6. How do stress waves and loading conditions affect
crack branching?

As we shall see, a key factor in having a model that
reproduces the essential features of crack branching, is
being able to capture, at least in some average sense,
the evolution of the process zone around the crack tip.
The peridynamic model satisfies these requirements.
We will also see that, contrary to some recent conclu-
sions that the micro-branching instability is intrinsi-
cally a 3D phenomenon and that it “cannot be modeled
directly by a 2-dimensional” theory (Bouchbinder et al.
2005), some essential features of crack instabilities are
not controlled by the dimensionality, but by how the
elastic wave energy flows around the crack tip and by
the dynamic evolution of the process zone. Our results
confirmprevious statementsmade based on experimen-
tal evidence and theoretical considerations that “the
process of branching is governed by the inner problem
and not the outer problem that is treated by the (clas-
sical) continuum elastodynamics” (see Ravi-Chandar
2004, p. 214) and this observation explains why cracks
branch well before reaching speeds projected by elas-
todynamic theories to be required for a crack to branch
(Yoffe 1951). The role played by “structural inertia”
(see Ožbolt et al. 2011, 2013) has been pointed out in
branching of concrete. The results obtained in our paper
explain the mechanisms through which the dynamics
of strain energy around the crack tip leads to branching.

We will explain the reasons for the angle of branch-
ing changing past the branching event (the branched
cracks do not grow straight, but may curve after a
while). We explain what controls the initial angle of
branching, as well as what conditions favor micro-
branching. We shall see that the peridynamic model
explains all these different characteristic features of
crack branching without any conditions or extra cri-
teria for crack growth. The fact that only elastic wave
propagation and a proper damage model (the nonlo-
cal, peridynamic damage model which only uses frac-
ture energy information) are sufficient to capture all
these different features of the dynamic brittle fracture
phenomenon, indicates that all other effects or crite-
ria used in earlier models are secondary/not needed
to explaining this phenomenon. Results in the present
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paper also demonstrate that atomistic resolution and
quantum calculations are not necessary in order to
understand dynamic brittle fracture and, in particular,
the crack branching instability.

2 A brief review of literature on crack branching

In this section we provide a brief review of the vast lit-
erature dedicated to the subject of dynamic brittle frac-
ture, and in particular to crack branching. This review
cannot possibly cover the entire, vast literature ded-
icated to this subject. Dynamic brittle crack growth
remains a challenging problem after almost a century
of research dedicated to it (see Cox et al. 2005). To
investigate the mechanisms of dynamic brittle fracture,
theoretical models, numerical simulations, and experi-
ments have been employed over the years (for a recent
review, see Bouchbinder et al. 2014).

2.1 Theoretical models and experimental results on
dynamic brittle fracture and crack branching

Various criteria have been proposed to explain crack
curving andbranching in dynamicbrittle fracture. Early
on, the crack propagation velocity was thought to
control crack branching and a crack branching crite-
rion was proposed based on elastodynamic theoretical
results (Yoffe 1951) showing that, for a crack of con-
stant length translating with a constant velocity in an
infinite medium, the maximum circumferential stress
shifts from the symmetry line to lines that make an
angle of 60◦ with the direction of propagation of the
crack when the crack speed exceeds the 0.73 frac-
tion of the Rayleigh wave speed. The Rayleigh wave
speed is the theoretical limiting velocity for propagat-
ing cracks in linear elastic materials (Freund 1990).
The limiting crack speed is also discussed in Stroh
(1957). In practice, cracks never reach such high speeds
in isotropic amorphous brittle materials, loosing stabil-
ity and branching when they reach fractions of 0.35–
0.65 of the Rayleigh wave speed (see Döll 1975; Ravi-
Chandar and Knauss 1984a; Ravi-Chandar 2004, Table
11.1). In crystalline materials, in which cracks may
become trapped on cleavage planes, the propagation
speed can reach close to the Rayleigh wave speed
(Field 1971). Another problem with the Yoffe solu-
tion is that experimentally observed branching angles

(angle between a branch and the original crack line) are
between 10◦ and 45◦.

The constant length crack moving with constant
velocity under mode II conditions is a physically possi-
ble process in seismic events where slip stops after the
propagation of the disturbance. Broberg (1999) gave
the solution for this mode II Yoffe problem. Crack
propagation for semi-infinite cracks has been studied
by Freund (1972) and Eshelby (1969) in an infinite 2D
linear elastic medium. These models show that cracks
propagate smoothly and continuously accelerate until
they achieve the limiting velocities. However, in reality,
crack path instabilities are triggered well before such
speeds are attained and crack surfaces present the “mir-
ror, mist, hackle” patterns before branching takes place
(see, e.g.Ravi-Chandar andKnauss 1984a;Ramulu and
Kobayashi 1985; Beauchamp 1996; Hull 1999). Notic-
ing the discrepancies between experimental observa-
tion and analytical predictions, Gao (1996) indicated
that linear elasticity might be inadequate because it
misses possible large deformation near the crack tip.
The resulting model obtains a local limiting speed that
provides an explanation for the onset of mirror-mist
transition observed in dynamic fracture experiments.

Crack path instabilities may lead to crack branch-
ing. Criteria for crack path curving and crack branch-
ing under single or mixed modes were proposed based
on, for example, the maximum circumferential-stress
or minimal strain energy criteria. The criterion that
the crack growth direction is normal to the maximum
circumferential-stress was introduced in Erdogan and
Sih (1963). Using this model, Streit and Finnie (1980)
proposed a directional stability criterion on the hypoth-
esis that the crack instability is caused by an off-axis
microcrack, ahead of the crack tip within a critical dis-
tance, connecting with the main crack. The crack path
kinks or bifurcates once the critical distance is greater
than the maximum radius for which the maximum cir-
cumferential stress lies on the symmetry axis. Extend-
ing Streit and Finnie’s ideas, Ramulu and Kobayashi
(1983) put forward a dynamic crack curving criterion
by adding the nonsingular stress or remote stress to
the directional stability criterion. The dynamic crack
curving criterion is capable of predicting the crack
angle in both pure Mode I and mixed Mode I and II
conditions. Results showed that positive nonsingular
stress enhances the instability while the negative one
reduces the fracture angle. This work also proposed a
“long-range” interaction in dynamic fracture problems,
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where a sufficient criterion for crack branching is intro-
duced and tested experimentally. The criterion involves
a “characteristic distance” r0 that depends on the
dynamic state of stress near the crack tip. According to
Ramulu andKobayashi (1983), crack branching occurs
when r0 ≤ rc, where rc is a material property thought
to be related to the distance between microvoids and
the crack tip. When an off-axis microvoid gets within
a critical distance rc from the crack tip, it gets acti-
vated by the stress field and directional stability of the
propagating crack is lost leading to a deflection of the
straight crack path. The loss of directional stability,
together with the necessary criterion for crack branch-
ing (KI ≥ KIb), leads to branching of a propagating
straight crack. The role played by microcracks around
the crack tip in crack branching has been discussed in,
for example, Ravi-Chandar and Knauss (1984a) and
Ravi-Chandar and Yang (1997).

Besides the microvoids and microcracks-induced
crack path instabilities, the tilting and twisting of the
stress vector at the crack front due tomixed-mode load-
ing has been studied as another potential source that can
lead to crack branching. The formation of “lances” in
glass, as the result of superposition of mode I andmode
III, was quantitatively investigated by Sommer (1969).
The fracture plane, which is perpendicular to the load-
ing axis in mode I, separates by lances as a result of
rotation of the principal stress field at the crack tip. A
critical angle of rotation was proposed as a necessary
condition for lance formation. Using a modified Som-
mer’s experiment, Hull (1994) confirmed that a critical
rotation angle is needed for “river lines” nucleation.
Hull explained the progressive coarsening of river lines
and the generation of helicoid surfaces in mixed mode
I/III conditions. In inorganic glasses, no evidence of
microcracks ahead of the crack tip is found and the
source of roughness of the crack surface is placed on
local changes in the path of the growing crack aris-
ing “from some form of local instability at the tip of
the crack related to the dynamical properties of the
cracks” (Hull 1999, p. 145). We remark that the spe-
cific “dynamic properties” creating these instabilities
have not been specified. The picture proposed in Hull
(1994), Beauchamp (1996), and Hull (1999) to explain
branching in inorganic glasses, involves local tilting
of the crack out of the main plane. The tilted cracks
grow a short distance. With steps forming between the
main crack and the tilted cracks, crack overlapping
effects occur. When the dimensions of the tilted ele-

ments are comparable to the dimensions of the test sam-
ple, macroscopic bifurcation occurs (see Hull 1999).

Reasons of crack surface roughening were also
recently investigated by comparing responses of per-
turbation of growing cracks with shear pulse perturba-
tions (Bonamy and Ravi-Chandar 2005). In this work it
was determined that the mode III loading, introduced
by the shear waves interacting with the crack front,
is responsible for the observed roughening, via local
twists that do not produce fragmenting.When a dynam-
ically growing crack running at speeds below 0.4 CR

interacted with a localized heterogeneity (in the form
of a groove scratched on the surface of the sample),
undulations are produced on the crack surface as a
results of the interactions between the crack front and
the shear waves radiated from the groove, and not from
the crack front waves (acoustic emissions) as suggested
by others (Morrissey and Rice 2000). At speeds closer
to 0.45 CR, which may be a threshold for developing
microbranches,whether emissions of crack frontwaves
induces roughness or not is still unknown and needs to
be investigated.

2.2 Computations of dynamic brittle fracture based
on FEM

Computational modeling aimed at predicting dynamic
brittle fracture has been performed to simulate the crack
propagation and crack branching using finite element
method (FEM) or various modified versions of the
FEM. Existing FEM models are based on the classical
continuum mechanics equations, which are described
by partial differential equations. In order to solve prob-
lems with discontinuities, such as cracks, special tech-
niques need to be devised. Most of these techniques
essentially treat every new configuration as a problem
in a new domain, since the crack creates new surfaces
and the boundaries of the initial domain change. This
requires tracking of the crack surface in some way.
Other complications relate to describing crack initia-
tion, determining the direction of propagation and the
propagation speed. All of these aspects require laws
of propagation (or “kinetic relations”) and most of the
time they are setup in an ad-hocmanner: theymaywork
for one example, but not for another. These approaches
also assume that dynamic crack growth is describable
by a surface generally determined by the separation
between the elements or tracked by a smooth level-
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set curve. This excludes capturing roughness on the
crack surface that is associated with dynamic brittle
fracture.

One of the simplest methods to modeling propa-
gating cracks is the element-deletion (also known as
“element-erosion”) method. Such methods suffer from
nonconvergence in the limit of the mesh size going to
zero. Recent improvements of these approaches have
been produced using variational formulations (Pandolfi
and Ortiz 2012) or nonlocal averaging of displacement
gradients schemes (see Negri 2006) as those employed
in the nonlocal models of Eringen (2002). The results
in Pandolfi and Ortiz (2012) match well quasi-static
type of crack growth under mixed-mode conditions.
While a length-scale is introduced in the element ero-
sion model of Pandolfi and Ortiz (2012), Pandolfi et al.
(2013) in order to regularize the problem and insure
convergence in the limit of the mesh being refined, it is
not yet known how this method performs in the crack
branching problem.

Alternatives to element-erosion techniques are cohe-
sive zone FEM models (see e.g. Xu et al. 2008; Cama-
cho and Ortiz 1996). Such models remove the need
of pre-knowledge of the crack path. The crack path,
however, is still forced to follow the particular mesh
used, since cracks can only propagate along the ele-
ment boundaries (see Xu and Needleman 1994; Cama-
cho andOrtiz 1996; Ortiz and Pandolfi 1999). Since the
correct, actual crack path (which minimizes the strain
energy) of the propagation process may not be com-
puted correctly, there are significant departures from
the true energy released during the crack propagation
event. In such cases, reliable prediction of strength of
brittle ceramics under impact, for example, becomes
difficult. The XFEM (see e.g. Dolbow and Belytschko
1999) allows cracks to pass through the finite ele-
ments leading to better approximations of the crack
path. Interestingly, in dynamic brittle fracture prob-
lems, one may need to drastically modify the input
fracture energy in the model in order to obtain crack
propagation speeds similar to those seen in experiments
(see Song et al. 2008). Subdivision of cut elements for
numerical integration purposes increases complexity
and cost for this method. The method also requires
phenomenological damage models and branching cri-
teria as input, and tracking of the crack path using, for
example, level sets. A recent review ofmethods that use
tracking of the crack path has been recently provided
in Rabczuk (2013).

2.3 Dynamic brittle fracture results based on
atomistic modeling

In atomistic models, like molecular dynamics (MD)
simulations, under sufficiently high loading conditions
that lead to instability of the crack path, cracks can
branch without a specific criterion (see Zhou et al.
1996).MDmodels, however, are not able to capture the
crack propagation speed or the angle of crack branching
correctly. For instance, MD simulations show instabil-
ities that lead, shortly after the bifurcation of a crack,
to the propagation of only one of the two branches, the
other being arrested. The limited space and time scales
that can be addressed by such models, prevent investi-
gating what could happen if this behavior of branching
attempts (followed by the arrest of one of the branches)
were monitored over macroscopic scales (perhaps,
microns to millimeters and hundreds of microseconds)
which are relevant to the crack branching phenomenon
(see Ramulu and Kobayashi 1985). Moreover, the ini-
tial branching angle computed with MD in Zhou et al.
(1996) is greater than 45◦, where experiments show
much smaller crack branching angles (see Ramulu and
Kobayashi 1985). Ravi-Chandar and Knauss (1984a)
showed that the branching angle is influenced by the
crack tip stress state, in particular the nonsingular
term.

Paradoxically, simulations based on regular arrange-
ment of atoms (crystalline solids) give solutions (see
Abraham et al. 1997) that are observed, at much larger
scales, in noncrystalline materials! In crystals, cleav-
age fracture is observed in experiments and crack speed
may reach a significant fraction of the Rayleigh wave
speed (close to 0.9) without exhibiting branching (see
Bowden et al. 1967). Addition of hyperelasticity at the
crack tip (see Abraham 2005; Buehler and Gao 2006)
does not improve on this, so far, unexplained behavior
of atomistic models.

It is important to notice that for MD simulations
to correctly predict dynamic brittle fracture one may
need to model the entire structure in order to capture,
for example, stress wave reflections from the bound-
aries. Ravi-Chandar and Knauss (1984a) were the first
to show that crack branching occurs in “infinite spec-
imens” even in the absence of stress wave reflections
from the boundaries, and also showed that elastic stress
waves play a major role in the evolution of dynamic
brittle cracks. An alternative to modeling the entire
structure by MD could be using multiscale models
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capable of transferring waves between the scales cor-
rectly. Whether this is a viable approach is still an open
question.

2.4 Dynamic brittle fracture based on particle and
lattice-based methods

Particle and lattice-based modeling of brittle fracture
has been researched for several decades (see e.g. Cun-
dall and Strack 1979; Marder and Gross 1995). Lattice
dynamics models produce ranges of “forbidden veloc-
ities” Marder and Gross (1995) which are not observed
in experiments. For a band of velocities beginning at
zero and proceeding up to around 30% of the rele-
vant wave speed, steady crack motion is impossible
(see Marder and Gross 1995), while in experiments,
all such speeds are accessible for a crack (see Ravi-
Chandar 2004). Changing from a triangular to a square
lattice changes the critical velocities substantially. A
phenomenon called “intermittency” is thought to be at
the origin of the instability of the crack path (seeMarder
and Gross 1995).

InBolander and Saito (1998), rigid-body-spring net-
works were used to simulate brittle fracture in homo-
geneous, isotropic materials. In this model, the body is
discretized using Voronoi diagrams, and the particles
such created are connected via springs. Spring degra-
dation or spring deletion are used to model the fracture
initiation and propagation. The random geometry lat-
tice created by theVoronoi structure greatly reduces the
preferential direction for crack propagation seen in reg-
ular geometry lattice spring networks (see Jirásek and
Bazǎnt 1995). Results of a reinforced concrete beam
show that fracture patterns obtained by simulation are
close to experimental observations.

In the “particle cracking model” introduced in
Rabczuk and Belytschko (2004), a crack advances
by breaking particles in a sequence. The crack prop-
agation speed in crack branching reaches values of
about 0.6CR, which is close to what is observed in
experiments. However, the crack patterns obtained
after branching appear non-physical, with some unex-
plained features, like sub-branching in regions which
are expected to be unloading. Dynamic failure and
fragmentation has also been studied with a semi-
Lagrangian reproducing kernel particle method
(RKPM) in Guan et al. (2011), where a stabilized non-
conforming nodal is introduced. The method is able to

show effectiveness for examples of a projectile pene-
tration into a concrete block and bullet into a steel plate.
For the brittle damage of the concrete block, not all of
the failure features seen in experiments are reproduced
by the computations.

2.5 Phase-field models in dynamic fracture

In order to circumvent the problems associated with
numerically tracking the propagating discontinuity rep-
resenting a crack, phase fieldmodels (seeAranson et al.
2000; Bhate et al. 2000; Bourdin et al. 2008; Pons and
Karma2010; Spatschek et al. 2011;Bourdin et al. 2011;
Borden et al. 2012), approximate the fracture surface
by a phase-field: a function of position (and time for
dynamic problems) with values in the interval [0, 1],
with value 1 away from the crack and 0 inside the crack.
By introducing a limiting parameter (in effect a length-
scale) into the model, phase-field approaches eliminate
the problem with the lack of convergence under grid
refinement that classical methods suffer from (Bour-
din et al. 2008). Note that the material-point erosion
model (Pandolfi et al. 2013) mentioned above uses a
similar approach to regularize the problem and achieve
convergence.

In phase-fieldmodels, oneminimizes the free energy
functional comprised of the strain energy density and
the regularized crack surface density. These models
are capable of representing with some success many
characteristic of fracture, like crack initiation, prop-
agation, branching, acoustic emissions, and fracture
instabilities. Two approaches have been favored in this
area: dynamic phase-field fracture models based on
Landau–Ginzburg type phase-field evolution equations
(e.g., Karma et al. 2001; Spatschek et al. 2011) and
phase-field formulations based onGriffith’s theory (see
Bourdin et al. 2008, 2011). Some authors (see Borden
et al. 2012) prefer the phase-field formulation of the
Bourdin-type since the physical properties of Griffith’s
theory are well understood and have proven useful in
engineering applications. The regularization parameter
that defines the width of the failure zone in phase-field
models permits (see Borden et al. 2012) obtaining the
“crack thickening” before branching that may be a rep-
resentation of roughening of the crack surface before
branching observed in experiments.

Some issues in the Landau-Ginzburg-type formula-
tions related to the evolution of the phase-field away
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from the crack tip, even when the sample is brought
back to equilibrium, are pointed out in Bourdin et al.
(2011). The results in Bourdin et al. (2011), however,
are not intended to be compared yetwith experiments in
terms of crack propagation speed and other measures.
The phase-field model for dynamic fracture (Borden
et al. 2012) used in Hofacker and Miehe (2013) shows
branchingwhen onewould not expect it (in theKalthof-
fWinkler test), branching patterns that do not resemble
those seen in experiments, and branching angles that
are much smaller than those observed in experiments.

In a recent review article (see Spatschek et al. 2011)
the authors note that “is not yet clear how to relate quan-
titatively phase field model predictions of dynamical
branching instabilities to experimental observations”,
and that “phase field models that incorporate a more
realistic description of the process zone are presently
needed to make predictions more broadly applicable”.
It is not yet clear how one can introduce in phase-field
models effects related to the discrete nature of themate-
rial, including lattice trapping effects that affect macro-
scopically observable properties (see Rösch and Tre-
bin 2009), nonlinear elastic effects, post-failure contact
between interacting fragments, or severe plastic defor-
mation.

2.6 Results on dynamic brittle fracture from
peridynamic models

Peridynamics is a reformulation of the classical contin-
uum mechanics equations that allows a natural treat-
ment of discontinuities in the solution of equation
of motion for continua by employing the concept of
nonlocal interactions (see Silling 2000). Integration,
rather than differentiation, is used to compute the
total force-density acting on a certain material vol-
ume, and deformation gradients are not used in the
formulation. Peridynamics differs from other nonlo-
cal methods such as those described in Eringen (2002),
Kunin (1982), and Rogula (1982), or those reviewed in
Bažant and Jirásek (2002), for at least two fundamental
reasons:

1. The deformation gradient and strains (spatial deriv-
atives of displacements) are not used in peridynam-
ics.Other nonlocalmethods average strains over the
nonlocal region. Spatial derivatives of the displace-
ment field become undefined when discontinuities,

like cracks, emerge and this requires special treat-
ment and algorithms in models that employ such
derivatives in their formulation.

2. Damage is introduced in the peridynamic method
at the microlevel in the constitutive model for the
peridynamic bonds between material points. When
the relative elongation of the bond reaches a failure
criterion related to the material’s fracture energy,
the bond breaks. Fracture surfaces or diffuse dam-
age result autonomously as a consequence of this
definition. Dealing with multiple interacting cracks
of arbitrary shapes in complex geometries becomes
as easy as dealing with a single straight crack. In
this way, peridynamics integrates damage and frac-
ture under a single model for material failure.

In references Ha and Bobaru (2010, 2011a, b),
the crack branching problem has been treated using
the bond-based version of peridynamics. Convergence
results have also been provided there. Peridynam-
ics correctly predicts important elements of dynamic
crack propagation: the shape of the crack paths, the
general profile of the crack propagation speed (sim-
ilar to the experimental one reported in Field 1971),
attempted and successful branching events [similar to
those observed in Ramulu and Kobayashi (1985)], sec-
ondary cracks caused by wave reflections from the
boundaries, and the relation between the way strain
energy is delivered into the fracture zone and the evo-
lution of the fracture process [as reported in the exper-
iments in Ravi-Chandar and Knauss (1984a, b)]. Note
that in Ha and Bobaru (2010, 2011a, b) the fracture
energy for glass used was that reported in the litera-
ture at branching. The fracture energy at crack initia-
tion is significantly lower than that measured at branch-
ing. This happens because in measurements, one mea-
sures the straight advancement of the crack and can-
not account for all of the micro-cracks and roughness
of the advancing crack. Therefore, the fracture energy
measured at around the branching point appears to be
much larger than the energy measured at crack initia-
tion. The results shown in the present contribution use
the fracture energy at initiation, and if we were to mea-
sure the “apparent” fracture energy in the branching
region we would likely obtain values similar to those
measure in the experiment because the model allows
for the expenditure of fracture energy in autonomously
creating damage away from the original crack surface
in the form of roughness/microcracks. We notice that
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one way in which results change when the input frac-
ture energy is changed is the amplitude of the applied
loading required to generate crack propagation.

The peridynamic results, in terms of the crack prop-
agation speed and the crack path, converge (see Ha
and Bobaru 2010) once the horizon (the nonlocal para-
meter) reached sub-millimeter values. These values
may be related to the characteristic length discussed
in Ramulu and Kobayashi (1985, 1983), and further
clarifications for this connections are made later in the
paper (see Sect. 8).

Peridynamics’ success with modeling the funda-
mental feature of dynamic fracture, namely crack
branching, is perhaps the reason for the excellent results
obtainedwith the peridynamic (PD)model in impact on
brittle targets problems, see e.g. Bobaru et al. (2012),
Hu et al. (2013).

3 Brief Review of the bond-based Peridynamic
model

The peridynamic equations of motion at a point x and
time t are (Silling 2000):

ρ(x)ü(x, t) =
∫
Hx

f(u(x̂, t) − u(x, t), x̂ − x) dVx̂

+b(x, t) for x ∈ Ω and t ∈ [t0,∞)

(1)

where Ω is the domain occupied by the body, t0 is
some initial time, u is the displacement vector field,
b is the body force vector, and f is the pairwise force
function in the peridynamic bond that connectsmaterial
points x and x̂. The integral is defined over a region Hx

called the horizon region, or simply the horizon. It is
natural to consider the horizon as a small sphere (disk
in 2D, interval in 1D) centered at the current point.
We will call the radius of the sphere δ and refer to it
also as the horizon. From the context it will always be
clear whether we refer to the region or its radius when
we mention the word “horizon”. A discussion on the
meaning, selection, and use of the peridynamic horizon
and its relation to crack branching in brittle materials
has appeared in Bobaru and Hu (2012).

For amicroelasticmaterial Silling (2000), a pairwise
potential exists such that

f(ξ , η) = ∂ω(ξ , η)

∂η
, (2)

Fig. 1 The conical micromodulus function

where ξ = x̂ − x is the relative position and η =
u(x̂, t) − u(x, t) is the relative displacement between
points x̂ and x. A linearmicroelasticmaterial is defined
by a micropotential ω as:

∂ω(η, ξ) = c(ξ)s2‖ξ‖
2

, (3)

where the c(ξ) is the micromodulus function and

s = ‖η + ξ‖ − ‖ξ‖
‖ξ‖ (4)

is the relative elongation of the bond connecting x̂ and
x. For a horizon region with spherical symmetry, the
corresponding pairwise force becomes:

f(ξ , η) =
{

η+ξ
‖η+ξ‖c(ξ)s, ‖ξ‖ ≤ δ

0, ‖ξ‖ > δ
(5)

Assuming a specific formof the isotropicmicromod-
ulus function c(ξ ) = c(‖ξ‖), for example constant over
the horizon region or varying linearly with ‖ξ‖ (see
Fig. 1), one finds the parameters in these representa-
tions by calibrating the strain energy density computed
with peridynamics to the classical strain energy density
for a homogeneous deformation, such as equal bi-axial
strain. The calibration is made for a point in the bulk,
at least a distance δ away from the boundaries so that
the node has a complete horizon region.Material points
close to or on the boundaries of domain Ω have hori-
zon regions that are partial disks. If one performs the
calibration for these points, the resulting micromodu-
lus value for the bonds connected to such points will be
higher than that obtained for the points in the bulk, since
the integration area/volume is smaller here. When this
special calibration for points within a distance δ from
a boundary is not employed, and the bond stiffness for
points near the boundary is assigned to be the same as
that for nodes in the bulk, the effective material behav-
ior near the boundaries is slightly softer than in the bulk.
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As the horizon δ decrease to zero, the thickness of this
softer zone decreases and becomes negligible. More
on this “skin effect” is discussed in Ha and Bobaru
(2011a). To reduce, or in some cases eliminate, the sur-
face effect, for any horizon size, several options have
been proposed in the literature:

– introduce ghost nodes (Gerstle et al. 2005) [also
called fictitious nodes, see Oterkus et al. (2014)]
outside of the domain. This approach may become
cumbersome for bodies with complex geometries.

– compute approximate corrections of themicromod-
uli for nodes on or near the surface (see, for exam-
ple, Macek and Silling 2007, and section 4.2 in
Madenci and Oterkus 2014). These approaches are
exact only for regular boundaries andhomogeneous
deformations.

A detailed discussion and comparison of the perfor-
mance of surface-correctionmethods is given in Le and
Bobaru (2015).

In anisotropic materials, the micromodulus function
c(ξ) is defined by at least two parameters, and various
ways to calibrate the models have been proposed (see
Xu et al. 2008; Hu et al. 2011, 2012b, 2014; Ghajari
et al. 2014; Oterkus and Madenci 2012).

For examples of micromodulus functions in 3D see
Silling and Askari (2005), in 2D see Ha and Bobaru
(2010), and in 1D see Bobaru et al. (2009). Because of
its faster convergence properties to the classical elastic-
ity solutions (as the horizon goes to zero), in this work
we use the 2D conical micromodulus (see Fig. 1) with
the plane stress assumptions (since all of the computa-
tional tests are done, as in experiments, on thin plates):

c(ξ)=C1

(
1− ‖ξ‖

δ

)
= 24E

πδ3(1 − ν)

(
1− ‖ξ‖

δ

)
(6)

where E is Young’s modulus and ν is the Poisson ratio
(fixed to 1/3 in this 2D plane stress case).

To introduce damage, a law for peridynamic bond-
failure has to be established. In PD, bonds can break
irreversibly (seeSilling andBobaru 2005), or reversibly
(see Bobaru 2007) when they are meant to represent
Van der Waals-like interactions, for example. Here we
assume irreversibility of bond breaking:

f (ξ , η, x, t)

=
{
f (ξ , η, x) if s(ξ , x, t̃) < s0, for all 0 ≤ t̃ ≤ t,

0 otherwise

(7)

where s0 is the critical value of bond relative elongation
for breakage. When a bond reaches this critical value,
the break is irreversible and the bond no longer sus-
tains a force. This critical value, which could be made
to depend on the bond length ξ = ‖ξ‖ or on the state
of local damage (see Ha and Bobaru 2011a), for exam-
ple, is defined by matching the fracture energy G0 of
the material to the energy required by the peridynamic
model at a point in the bulk to completely separate a
body in two at that point with a fracture surface. This
separation requires breaking all bonds that initially con-
nected points on opposite sides of the fracture surface.
The value for s0 in 3D is given in Silling and Askari
(2005). In 2D, the connection between the critical rela-
tive elongation and thematerial fracture energy is given
by (see, e.g. Ha and Bobaru 2010):

G0 = 2
∫ δ

0

∫ δ

z

∫ cos−1(z/ξ)

0

[
cs20
2

]
ξ dθ dξ dz (8)

For the conical micromodulus functions, the critical
relative elongation is obtained as:

s0 =
√
5πG0

9Eδ
. (9)

Similar to the “skin effect” discussed above for the
computation of the micromodulus function, the crit-
ical relative elongation s0 value is affected near the
boundary of the domain, or in a region where damage
is already present. This happens because the above cal-
culation is based on points in the bulk. For points on or
near the boundary, the domain of integration is smaller,
and when matched to the same G0 value, the resulting
critical relative elongation would be higher than in the
bulk. Therefore, when a constant s0, computed for a
point in the bulk, is used in computations, the peri-
dynamic material model will effectively have slightly
weaker bonds for points near the surface than for those
in the bulk. The same happens in regionswhere damage
is present, such as on the surface of a propagating crack.
As the horizon goes to zero, the weaker “skin” region
goes to zero and the effect isminimized. Some attempts
to correct this for regions where damage is present have
been implemented in the code EMU (Silling 2003) and
showed better results in fragmentation problems. The
correction, also discussed and used in Ha and Bobaru
(2011a), consists in increasing, in an approximate way,
the value of the s0 for points with a certain amount
of damage, proportional to the damage amount. This
model is referred to as the “damage-dependent peridy-
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namic model”. The constant s0 model is used in the
present paper.

4 An accurate and efficient quadrature scheme

With the peridynamic formulation introduced in the
previous section, we are ready to compute solutions to
dynamic fracture problems. Here we will only briefly
review on such possible discretization. In principle,
the peridynamic equations can be discretized using the
finite element method, or any other method appropriate
to compute solutions to integro-differential equations.
This approach, however, soon hits well-known obsta-
cles and difficulties for problems with evolving topolo-
gies, like those in dynamic fracture and fragmentation.
Instead, meshfree-types discretizations are preferred in
peridynamics simulations of dynamic failure of mate-
rials. The discretization proposed in Silling and Askari
(2005) uses the mid-point integration scheme (equiva-
lent to a one-point Gaussian integration) for the domain
integral.∫
Hx

f(u(x̂, t) − u(x, t), x̂ − x) dVx̂

�
∑

j∈Fam(i)

c(ξi j )si j Vi j (10)

where Fam(i) is the family of nodes j with their area
(volume) covered, fully or partially, by the horizon
region of nodes i , ξi j is the bond length between nodes
i and j , si j is the relative elongation for the same bond,
and Vi j is the area (volume) of node j estimated to be
covered by the horizon of node i .

Simple and regular discretization grids are prefer-
able for many reasons and such grids will be used
here.When nonuniform grids are used with this type of
meshfree discretization approach, special care needs to
be taken (see, e.g., Bobaru andHa 2011). Here, we give
a simple algorithm for the numerical integration of the
domain integral in Eq. (1), first introduced in Hu et al.
(2010) and also shown in Bobaru andHa (2011) (where
the “−” sign on line 7 should be a “+” sign). The main
advantage of this algorithm compared with one that
simply checks whether a node is inside (in which case
it adds the contribution to the integral as if its entire vol-
ume is inside the horizon) or outside the horizon region
(in which case it does not add any contribution to the
integral, as if its entire volume is outside the horizon)
is that as the ratio m = δ/Δx increases (for a fixed

δ
q

p

(a)

δ

p

A

B

C

dy

dx

(b)

Fig. 2 a One-point Gauss quadrature for the spatial integration
of the Peridynamic equations; b exact areas of various nodes that
participate in the quadrature for node p.

horizon value), the numerical convergence (in terms of
strain energy density, for example) is monotonic (Hu
et al. 2010).

In the one-point Gauss quadrature method, each
node has a certain volume (area in 2D, length in 1D)
associated with it. Figure 2a shows nodes covered by
horizon δ of node p. The square indicates the area of an
arbitrary node q. The area of the horizon region used
in the spatial integration of the peridynamic equations
is composed of the nodal areas that are covered, fully
or partially, by the horizon region (see Fig. 2b).

In Hu et al. (2010) several different algorithms have
been proposed and tested for approximating the exact
nodal areas covered by the horizon.Algorithm1 adjusts
the areas for nodes that are partially covered by the hori-
zon by a certain factor. Note that with this algorithm,
the search for the family of nodes needs to consider
points that are outside of the horizon, up to a distance
δ + Δx/2. This algorithm gives results which do not
fluctuate muchwith respect to variations inm = δ/Δx .
Note that when the node’s location is exactly δ away
from the current node, about half of its area is covered
by the horizon region, and the algorithm uses half the
node’s area.

Algorithm 1 Approximate calculation for area of a
node covered by the horizon of the current node

if ‖ξ‖ < δ − Δx
2 then

factor = 1.0
else if ‖ξ‖ ≤ δ + Δx

2 then

factor =
δ+ Δx

2 −‖ξ‖
Δx

else
factor = 0.0

area covered = (Δx)2× factor
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In computing the quantities in Eq. (10) for the case
in which the micromodulus function c depends on the
bond length, some adjustments are useful to increase
the accuracy of the mid-point quadrature scheme. We
distinguish three cases for nodes in the family of nodes
of some current node i , shown inAlgorithm 2: a node’s
area is fully covered by the horizon, the node is inside
the horizon but not all of its area is covered, the node
is outside the horizon but has some of its area covered
by the horizon. For each case, we compute the micro-
modulus at the node’s actual location or at a slightly
modified one (see Algorithm 2).

This algorithm, for the conical micromodulus, pro-
duces a close-to-monotonous convergence to the exact
classical value in terms of strain energy density for
a homogeneous deformation as m increases (see Hu
et al. 2010). We note that Seleson (2014) proposed an
algorithm based on analytical calculation of the cov-
ered areas to perform the numerical spatial integration.
This algorithm shows asymptotically monotonic con-
vergence and also demonstrates slight improvements
compared with the one shown in Algorithm 2. How-
ever, this more “exact” algorithm may be more expen-
sive to use than other approximating algorithms, like
Algorithm 2 introduced in Hu et al. (2010).

Algorithm 2 Computing the micromodulus function
for the conical case
if ‖ξ‖ < δ − Δx

2 then
factor = 1.0
Compute c(ξ) value with ξ = ‖ξ‖

else if ‖ξ‖ ≤ δ + Δx
2 then

factor =
δ+ Δx

2 −‖ξ‖
Δx

Compute c(ξ) value with ξ = δ − Δx × factor
2

else
factor = 0.0

5 Peridynamic results for dynamic fracture and
crack branching

To obtain a more complete understanding of how crack
branching is generated and of the factors that influence
it, we perform a series of peridynamic computational
tests that consider:

1. two different material systems, to observe the influ-
ence of Young’s modulus, density, and fracture
energy on dynamic crack propagation and branch-
ing;

2. three different loading types, to investigate the role
of stress waves interactions with the tip of the
advancing crack;

3. two different geometries, to analyze how reflected
stress waves from the boundaries affect the branch-
ing process.

Stress waves have a strong influence on dynamic
crack propagation (see e.g. Ravi-Chandar and Knauss
1984b; Ravi-Chandar 2004). Our focus in the com-
putations below is to investigate how stress waves
control crack branching. We utilize two material sys-
tems, soda–lime glass and homalite, for which sub-
stantial experimental results are available in the pub-
lished literature (e.g. Bowden et al. 1967; Field 1971;
Döll 1975;Ramulu andKobayashi 1985;Ravi-Chandar
and Knauss 1984b; Ravi-Chandar 2004). Homalite is a
material representative of many other glassy polymers,
like PMMA or polycarbonate, on which experimen-
tal results have appeared in, for example, Sharon and
Fineberg (1996), Bonamy and Ravi-Chandar (2003).
One reason more recent experiments have used glassy
polymers instead of glass for studies on dynamic brit-
tle fracture is the reduced wave speed (and therefore
slower crack propagation speeds) in thesematerials due
to their lower elastic modulus. This allows experimen-
talists to record the fracture events easier than in the
case of glass.

Different loading conditions have been used in
experiments on crack branching. A dynamic loading on
the boundaries of the sample has been used in Ramulu
and Kobayashi (1985), while in Ravi-Chandar (2004),
in order to avoid the interaction between the propagat-
ing crack and waves reflected from the boundaries of
the sample, a sudden loading was applied to the crack
surfaces themselves to induce crack propagation and
eventual crack branching. The simplest, from the point
of view of experimental setup is one of quasi-static
loading of sampleswith sharper or blunter notches used
in Bowden et al. (1967). The crack propagates with-
out branching from the sharp notch, but can branch
once or multiple times from the blunt notch because of
the much higher stress intensity factor reached before
propagation. The first two types of loading conditions
may, however, be preferred since they do not require
changing the sample geometry (the bluntness of the
crack tip) as the quasi-static loading conditions do
in order to observe cases in which the crack propa-
gates straight and does not branch, and cases when
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Fig. 3 a Sample geometry; three loading conditions: stresses
suddenly applied on top andbottom boundaries (b), stress applied
on crack surfaces (c), and velocity conditions including (d). In
(e) the initial conditions for the case shown in (d)

the crack branches. In these types of loading, branch-
ing or no branching is produced by higher or lower
amplitude applied loadings. We implement three types
of loading conditions for a pre-notched sample as
follows:

– Load case 1: apply, suddenly, stresses on upper and
lower boundaries of the sample (Fig. 3b),

– Load case 2: apply stresses on pre-crack surfaces
(Fig. 3c); and

– Load case 3: apply velocity boundary conditions
as in Fig. 3d and initial velocity conditions as in
Fig. 3e to prevent a strong shock and its reflection
from the boundaries. This mimics, to some extent,
the quasi-static loading conditions.

We remark that for some quasi-static loading con-
ditions used in experiments, a corresponding explicit-
type simulation would be very costly, and solutions
for this type of loading require a combination between
an implicit solver (up to the point crack growth ini-
tiates) and an explicit solver (for the dynamic crack
propagation phase). We note that cracks under quasi-
static loading can run dynamically, and can branch.
On the other hand, quasi-statically growing cracks can-
not branch in an isotropic and homogeneous material.
Quasi-statically growing cracks do branch in materi-
als with microstructure, as is the case for fatigue-crack
growth in materials in which cracks split when encoun-
tering tougher inclusions.

Geometry also has an effect on the crack branch-
ing problem since the brittle fracture process is influ-
enced/controlled by stress waves, and wave reflections

from the sample’s boundaries, for example, will differ
for different geometries. We will consider two sam-
ple geometries: one with twice the width but same
length as the other. To remove the influence of asym-
metries induced rounding errors, we place the coor-
dinate system at the centroid of each sample (see
Fig. 3a).

We perform convergence studies for each loading
case and material type to justify the selection for the
peridynamic horizon size. The aim is to get a crack
propagation speed that no longer changes when we
change the horizon size. This means that we antici-
pate that there are no constant material length-scales
(induced by the microstructure) that manifest them-
selves in this problem. This does not preclude exis-
tence of length-scales induced by the dynamics of the
problem. The meaning of the horizon as a material
length-scale is commented in Bobaru and Hu (2012).
In peridynamics, one can consider three types of con-
vergence, as introduced in Bobaru et al. (2009). The
δ-convergence, which holds the ratio m = δ/Δx
fixed and decreases the magnitude of the horizon,
the m-convergence, in which the spatial integration
accuracy is increased (for a fixed horizon size), and
the combined δ − m convergence. For a discussion
on the form of the kernel under the integral in Eq.
(1) that leads, for the 1-point Gaussian quadrature,
to a consistent scheme, please see Chen and Bobaru
(2015).

Because the m-convergence for dynamic fracture
problems has been discussed before (see, e.g. Ha and
Bobaru 2010, 2011a) and a value of a least m = 4
is suggested for crack path independence on the grid,
here we focus on the δ-convergence. We select a hori-
zon size, and using a value of m = 4 we set the nodal
spacing Δx for a uniform grid.

The time step for all computations on soda–lime
glass samples is the same, 5×10−3µs, while for homa-
lite samples it is 5 × 10−2 µs. These time steps sizes
insure stability when used with the finest grids (small-
est horizons) used in this work.

5.1 Crack branching in soda–lime glass

A soda–lime glass sample with dimensions 10 cm by
4 cm, is used to investigate the role of loading condi-
tions. The sample has Young’s modulus E = 72 GPa,
density ρ = 2440 Kg/m3, Poisson ratio v = 0.22
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(the corresponding 2D plane stress peridynamic model
has a Poisson ratio of 1/3) and energy release rate at
crack initiation G0 = 3.8 J/m2 (see Wiederhorn 1969;
Fischer-Cripps and Mustafaev 2000). Note that in ref-
erences Ha and Bobaru (2010, 2011a), a much larger
value for the fracture energy G0 was used, namely the
measured energy release rate at branching, instead of
the fracture energy at crack initiation. The main differ-
ence between the results shown here and those from
Ha and Bobaru (2010, 2011a) is the amplitude of the
loading required to generate propagating and branch-
ing cracks. A higher fracture energy value requires a
larger amplitude loading being applied. The crack will
propagate with roughly the same speed, as the propa-
gation is mostly controlled by elastic properties (wave
speeds) of the material under consideration.

5.1.1 Load case 1: stress on boundaries

To perform the δ-convergence study, we use horizon
sizes of 3.0, 1.5, and 0.8 mm. With m = δ/Δx , the
resulting discretizations have the following number of
nodes, respectively: 7236; 28,670; 100,200. The crack
propagation speeds for these three different horizon
sizes are shown in Fig. 4. The loading amplitude is
σ = 2 MPa, the crack grows straight for a while and
branches at some point. The damage profile for this
loading and with a horizon of 1mm is shown in Fig. 5b.
The damage profiles, including the time of initiation of
branching (which, for this loading amplitude, happens

Fig. 4 δ-convergence study in glass for the crack propagation
speed using δ = 3, 1.5, 0.8 mm, for a suddenly applied tensile
stress on the top and bottom boundaries of magnitude σ = 2
MPa. Load is maintained constant in time for the duration of the
simulation

Fig. 5 Damage maps in glass under suddenly applied tensile
stress on the boundaries with different amplitudes. a Damage
at 150µs; σ = 0.2 MPa. b Damage at 43µs; σ = 2 MPa. c
Damage at 33µs; σ = 4 MPa

around 20.5µs), are not sensitive to the horizon size
(see also Ha and Bobaru 2010, 2011a).

To calculate the crack velocity, crack tips are tracked
by searching the most advanced (right-most) node with
a damage index higher than a given threshold (0.3, for
example). For each simulation we store outputs from
about 200 time steps, and since total simulation times
vary, the data-dump period varies between 0.15 to 0.75
µs for soda–lime glass. Crack speed is calculated at
each time of the data dump using forward differences
approximation. Data points on crack velocity plots are
averaged velocities over a time period (usually 1/10
of total simulation time for that particular test), and the
abscissa of a data point on these plots is the final time of
this time period. For example, the total simulation time
for results shown in Fig. 6a is 150 µs; each data point
shown represents the average velocity over a time inter-
val of 15 µs. We normalize velocities by the Rayleigh
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Fig. 6 Crack propagation speed profiles for glass under stress
boundary conditions applied on the boundaries of the sample at
different amplitudes. a Applied σ = 0.2 MPa. b Applied σ = 2
MPa. c Applied σ = 4 MPa

wave speed cR of the material. For soda–lime glass,
cR ≈ 3102 m/s based on the following equations (see
Rahman and Michelitsch 2006):

cR ≡
(
2 − M2

2

)2 − 4
√(

1 − M2
1

) (
1 − M2

2

) = 0

in which,

M1 = cR
c1

, M2 = cR
c2

and c1 = √
(λ + 2μ)/ρ, c2 = √

μ/ρ, where λ, and μ

are Lame’s constants. The Rayleigh wave speed is the
real root of this equation in the interval (0, c2).

In Fig. 4 and similar ones later on, we draw a verti-
cal line to show the branch initiation moment for each
computation. Figure 4 shows that this quantity, the time
when branching takes place, is independent of the hori-
zon size. Moreover, the difference between crack prop-
agation speed results obtained with the smallest two
horizon sizes is minimal. For this reason, the horizon
size used in the remaining computations in this section
is 1.0 mm, nodal spacing is Δx = 0.25 mm, and the
total number of nodes 64,160 for the grid of 401× 160
nodes.

Damage maps for this type of boundary conditions
(tensile stress suddenly applied on the boundaries) are
shown in Fig. 5. For a load of amplitude σ = 0.2 MPa
applied, we obtain a straight crack. Larger applied load
(σ = 2 MPa) generates one branching event, while
multiple branching events develop under stress of 4
MPa magnitude applied suddenly on the top and bot-
tom boundaries. Continued or cascading branching is
one cause of fragmentation [see, for example, Chapter
16 in Meyers (1994)]. If the energy dissipated by the
formation of the first branching event is overcome by
the energy stored in the material, the branching process
repeats, eventually leading to fragmentation.

We also observe that the crack branching angle
becomes smaller as the magnitude of the applied
stress increases. Figure 6 shows the crack propaga-
tion speed profiles, normalized by the Rayleigh wave
speed cR , for these three different loading amplitudes.
Some experimental works show that the crack speed
decreases slightly after branching (Döll 1975; Ramulu
and Kobayashi 1985), and some of our results confirm
these observations. This can be observed when the 4
MPa loading amplitude is used (see Fig. 6). At the same
time, other experiments [see Fig. 11.12 on page 211 in
Ravi-Chandar (2004)] show that the crack speed stays
constant or can slightly increased soon after branching.
This situation can also be seen in some of the results
obtained with peridynamics. Note that, in general, the
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computations show a crack propagation velocity mag-
nitude that increases as the applied stress increases.

At branching, the crack propagation speed as a frac-
tion of the Rayleigh wave speed, V/cR , is 0.51 for the 2
MPa loading, and0.55 for the 4MPa loading amplitude.
The maximum crack propagation speed approaches
0.6 cR . In experiments, the limiting crack speed in
glass, as a fraction of the Rayleigh wave speed, ranges
from 0.47 to 0.66, depending on the loading conditions
[see Table 11.1 in Ravi-Chandar (2004)]. The location
of branching moves closer to the starting location (tip
of the pre-notch) when the amplitude of the applied
stress increases. This is likely due to the increased stress
intensity reached when the crack starts to propagate.
In experiments conducted using quasi-static loading of
glass slides that have blunter and blunter notches, the
same behavior is observed, with the location of branch-
ing moving closer to the starting point the blunter the
notch, and therefore the higher the stress intensity at
which the crack starts to propagate, is (see Bowden
et al. 1967).

5.1.2 Load case 2: stress on pre-crack surfaces

Electromagnetic loading of crack surfaces has been
used in (see also Ravi-Chandar and Knauss 1982) to
generate sharp pulses with a rise to peak amplitude of
about 25µs and total duration of about 150µs. Such
pulses were able to generate surface pressure waves in
the range of 1–20 MPa. Until waves reflected from the
edges of the plate return to interact with the crack tip,
this type of loading can be considered as taking place
in an infinite plate. In this section we apply, suddenly,
body forces on the nodes located on the crack surfaces
to mimic the stress generated by electromagnetic load-
ing conditions and investigate crack branching. These
loads, once applied, are maintained constant through-
out the simulation. We apply several loading magni-
tudes and notice that a loading equivalent to 0.5 MPa
generates a straight propagating crack in this material,
while a load of 3 MPa or higher leads to branching.
For this material and sample size, branching still hap-
pens after reflected stress waves interact with the tip
of the advancing crack. However, as we shall see in
Sect. 5.2.2, for a material in which waves speeds are
slower than in glass, e.g. homalite, branching can hap-
pen in the absence of interactions between the crack tip
and waves reflected from the boundaries of the sam-
ple. In order to produce this behavior in a soda–lime

Fig. 7 δ-Convergence study in glass for the crack propagation
speed using δ = 1.5 and 0.8 mm, with a suddenly applied tensile
stress on crack surfaces of magnitude σ = 3 MPa. The load is
maintained constant in time for the duration of the simulation

glass sample, we would have had to consider a much
larger sample, resulting in a much larger computation.
Nevertheless, we perform a δ-convergence study for
the crack propagation velocity with a loading magni-
tude of 3 MPa and the results are shown in Fig. 7. The
damage maps corresponding to these different horizon
sizes are identical, and they are given in Fig. 8b. For
the remaining of the results shown in this section, we
use a horizon size δ = 1 mm and nodal spacing of 0.25
mm, with a grid of 401 × 160 nodes.

Damage maps obtained under different stress levels
(0.5, 3, and 6 MPa, respectively) applied on crack sur-
faces are shown in Fig. 8. The stress waves reflected
from the boundaries return and meet the crack tip after
about 7.36µs from the moment the loading is applied
on the crack surfaces, therefore crack propagation and
branching is, in these cases, influenced by reflected
stress waves. Continued reflections from the bound-
aries and reinforcement of stress waves interact with
the propagating crack, but branching occurs only when
the dynamic conditions around the tip of the advancing
crack are favorable it. This point is discussed further in
Sect. 7.

Increasing the loading magnitude further did not
cause multiple branching events, but rather created
fracture at the corners due to reinforcement of the
waves bouncing from the boundaries. We note that
under these loading conditions, the crack propagation
velocity at branching is V = 0.40 cR, 0.44 cR for the
3 and 6 MPa applied stresses, respectively. The maxi-
mum crack speed is around 0.6 cR , even with the larger
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Fig. 8 Damage maps for glass under stress on pre-crack surface
with different stress amplitudes applied. a Damage at 113µs;
σ = 0.5 MPa. b Damage at 35µs; σ = 3 MPa. c Damage at
30µs; σ = 6 MPa

loading amplitude. It is interesting to observe the sig-
nificant change in the crack branching angle between
the 3 and 6 MPa loading conditions. These differences
are caused by the particular conditions at which the
dynamic interaction between the advancing crack tip
and the reflected stress waves (longitudinal, shear, and
well as the Rayleigh waves propagation on the crack
surfaces) takes place (seeFig. 9b, c). Simulationmovies
that allow us to visualize these interactions are included
in the tests on homalite (see Sect. 5.2).

5.1.3 Load case 3: velocity boundary conditions

In many experiments on crack branching (e.g. Bowden
et al. 1967), the sample is slowly loaded. When a crit-
ical stress intensity is reached around the crack tip, a
pre-crack starts propagating. The sharpness of the pre-

Fig. 9 Crack propagation speed profiles for glass under stress
boundary conditions applied on the pre-crack surfaces: a σ = 0.5
MPa, b σ = 3 MPa, c σ = 6 MPa

notch determines the elastic energy stored before the
propagation starts. At higher elastic strain energy, the
crack propagates and can branch once ormultiple times
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Fig. 10 δ-convergence in terms of crack propagation speed in
glass for velocity boundary conditions with a loading magnitude
of Vmax = 0.02 m/s, using δ = 3, 1.5, and 0.8 mm

(see Bowden et al. 1967). Simulating the slow load-
ing is costly with an explicit time-integration model
like the one used in this work. A close simulacrum of
this type of loading is one in which the sides of the
plate are moving away from each other with constant
velocity, with the initial velocity at all point in the plate
being a linear interpolation of the values imposed on
the sides (see Fig. 3d, e). While different from a quasi-
static loading, this dynamic loading avoids, however,
the strong shocks that the previous two loading cases
generate.

We conduct a δ-convergence study in terms of the
crack propagation speed for the case when the sides
of the plate are moving apart from each other with
constant velocity of 0.02 m/s. The results are shown
in Fig. 10 and for this loading condition, for the
three different horizon sizes used, the crack propa-
gation speed is the same. The damage map is given
in Fig. 11a, the crack propagating straight. We notice
that the crack initiation time and the overall trend for
the crack propagation speed are essentially the same
for the three different horizon sizes used, and espe-
cially so for the smallest two horizon sizes. Because
of this, for the remaining results in this section a hori-
zon size δ = 1 mm is used, along with grid spacing
Δx = 0.25 mm.

Damage maps presented in Fig. 11 demonstrate that
as the intensity of loading increases, one branching
event can take place, or a series of branchings followed
by crack arrest can develop into a fish-bone like pattern.
The reason for this extreme behavior can be understood
given the type of loading used in which the top and bot-

Fig. 11 Damage maps in glass under velocity boundary con-
ditions with different velocity amplitudes applied. a Damage at
83µs; applied Vmax = 0.02 m/s. b Damage at 45µs; applied
Vmax = 0.06 m/s. c Damage at 24µs; applied Vmax = 0.2 m/s

tom sides of the plate are forced apart at a constant rate.
One can imagine that when one increases the loading
rate, the material eventually exhibits multiple failure
points and fragmentation in trying to accommodate the
intense strain rates. The fish-bone failure patterns have
been observed before in brittle fracture (see Sharon
et al. 1995). We also observe that, as the loading inten-
sity increases, the location of the initiation of branch-
ing or branching attempts moves closer to the location
of the pre-crack tip, similar to what is reported from
experiments.

Corresponding to the first two plots in Fig. 11, we
give the crack propagation velocity in Fig. 12. For
the case in which the fish-bone profile is obtained
it is difficult to decide which of the micro-cracks to
focus on and we did not compute the crack propa-
gation speed. We observe that, unlike in the previous
two loading cases, in this imposed displacement con-
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Fig. 12 Crack propagation speed profiles for velocity boundary
conditions: a Vmax = 0.02 m/s, b Vmax = 0.06 m/s

ditions case, the crack velocity in the region of branch-
ing reaches beyond 0.6cR , and even higher soon after
branching (see Fig. 11b). Such high crack propagation
speeds in glass have been experimentally observed, for
example, in Anthony et al. (1970). The crack slows
down slightly immediately after branching, but it then
quickly recovers as the two branches propagate with
even higher velocities than before the branching event.
These results confirm the theories (see Ravi-Chandar
2004, p. 214) that state that branching does not hap-
pen because the crack propagation speed reaches a cer-
tain threshold value, but rather that branching occurs
when the strain energy in the region around the crack
tip reaches a critical state. A regionwith “thicker” dam-
age extends over a significant length and can be easily
observed to occur before branching (see Fig. 11b). This
could be the signature of roughening of the crack sur-

face reported in all experiments to occur before branch-
ing (Ramulu andKobayashi 1985).After branching, the
thicker damage zones subside and the distinct branches
propagate as “thin” damage zones, indicating that the
roughness on the crack surfaces has disappeared. If
the strain energy delivered into the crack tips areas
of the two branches is sufficiently high, the process
repeat itself and a second branching event can ensue.
In Fig. 11b we observe this phenomenon just about to
happen as the branches approach the boundary of the
sample.

These results support the ideas proposed by Ravi-
Chandar (see Ravi-Chandar and Knauss 1984a; Ravi-
Chandar 2004, p. 214) and based on experimental evi-
dence: “when a crack reaches a critical stage identified
macroscopically by its stress intensity factor, it splits
into two or more branches, each propagating with the
same speed as the parent crack, butwith amuch reduced
process zone”. Amore detailed discussion of themean-
ing of this thickening of damage ahead of the branching
point is given in Sect. 7.

5.2 Crack branching in Homalite

With elastic wave speeds and crack propagation speeds
being so fast in glasses, a significant number of exper-
iments on brittle fracture have switched to glassy
polymers that allow easier observation of the crack
branching phenomenon (Ramulu and Kobayashi 1985;
Ravi-Chandar 2004). For example, in Ravi-Chandar
(2004), a homalite sample is used with loadings on
the crack surfaces (loading case 2) in order to observe
crack branching without waves that reflect from the
boundaries interfering with the tip of the advancing
crack. In glass, such an experiment would require a
much larger sample size, which is not practical. In
this section we use a two-dimensional pre-cracked
homalite sample with dimensions of 20 by 40 cm.
Homalite has significantly different stiffness, density,
and fracture energy compared with soda–lime glass.
This investigation will also give us insight into the
role and influence material properties have on crack
branching.

The homalite’s Young’s modulus is E = 4.55 GPa,
density is ρ = 1230 kg/m3, fracture energy G0 =
38.46 J/m2. We perform δ-convergence studies (with a
fixed m = δ

Δx = 4) for each of the loading cases men-
tioned before, and once the crack propagation speed
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Fig. 13 δ-Convergence study in homalite for crack propagation
speed using δ = 6.0, 4.0, and 3.0mm for a suddenly applied ten-
sile stress (σ = 1MPa) on the top and bottom boundaries. Load
is maintained constant in time for the duration of the simulation

shows little changes when using a smaller horizon size,
we select that horizon size to compute the rest of the
results in this section. The time-step in all of the com-
putations in this section is the same, 0.05µs, which is
stable for the finest grid used here.

5.2.1 Load case 1: stress on boundaries

For a tensile stress amplitude of 1 MPa suddenly
applied on the top and bottom boundaries of the sam-
ple as in Fig. 3b, the crack propagation speed for three
different horizon sizes varies as shown in Fig. 13. The
crack branches at around 260µs and damage maps are
identical (except for the “thickness” of the crack line,
see Ha and Bobaru 2011a) for the three different hori-
zon sizes, looking like the one shown inFig. 14b.Notice
that the crack speed profiles are almost identical for δ =
4.0 and 3.0 mm. For the remainder of the computations
in this section the horizon size is 4 mm, and, with a
ratio m = 4, this leads to a grid spacing of 1 mm and
a total number of nodes of 80,200 (401 × 200 nodes)
for the sample dimensions selected above.

Using this horizon size and grid spacing, we now
perform calculations for the damage index under dif-
ferent loading magnitudes (see Fig. 14). With a load-
ing of 0.2 MPa the crack propagates straight, while at
1 MPa the crack branches after growing straight for a
while. With further increase of the loading amplitude,
at 2 MPa, for example, there is an attempt of branching
that is arrested almost immediately, after which a suc-
cessful branching takes place, followed by secondary

Fig. 14 Damage maps for homalite under tensile stresses of
various amplitudes applied on the top and bottom boundaries.
Load is maintained constant in time. a σ = 0.2 MPa at 1000µs.
b σ = 1 MPa at 400µs. c σ = 2 MPa at 300µs

branching. The particular shape of the crack branches,
as well as the location of the branching events, are all
controlled by the wave interactions with the advanc-
ing crack. Given the different elastic wave speeds in
homalite comparedwith those in soda–lime glass, these
interactions happen at different times resulting in the
observed differences in the shape of cracks (compare
Figs. 5, 14).

The crack propagation speed profiles for the lower
two loading cases are given in Fig. 15. The profile for
the 2 MPa loading case is not provided because the
unsuccessful branching attempt can make interpret-
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Fig. 15 Crack propagation speed profiles in homalite with ten-
sile stresses of various amplitudes applied on the top and bottom
boundaries: a σ = 0.2 MPa, b σ = 1 MPa

ing the results more difficult. We note that for the 1
MPa loading amplitude, the crack speed at branching
is about 0.5 cR , in line with experimental observations.
The crack advances straight at this speed (or at even
slightly higher speed) for a significant length before
branching, again confirming results obtained in experi-
ments (seeRamulu andKobayashi 1985,Ravi-Chandar
(2004)).

Simulationmovies for crackpropagation andbranch-
ing in homalite for this type of boundary conditions
are shown in Movies 1, 2, and 3 (see Supplemental
Materials). In these movies, the color indicates the ver-
tical component of the velocity vector, allowing us to
observe the propagation of stress waves and their inter-
action with the advancing crack. In Sect. 7 we offer a
more detailed discussion of what the movies demon-
strate.

Fig. 16 δ-Convergence study for crack propagation speed in
homalite, using δ = 6, 4, and 3 mm, and loading magnitude of σ

= 2 MPa applied on the pre-crack surfaces

5.2.2 Load case 2: stress on pre-crack surfaces

With loads applied directly on the crack surface, for
homalite material and the sample size chosen here it
will be possible to observe crack branching without
the interaction between the advancing crack and waves
reflected from the boundaries.

We first perform a δ-convergence study in terms of
crack propagation speed for a loading amplitude that
leads to a single branching event. Results are shown
in Fig. 16. The damage maps for the three different
horizon sizes used is identical (except for the thick-
ness of damage) to the one shown in Fig. 17b. Because
differences in crack propagation speed are negligible
between the smallest two horizon sizes used, for the
rest of the computations performed for this section
we use the horizon size δ = 4 mm, and with a ratio
m = 4 this leads to a grid spacing of 1 mm and a
total number of nodes of 80,200 (401× 200 nodes) for
the sample dimensions mentioned at the beginning of
Sect. 5.2.

The damage maps for several different loading
amplitudes are shown in Fig. 17, at the times listed
in the figure captions. With the lower 0.3 MPa load-
ing amplitude, the crack propagates straight without
branching. From a sudden load of 2MPa (and main-
tained constant in time) applied on the crack surfaces,
the crack branches at around 135µs, which is after the
stress waves return and interact with the propagating
crack. When the load is increased to 4 MPa, the crack
branches at around 124µs (see Fig. 18), which is still
after the reflected waves meet the crack, this event hap-
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Fig. 17 Damage maps for homalite under stress applied on pre-
crack surface with different amplitudes. a σ = 0.3 MPa at
975µs. b σ = 2 MPa at 480µs. c σ = 4 MPa at 400µs. d
σ = 6 MPa at 105µs. e σ = 8 MPa at 105µs

pening at around 107µs. We observe an interesting
phenomenon: the loading amplitude is higher (4 MPa
versus 2 MPa), but the point of branching is further
away from the tip of the pre-crack (center of plate).
This appears to contradict the results seen in the pre-
vious sections in which the branching location moved
closer to the pre-crack tip when the loading amplitude
was increased. The paradox is explained as follows:
with the higher loading amplitude of 4MPa, the straight
crack moves faster and the reflected waves meet the tip
further down the path compared with the 2 MPa load-
ing case. In both of these cases, branching happens after
the reflected waves interact with the advancing straight
crack. In the 4 MPa loading case, subsequent inter-
actions between the initial branches and stress waves
result in a number of attempted branching and a suc-
cessful secondary branching event over a time span of
400 µs (see Fig. 17c).

We now verify that the branching point moves closer
to the pre-crack tip by applying higher loading ampli-
tudes, as long as branching is not influenced by stress
waves coming in from the boundaries (incident or
reflected). With a loading amplitudes of 6 and 8 MPa,
respectively,we indeed see that branchingmoves closer
to the pre-crack tip (see Fig. 17d, e). In both of these
cases the crack reaches sufficient conditions to branch
before the waves return from the boundaries at around
72 and 50µs, for the 6 and 8 MPa loading amplitudes,
respectively (see Fig. 18). The waves return to meet the
crack after more than 100µs.

We have thus confirmed that, as long as the branch-
ing mechanism is not influenced by incoming stress
waves interacting with the propagating crack, higher
loadings lead to branching taking place closer (as
well as sooner) to the pre-crack tip location. This
is further discussed in Sect. 7. When branching is
caused by waves that meet the advancing crack, two
things can happen under applying higher loading
amplitudes:

(a) the location of branching moves closer to the pre-
crack tip when conditions for branching are not met
at the first interaction between the advancing crack
and the incoming stress waves: this was the case
in all of the loading cases of the glass sample, and
loading cases 1 and 3 (see below); or

(b) the location of branching is farther from the pre-
crack tip when conditions for branching are met at
the first interaction between the advancing crack
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Fig. 18 Crack propagation speed profiles for homalite with stress applied on pre-crack surfaces at various amplitudes. a Applied
σ = 0.3 MPa. b Applied σ = 2 MPa. c Applied σ = 4 MPa. d Applied σ = 6 MPa. e Applied σ = 8 MPa
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and the incoming stress waves: this was the case
for the homalite sample and loading case 2, when
the loading amplitude was high enough to cause
branching but lower than 6 MPa, since at those
value or higher, branching happens before incom-
ing waves interfere with the crack.

Obviously, the differences between the glass sample
and the homalite sample are only due to the different
wave propagation speeds in these materials. Every type
of branching behavior that we see in homalite (like the
variation of branching location with the amplitude of
applied loading mentioned above), we can see in glass
as well for an appropriately sized sample geometry.

When compared with the results for soda–lime glass
with the same type of loading, is it interesting to see
that the patterns are similar when the branching mech-
anisms is the same between the two types of materials
(see Figs. 9b, c, 17b). The damage pattern changes sig-
nificantly (in homalite, see Fig. 17c) when branching
happens before the reflected wave return to meet the
advancing crack paths.

The crack propagation speed profiles in homalite
are shown in Fig. 18. The crack speed at branching
reaches 0.42 cR when reflected waves induce it (see
the 2MPa loading case), and approaches 0.55 cR when
branching is the direct result of the loading on the crack
surfaces(see the 4 MPa, and 8 MPa loading cases).

Simulations of crack propagation and branching in
homalite when the loading is applied on the crack faces
are shown in Movies 4–8 (see Supplementary Materi-
als), for various amplitudes of loading. As before, the
color in thesemovies indicate the vertical velocity com-
ponent. The simulations help us understand the reasons
crack branching happens, and a detailed discussion is
provided in Sect. 7.

5.2.3 Load case 3: velocity boundary conditions

In the dynamic loading type that reduces the shocks
compared with the previous two loading cases, the
sides of the plate are moving away from each other
with constant velocity enforced at the top and bottom
boundaries, with the initial velocity at all points in the
plate being a linear interpolation of the values imposed
on the sides (see Fig. 3d, e). While different from a
quasi-static loading, this dynamic loading is the clos-
est one to it.We conduct a δ-convergence study in terms
of the crack propagation speed for the case when the

Fig. 19 δ-convergence study for homalite under velocity bound-
ary conditions using δ = 4.0, 3.0 mm for a loading magnitude of
Vmax = 0.02 m/s

sides of the plate are separated by a constant veloc-
ity applied of 0.02m/s on each of the top and bottom
boundaries. The crack propagation speed for horizon
sizes equal to 4 mm and 3 mm are shown in Fig. 19.
The damage patterns obtained with both these hori-
zon values is given in Fig. 20b. With a horizon size
δ = 6.0 mm the damage map, for the same loading
amplitude, results in a fish-bone pattern, for which is
it difficult to decide the crack propagation speed. The
results shown justify using the δ = 4.0 mm as the
horizon size for the remaining computations in this
section.

With this horizon size and m = 4, we test differ-
ent loading amplitudes that lead to the pre-crack prop-
agating straight (see Fig. 20a), branching once (see
Fig. 20b), or splitting into amultitude ofmicrobranches
(see Fig. 20c).The results are similar to those seen in
glass,with the only difference being that in homalite the
applied velocities need to be higher to reach the simi-
lar patterns. This can be easily understood based on the
differences in stiffness and fracture energy between the
two materials.

We notice again the thickening of the damage area
just before the branching point. Once branching hap-
pens, the process zones are reduced significantly, only
for them to start thickening again for a potential sec-
ondary branching event. As in the glass sample, once
the material is ripped apart with higher intensity, multi-
ple failure points can initiate simultaneously to accom-
modate the enforced displacements, leading to the
familiar fish-bone failure pattern.

The crack speed profiles under the first two load-
ing conditions is given in Fig. 21. For the loading in
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Fig. 20 Damagemaps in homalite under velocity boundary con-
ditions with different velocity amplitudes applied. a Applied
Vmax = 0.06m/s at 800µs. b Applied Vmax = 0.2 m/s at 390µs.
c Applied Vmax= 1 m/s at 180µs

which the crack branches, the crack speed at branching
is around 0.6 cR . The slight drop in crack speed imme-
diately after branching reported in experiments is seen
here as well.

The evolution of crack propagation and branching
in homalite are contained Movies 9–11, for the differ-
entmagnitude of applied velocity boundary conditions.
The color indicate the vertical velocity component. The
results contained in these movies are commented fur-
ther in Sect. 7.

5.3 Influence of sample geometry

In this section, the influence of sample geometry is
investigated for the soda-line glassmaterial. Themodel

Fig. 21 Crack propagation speed profiles for homalite under
velocity boundary conditions for different applied amplitudes. a
Applied Vmax = 0.06 m/s. b Applied Vmax = 0.2 m/s

is the same at in Sect. 5.1, except that we now use
a narrower geometry with dimensions of 2 cm by
10 cm, instead of 4 × 10 cm. We monitor the crack
paths/patterns, the crack propagation speed, and the
angle of branching for the three different types of load-
ings used before. Calculations are performed using the
same horizon size and discretization as in the case of
the wider sample: δ = 1 mm, Δx = 0.25 mm.

5.3.1 Load case 1: stress on boundaries

For this loading case (see Fig. 3b), a tensile stress with
amplitude σ = 0.2 MPa applied on the top and bot-
tom boundaries leads to a straight propagating crack,
while increasing this amplitude to 2 MPa results in
one branching happening at 14µs, see Figs. 22b and
23b. This is sooner than what happened in the wider
sample case (see Fig. 6b), because stress waves travel
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Fig. 22 Damage maps for narrow sample of glass under sud-
denly applied tensile stress on the top and bottomboundaries con-
ditions with different amplitudes. a Damage at 150µs; applied
σ = 0.2MPa.bDamage at 30µs; appliedσ = 2MPa. cDamage
at 25µs; applied σ = 4 MPa

shorter distances and return sooner from the bound-
aries in the narrower sample to create conditions favor-
able to branching. A similar behavior is seen in case
of loading the sample with a 4 MPa stress amplitude
(compare Figs. 6c, 23c). The branching path in the 2
MPa loading amplitude is similar between thewide and
narrow samples, but for the 4 MPa amplitude, the sec-
ond branching attempt arrests one of the branches in
the narrow sample, whereas in the wider sample both
branches propagate. The cracks arrest because of wave
interactions with the advancing crack. The crack open-
ing angles are only slightly modified by the narrower
geometry, while the crack speeds attained at branching
are lower than in the wider sample. This result confirms
that the crack propagation speed cannot be a criterion
for branching. The more intense wave reinforcement
taking place in the narrower sample (because of wave
reflections from the boundaries that are closer to one
another than in the wider sample) leads to conditions
sufficient for branching when the crack speed is in the
0.4 cR–0.5 cR range.

After branching, we observe large variations in the
crack propagation speed, likely induced by the elastic
energy flow to the crack tip regions transported by the
bouncing of stress waves from the boundaries and from
the newly created crack surfaces.

The evolution of crack propagation and branching in
glass for this geometry are containedMovies 12–14, for

Fig. 23 Crack propagation speed profiles for glass under sudden
tensile stress applied on the boundaries of the narrower sample at
different amplitudes. a Applied σ = 0.2 MPa. b Applied σ = 2
MPa. c Applied σ = 4 MPa

the stress amplitudes applied on the outer boundaries.
The color scheme used in these movies represents the
vertical velocity component. The results contained in
these movies are commented further in Sect. 7.
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5.3.2 Load case 2: stress on pre-crack surfaces

When load is applied to the crack surfaces (see Fig. 3c)
in the glass sample with a narrower profile, branching
is again induced by stress waves bouncing back and
forth from the boundaries. Compared with the wider
sample, this time we need to applied smaller ampli-
tude loads to get the crack to branch, consistent with
the fact thatwave reinforcement of reflectedwaves hap-
pensmore frequently in the narrower sample. To obtain
a straight crack, the previously used loading amplitude
of 0.5 MPa (see Fig. 8a) needs to be reduced to around
0.2 MPa (see Fig. 24a), otherwise the crack eventually
branches. The stress wave influence on the crack open-
ing angle is clearly visible when the loading amplitude
is increased to 1 MPa, as the branching angle becomes
very wide (see Fig. 24b). Further increasing the load-
ing amplitude to 3 MPa, leads to the branching point
moving closer to the pre-crack tip, as expected (see
Fig. 24c). With the 6 MPa load amplitude used in the
results in Fig. 8c, the narrower sample gets damaged
in multiple places near the boundaries, confirming the
expectation that more frequent stress waves reflections
that are taking place in the smaller sample have an
amplifying effect on stress reinforcements that lead to
damage.

We observe that in this narrow sample, branch-
ing can happen at surprisingly low crack propagation
speeds. As seen from Fig. 25b, c, crack propagation

Fig. 24 Damage maps for narrow sample of glass under stress
on pre-crack surface with different stress amplitudes applied. a
Damage at 150µs; applied σ = 0.2 MPa. b Damage at 68µs;
applied σ = 1 MPa. c Damage at 39µs; applied σ = 3 MPa

Fig. 25 Crack propagation speed in narrow sample of glass
under tensile stress applied on the pre-crack surfaces at different
amplitudes. a Applied σ = 0.2 MPa. b Applied σ = 1 MPa. c
Applied σ = 3 MPa

speed at branching only reaches around 0.3 cR . These
results provide further evidence that crack branching is
not controlled by the crack propagation speed, but by
how strain energy flows around the tip of the propagat-
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ing crack. Itwould be interesting to confirmexperimen-
tally the possibility of crack branching in glass at such
low crack propagation speeds. On different geometries
and loading conditions, experimental results obtained
from 1938 to 1970 by different authors list the limit-
ing crack speed in glass (just before branching) in the
range 0.47 cR–0.66 cR (see Table 11.1 inRavi-Chandar
2004).

The reasons for the large angles of branching
observed in this case of geometry and loading con-
ditions are clarified by investigating crack propagation
and branching in simulation Movies 15–17. The color
indicate the vertical velocity component and the stress
waves interactions explain the particular branching pat-
ters. More comments are given in Sect. 7.

5.3.3 Load case 3: velocity boundary conditions

Applying the displacement-controlled boundary condi-
tions like in Fig. 3d and initial conditions that attenuate
a strong shock as in Fig. 3e on the narrower glass sam-
ple, we obtain the results shown in Fig. 26. Two of the
applied boundary velocities are identical to those in the
wider glass sample case and the corresponding damage
profiles are similar (compare Fig. 11a with Fig. 26a,
and Fig. 11b with Fig. 26b). However, the correspond-
ing crack propagation speeds are different (compare
Fig. 27 with Fig. 12), with the crack speed in the nar-

Fig. 26 Damage maps for narrow glass sample under velocity
boundary conditions with different applied velocity amplitudes.
a damage at 56.0µs; Vmax = 0.02 m/s. b Damage at 34.5µs;
Vmax = 0.06 m/s. c Damage at 27.0µs; Vmax = 0.1 m/s

Fig. 27 Crack propagation speed in narrow glass sample under
velocity boundary conditions applied with different magnitudes.
for applied velocity: a Vmax = 0.02 m/s, b Vmax = 0.06 m/s

rower sample being faster than in the wider sample.
Because of this, when the crack branches once (see
Fig. 26b), branching takes place sooner in the narrow
sample than in the wider sample. This is because the
applied initial acceleration (thus force) is higher in the
narrower sample than in thewider sample. For the same
reason, using in the narrow sample the 0.2 m/s veloc-
ity boundary conditions employed earlier in the wider
sample, leads to cracks forming early near the bound-
aries of the sample. Lowering the loading amplitude to
0.1 m/s results in the fish-bone failure pattern observed
in the wider sample loaded at 0.2 m/s (see Figs. 11c,
26c).

The thicker damage zone is easily noticeable before
branching in Fig. 26b. From the same figure, after
branching, the crack paths display a reduced process
zone that increases again as the cracks advance with
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Table 1 Crack propagation
speed at branching,
computed by peridynamics,
as a fraction of the Rayleigh
wave speed (V/cR)

Load case Soda–lime glass Homalite Narrower geometry

Loading
amplitude

V/cR Loading
amplitude

V/cR Loading
amplitude

V/cR

1 2 MPa 0.51 1 MPa 0.51 2 MPa 0.35

4 MPa 0.55 2 MPa – 4 MPa 0.47

2 3 MPa 0.40 2 MPa 0.42 1 MPa 0.29

6 MPa 0.44 4 MPa 0.55 3 MPa 0.30

6 MPa 0.51

8 MPa 0.39

3 0.06 m/s 0.63 0.2 m/s 0.59 0.06 m/s 0.66

0.2 m/s – 1 m/s – 0.1 m/s –

the potential of a secondary branching event. Once the
loading rate is sufficiently high (see Fig. 26c), a multi-
tude of crack initiation points develop simultaneously
in the material as the loading conditions are ripping the
system apart. For this case it is not easy to define a crack
propagation speed. While both the wide and narrow
glass samples under these boundary conditions branch
at around 0.6 cR , we observe that in the case when the
crack does not branch, the crack speed reaches close
to 0.7 cR , close to the measurement data provided by
Anthony et al. (1970).

With the material being forced to move apart with a
constant velocity imposed at its boundaries, the stress
wave interactions are considerably different from the
load-controlled cases. The simulations contained in
Movies 18–20 further explain the observed behavior.
The vertical velocity component is used to observe the
waves in the system. The enlarged crack-tip process
zones near the branching points are very prominent
here, and when the loading reaches some extreme val-
ues, the only way the material can accommodate the
imposed deformations is via creating a multitude of
microcracks. More on this issue is discussed in Sect. 7.

6 Discussion of crack branching results

In this section we summarize the results obtained so far
in terms of crack propagation speed at branching and
the angle of branching. In Table 1 we show values of
crack propagation speed, relative to the Rayleigh wave
speed, at the moment of branching. The only cases for
which the data is not included are the loading case
3 under high strain rates (when fish-bone like dam-

age is obtained) and for the attempted but unsuccess-
ful branching event in Load case 1 in homalite under
the higher loading amplitude (see Fig. 14c). The rea-
son for these omissions is that tracking of branches
becomes ambiguous when the main crack continues
to propagate along with the branches that eventually
arrest. The range of speeds at branching compare well
with the limiting crack propagation speeds measured
in glass and homalite by various experimentalists and
summarized in reference Ravi-Chandar (2004) on page
191. For glass, the experimentally measured limiting
velocity (that is, before a single crack branches) ranges
from0.47 cR to 0.66 cR , while for homalite the reported
spread is between 0.33 cR and 0.45 cR .

From the crack propagation speed plots for load
cases 1 and 2 (like the ones in Fig. 23b) we observe
that branching tends to initiate after a peak in speed,
likely due to the energy dissipated by the migration
of damage away from the crack line (the expansion of
the process zone). A slight drop in propagation speed
is observed after branching, but soon after that, indi-
vidual branches tend to recover the propagation speed
from before the expansion of the process zone. In con-
trast, for loading case 3 the crack propagation speed
profile is more monotonous, with some smaller vari-
ations in the region where the process zone enlarges
prior to branching.

It is not surprising that when the narrower geom-
etry sample is used, for load cases 1 and 2 the crack
propagation speed at branching is lower than in the
wider geometry: this only confirms the fact that stress
waves reflected from the boundaries (which are now
closer to the crack tip) can significantly alter the crack
propagation speed by slowing it down in this case, and
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Table 2 Crack branching
angles (between the
symmetry line and a branch)
computed by peridynamics,
estimated at the branching
location from damage maps

a Crack angle of the
successful branching in
Fig. 14, not the one whose
branches arrest

Load case Soda–lime glass Homalite Narrower geometry

Loading
amplitude

Angle Loading
amplitude

Angle Loading
amplitude

Angle

1 2 MPa 28.2◦ 1 MPa 26.9◦ 2 MPa 32.0◦

4 MPa 21.8◦ 2 MPa 20.0◦a 4 MPa 21.9◦

2 3 MPa 63.0◦ 2 MPa 43.9◦ 1 MPa 64.0◦

6 MPa 35.1◦ 4 MPa 38.2◦ 3 MPa 60.0◦

6 MPa 35.8◦

8 MPa 31.4◦

3 0.06 m/s 15.6◦ 0.2 m/s 16.4◦ 0.02 m/s 13.4◦

0.2 m/s – 1 m/s – 0.06 m/s –

speeding it up in other cases, depending on the angle
at which they meet with the propagating crack. Inter-
estingly, in load case 3 the effect is opposite: the crack
propagates slightly faster in the narrower geometry than
in the wider one. That is because the imposed acceler-
ation inside the sample is larger in the narrower sample
than in the wider one, if the constant velocity applied
on the boundaries is the same.

Crack branching angles,measured between the sym-
metry line (the original direction of propagation of
the crack before branching) and one of the branches
are shown in Table 2. Another name used for these
angles is “bifurcation half angles” (see Freund 1990).
Some authors refer to the branching angle as the
angle between the branches (see e.g. Ravi-Chandar and
Knauss 1984b), which is twice the angle we use here.
As crack branches propagate and interact with stress
waves, their path can change direction and the angle
of branching changes. This is why, in producing the
data in Table 2, we use the damage maps close to the
branching point.We observe that in themajority of tests
presented here, the crack branching angles are between
15◦ and 35◦. The only cases when the branching angle
is around 60◦ is when stress waves reflected from the
boundaries interact with the advancing crack. This con-
firms the experimental observations in Ravi-Chandar
and Knauss (1984b). We note that smallest branch-
ing angles are for loading conditions that mimic quasi-
static loading, and these angles are similar to those seen
from experiments in Bowden et al. (1967). For loading
case 2, in which the applied loading magnitude is suf-
ficiently high to produce crack branching before stress
waves reflected from the boundaries return to interact
with the advancing crack, crack branching angles are in

the 30◦ to 35◦ range (homalite with 6 and 8 MPa load-
ing amplitudes). These cases are equivalent to model-
ing branching in an unbounded medium. Note that the
analytical result provided by the Yoffe solution for a
crack of constant length that translates with a constant
velocity in an unbounded medium (therefore, no wave
reflections from boundaries) gives an angle of branch-
ing of 60◦ (see Yoffe 1951), almost double the value
from our predictions, as well as what is reported from
experiments.

7 Why do cracks branch?

The experimental investigations in Bonamy and Ravi-
Chandar (2005) and Sharon et al. (2002) discuss the
role of crack front waves in dynamic brittle fracture.
The peridynamic simulations in this work show that
crack surface and crack front wavesmay be responsible
for the “migration” of damage away from the original
crack line (roughening of the crack surface) when the
dynamic loading conditions are met for this to happen.
The reason, as described below, appears to be a pile-up
of stress waves traveling on the crack surfaces near the
crack tip.

Loading case 2 (sudden loading on the crack sur-
faces), with an amplitude large enough that produces
crack branching before the waves return from the
boundaries to interact with the advancing crack, makes
things easier to monitor and understand. The scenario
we observe from the velocity vector plots (see Movie
22 and Fig. 28) is as follows:

– Phase I: dynamic crack propagation. Material in
front of the advancing crack is pulled towards it,
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Fig. 28 Velocity vector plot
at: a 5.5µs, b 15.0µs, c
24.5µs, d 31.5µs, e 45.0µs
for the loading on crack
surface case with 8 MPa
loading amplitude. The
color of the arrows
represents the damage
index, with red being 40%
or more damage

and the larger the loading amplitude is, the faster
the material moves against the advancing crack.

– Phase II: stress waves “pile-up” against crack
tip. Stress waves generated by the propagating
crack are emitted and travel into the body and
along the crack surface as Rayleigh waves; the
Rayleigh waves on the crack surfaces are responsi-
ble for the rotation induced in the velocity vectors
for nodes on or near these surfaces. When load-
ing amplitude (strain energy flow into the process
zone) is sufficiently high, these waves are gen-

erated at a faster rate and they “pile-up” against
the material in front of the crack tip, which is
pulled even stronger against the advancing crack.
This causes waves to be reflected/ deflected at an
angle, leading to having bonds that are at dif-
ferent orientation than those perpendicular to the
crack line to be stretched beyond their critical
stretch.

– Phase III: migration of damage and branching. A
bonds that are stretched to their maximum are away
from the symmetry line, damage (captured by peri-
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dynamics via nonlocal bond-breaking) “spreads”
into the crack surfaces. This would induce signifi-
cant crack surface roughening, observed in experi-
ments. With the perturbed stress profile around the
crack tip, bonds that, until now, where breaking
due to the mode I loading (bonds that crossed the
symmetry line and are perpendicular on it) start
to relax as the wave pile-up and reflections stretch
other bonds beyond their critical limit. The branch-
ing phase is completedwhen two independent crack
branches start advancing at an angle from the sym-
metry line.

We explain this scenario based on interpreting the
plots in Fig. 28, which show the velocity vector for
nodes near the pre-crack tip under 8 MPa loading
applied on the crack surfaces. The reason for using
results with this loading amplitude is because the dif-
ferences between the nodal velocities are more pro-
nounced here and easier to follow. The length of the
vectors shown in Fig. 28 are proportional to their cor-
responding nodal velocitymagnitudes. The color of the
arrows indicates the damage index: blue arrow means
nodes have zero damage, while red means that at least
40% bonds of the node are broken. In the discrete
model, a crack line leads to nodes on its surface to
exhibit damage index values approaching but slightly
lower than 50%. Regions of interests are marked by
circles, squares, and rectangles. These regions move as
the crack propagates. Because of symmetry, we discuss
on the nodes on the upper half of the model.

The propagation initiates soon after the sudden load-
ing is applied (shown inFig. 28a) and roundwave fronts
(see square region) aremoving away from the crack sur-
face (see also Movie 21). The velocity of nodes ahead
of the crack tip (inside the rectangular region) is oppo-
site the crack propagation direction, so material ahead
of the crack tip moves towards or against the propagat-
ing crack. A small vortex (inside circular region) with
close-to-zero material points velocity exists between
the two regions mentioned above, as a transition zone.

As the crack propagates (see Fig. 28b, c), the regions
mentioned above change location attempting to reach
a steady-state. The nodes directly in front of the prop-
agating line move faster against it. As bonds break,
waves are emitted from them and of particular interest
are crack surface waves identified by the spinning of
the velocity vectors’ direction. We recall that Rayleigh
waves induce elliptical motion of material points near a

surface. In the early stages of crack propagation, nodes
which have 40%damage are observed only on the clos-
est rows to the symmetry line. The pile-up of surface
waves against the crack tip and the reflections induced
by their interaction with the material ahead of the crack
tip which moves against, leads to having a few rows of
nodes away from the symmetry line have that type of
damage levels (see Fig. 28d). This is the beginning of
damage migration or thickening of the process zone.
A similar “spread of damage” has been identified by
Johnson (1992) using the cell model for damage.

If the strain energy levels are not too large, a steady-
state settles in and the crack propagates straight, with-
out branching.When, however, theflowof strain energy
is too high, the waves created by the fracturing (break-
ing of bonds) process reach higher amplitudes and their
pile-up near the crack tip leads to bonds along direc-
tions other than those perpendicular to the original
crack line being stretched beyond their critical level.
This makes nodes in the elliptical region in Fig. 28e
to start having damage index higher than those on the
same “column” and lying on the symmetry line. Once
this happens, material along the symmetry line relaxes,
and the branching of the crack process is complete, as
the two branches continue to grow (see alsoMovie 22).

The argument that a sufficiently high level of strain
energy needs to be flowing into the process zone for
crack branching to take place, is based on the following
analysis of the results for the loading on the crack sur-
face case with different loading magnitudes. We mon-
itor the vertical component of the nodal velocity for
three loading amplitudes: 0.3, 2, and 6 MPa applied
suddenly on the crack surfaces (loading case 2). This
allows us to see wave interactions and crack propaga-
tion clearly. InFigs. 29, 30, and31,we showsnapshot of
the crack propagation process (movies containing the
entire process are 4, 5, and 7). In these figures, red indi-
cates positive vy-component, blue is negative vy , and
green regions have vertical velocities close to zero. In
the beginning, waves travel from the pre-crack surface
to the boundaries (see Figs. 29a, 30a, 31a). Under the
0.3MPa applied stress, the crack does not start to prop-
agate until after waves reflect from the boundaries and
meet the pre-crack tip twice (see Fig. 29b). In this case,
the crack propagates in a straight line, without branch-
ing.Weobserve thewavelets createdby the propagation
itself, but these are not strong enough to create branch-
ing (see Fig. 29c). For the 2 MPa loading amplitude,
crack propagation starts before reflected waves return
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Fig. 29 Vertical component of nodal velocity in homalite sample
under 0.3 MPa stress applied on pre-crack surfaces: a waves cre-
ated by the applied load approach the boundaries, b after several
reflections and wave reinforcements, the crack starts propagat-
ing, c crack continues to propagate in a straight line without
branching

to meet the crack tip (see Fig. 30b). Crack branch-
ing, however, takes place only after waves reflected
from the boundaries interact with the advancing crack
(see Fig. 30c), specifically after these reflected waves
bounce off the propagating crack surfaces. To obtain
branching without the interference of waves reflected
from the boundaries, one has to increase the applied
loading amplitude to, for example, 6 MPa or higher. In
this case, the crack starts propagating and branching
takes place before waves return from the boundaries
(see Fig. 31b, c). The wavelets produced by the crack
propagation itself are small relative to the large ampli-

Fig. 30 Vertical component of nodal velocity in homalite sample
under 2 MPa stress applied on pre-crack surfaces: a waves prop-
agate towards the boundaries, b crack propagation starts before
reflected waves interact with the tip (c) interaction of waves
reflected from the boundaries with those produced by the crack
propagation process leads to crack branching.

tude waves created by the applied loads and a little
harder to see now. In the previous cases these were eas-
ier to see due to the lower amplitude waves generated
by the lower amplitude of applied loading.

We can conclude that two essential factors are
needed in dynamic brittle fracture for crack branching:

(a) a sufficient loading magnitude for crack propaga-
tion, and

(b) pile-up of waves (created by the crack propagation
process) in the process zone, orwave reinforcement
between waves reflected from the boundaries and
those created by the propagating crack.
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Fig. 31 Vertical component of nodal velocity in homalite sample
under 6 MPa stress applied on pre-crack surfaces: a waves prop-
agate from pre-crack surface, crack propagation starts almost as
soon as the loads are applied, b branching takes place before
reflected waves meet the propagating crack, c waves reflected
from the sample’s boundaries meet with the two propagating
branches and influence their future path growth

The certain instability mentioned, in many refer-
ences before but never fully explained, as being respon-
sible for crack branching, now has a clear explana-
tion. We find that crack branching is not necessarily a
three-dimensional phenomenon, as some recent papers
have suggested. We see that the dynamic flow of strain
energy around the crack tip is responsible for crack
branching and that the elastic modulus and the fracture
energy (energy release rate) control how waves prop-
agate and how material damage occurs in the sample
prior to branching.

Based on observation of simulated results, the
macroscopic mechanism of dynamic brittle branching,
when there is no interaction between the advancing
crack and incoming waves, could be summarized as
follows:

– Applied loadingon the pre-crack surfaces generates
stress waves that travel on the crack surfaces and in
the bulk;

– At sufficiently high loading amplitudes, the pre-
crack starts propagating;

– When stress intensity is sufficiently high, waves
generated by the propagation itself pile-up against
the crack-tip region and are deflected awaybymate-
rial just ahead of the crack tip which moves against
the direction of crack propagation;

– The resulting wave interactions and reinforcements
lead to loading conditions and that create damage
away from the crack line (surface), damage migrat-
ing into the crack surfaces;

– When the wave pile-up is sufficiently strong, the
amount of damage migration becomes sufficiently
large most of it happens off of the original direction
of the crack, thus the material directly in front of
the original crack tip becomes relaxed; at this point
crack branching ensues.

We note that the macroscopic mechanism of dyna-
mic brittle branching described here is independent
of the particular microscopic conditions of a particu-
lar microstructure. Such microscopic mechanisms pro-
posed in the literature (microcracks ahead of the crack
tip, or tilting of the stress vector, etc) may exist and can
influence the behavior in a given material system, but
our results indicate that the larger picture, the macro-
scopic one described above, is the “driving mecha-
nism” for crack branching.

8 The importance of nonlocal modeling in crack
branching

The peridynamic theory is a non-local formulation that
extends the classical continuummechanics formulation
by assuming each material point is connected via peri-
dynamics bonds with more than just its nearest neigh-
bors. Damage in peridynamics is defined through keep-
ing track of bond breaks and crack appear/form as a
necessary consequence of bond rupture. How does this
type of nonlocality affect modeling of crack branching
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Fig. 32 Two peridynamic models: one with a horizon region
withm = 4 shown by the solid circle, and with nearest-node only
interactions, with m = 1.45, shown by the dashed-line circle

and why is it important for dynamic brittle fracture?
We answer these questions in this section.

A peridynamic model of a linear elastic material
under homogeneous deformation matches the classi-
cal model solution for any horizon size (assuming that
the surface effect is taken care of by, for example, fic-
titious nodes method), and it converges to the classical
model in the limit of the horizon size going to zero, for
general problems with smooth solutions or with static
cracks (see Hu et al. 2012a).

In problems with dynamic cracks, when the peridy-
namic discrete model is setup so that bonds are only
between a node and its nearest neighbor nodes (small
m-ratio), the PD solution (with a sufficiently small hori-
zon size) is similar towhat somediscretizationmethods
of the classical model produce. In Fig. 32 we show two
PD settings: one in which m = δ/Δx = 1.45, leading
to bonds between the central node with only its nearest
neighbors, and the other withm = 4, used for all of the
results presented in this work. The preference is for the
second type, asm-convergence results demonstrated in
Ha and Bobaru (2010) and Ha and Bobaru (2011a), in
order to obtain crack paths that are not influenced by the
grid density. Nevertheless, we perform a dynamic frac-
ture test using the model with nearest-neighbor only
bonds.

With the sudden tensile loading applied on the top
and bottom edges of the homalite sample (load case 1)
and a loadingmagnitude of 3MPa,we obtain the results
shown in Fig. 33 form = 1.45. For comparison, we also
include the results obtained in Rabczuk andBelytschko
(2004), that use the “cracking particle model” for dis-

Fig. 33 Damage maps for load case 1 for a homalite sample
under 3 MPa applied loading: a results from the peridynamic
model using only nearest-neighbor bonds, and b results from the
cracking particle method in Rabczuk and Belytschko (2004)

cretizing the classical (local) elasticity equations. The
results with the PD model withm = 4 is similar to that
shown in Fig. 14c. Here we used the slightly higher
loading magnitude because with 2 MPa loading the
crack does not branch in the model that uses m = 1.45.
In both the cracking particle model and the peridy-
namic model with nearest-neighbor-only interactions
(NNOI), a large number of spurious microcracks form,
which are not seen in experiments in homalite. The
authors of Rabczuk and Belytschko (2004) commented
on the presence of these unexpected extra cracks: “This
is a rather spurious artefact which is undesirable but
we do not know its origin or how to eliminate it at
this time”. We have tried velocity loading conditions
(load case 3) with our peridynamic model that uses the
NNOI and similar spurious cracks are obtained. We
also observe spurious cracks in the NNOI peridynamic
model for glass.

The main reasons for the formation of spurious
cracks in the peridynamic model that uses NNOI is
that there are too few directions for bond breaking
under a given applied load. The exiting bonds in this
model would not likely break for loading that is not
perpendicular to them, had we had bonds in all possi-
ble directions. With only a small number of different
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bond-directions available in a NNOI PD model, the
crack paths that evolve depart from the real crack path.
The strain energy landscape around the crack tip is also
significantly different in the NNOImodel than in a reg-
ular peridynamic model (one that uses a sufficiently
large m value). Waves in the NNOI model propagate
like in lattice-type models. We note that lattice models
are known to produce zones of “forbidden velocities”
for crack propagation (see Marder and Gross 1995).
Such zones are not observed in experiments (see Ravi-
Chandar 2004, pp. 218–220).

The ability of generating damage in arbitrary direc-
tions (by the breaking of a bond stretched in a given,
but arbitrary direction) is, perhaps, the most important
characteristic that allows for the evolution of crack
branches from the damage zone (increased process
zone) caused by stress waves pile-ups and wave rein-
forcements of rapidly growing cracks. We recall that
the increased process zone was the mechanism postu-
lated by Ravi-Chandar and Knauss (1984a) for crack
branching. Methods that are, for example, employing
surfaces for describing (and tracking) crack growth
will likely fail to correctly capture the crack branch-
ing behavior. As we have seen in the previous sections,
crack branching does not evolve as a crack surface
that suddenly becomes two crack surfaces, but rather
as a damage process-zone that widens (mirror-mist-
hackles transition) and splits into two damage process-
zones that continue to propagate with the narrower
profile that the original crack was showing before its
thickening prior to branching. This is what is seen
in experiments and this is how branching happens
in a PD model (which uses a sufficiently large m-
ratio).

Remark Several studies (see e.g. Buehler and Gao
2006; Bouchbinder et al. 2010) have proposed the exis-
tence of a nonlinear elastic region near the crack tip in
order to obtain crack-tip instabilities and branching.
While for soft materials, the existence of a hyperelastic
region around the crack tip is a reasonable assump-
tion (see Bouchbinder et al. 2010), for stiff, glass-like
materials it is not clear that this is true anymore (see
Bouchbinder et al. 2014). The results presented herewe
have shown that the nonlocality introduced by the sim-
plest peridynamic model of a linear micro-elastic brit-
tle material does not require nonlinear elastic behavior
near the crack tip to predict crack branching and explain
the origin of instabilities that trigger crack branching.
In other words, while hyperelastic behavior near the

crack tip may be a sufficient condition to produce crack
branching, it is not a necessary condition.

9 Conclusions

In this paper we presented some detailed studies of
modeling crack branching in dynamic brittle fracture
using peridynamics.Without special crack propagation
and branching criteria, results show that the peridy-
namic model is capable of capturing all the details of
dynamic crack branching in brittle materials reported
in the experimental literature. We were able to propose
an explanation for the origin of instabilities that lead to
crack branching in brittle materials.

We verified the peridynamic models by compar-
ing crack propagation velocities and crack branch-
ing angles with experimental results. The overall
trend of speed profiles match the experimental val-
ues under similar types of loading conditions. The
values obtained from the model for the crack propa-
gation speed at branching ranged between 0.3cR and
0.66cR depending on the material (elastic modulus,
density, and fracture energy), loading conditions, and
sample geometry. A similar range of values is obtained
in experiments, with the higher values observed when
the loading amplitudes are increased. We revealed how
stress waves can trigger crack branching even when the
crack propagation speed is relatively low. Stress waves
can also modify the crack opening angles. The values
we obtained with the peridynamic model are close to
those reported in experiments.

We performed convergence studies in terms of the
size of the horizon going to zero and chose to use the
horizon size under which the crack propagation speed
no longer changes significantly when the horizon con-
tinues to decrease. From that point of view, the suffi-
ciently small nonlocal region for glass was 1 mmwhile
for homalite was 4 mm. These values are in the same
range with the characteristic distance found for crack
branching in Ramulu and Kobayashi (1985).

The peridynamic simulations allowed us to uncover
a possible mechanism (macroscopic) for crack branch-
ing in brittle isotropic and homogeneous materials:
under mode-I loading conditions in which waves com-
ing from the boundaries do not interferewith the propa-
gating crack, mixed-mode loading conditions near the
crack tip are induced by stress waves (generated by
the fracturing process) pile-up around the crack tip due
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deflection by the material ahead of the crack tip that
moves against the direction of propagation of the crack;
the wave pile-up leads to “migration” of damage away
from the symmetry line, indicating an enlargement of
the process zone (possible roughening of the crack sur-
face); when this migration is sufficiently large, material
ahead of the crack tip is unloaded, and damage growth
no longer happens along the original crack direction,
but splits into two separate process zones that continue
to propagate with a reduced thickness compared to that
just before the branching event. When crack branching
is a result of waves traveling towards the propagating
crack, themechanism responsible for branching iswave
reinforcement.

We also explained why the peridynamic model
is able to capture the crack branching phenomenon
correctly. One significant feature of dynamic brittle
branching is crack thickening, which is observed as
roughing of the crack surface in experiments (the
famous mirror-mist-hackle transition). Because the
damagemodel in peridynamics is based on bond break-
ing, not on crack surface advancement, and since bonds
cover virtually every possible direction (as long as the
grid is fine relative to the horizon size), we are able
to mimic with this model the evolution of the process
zone observed by experimentalists in crack branching.
The peridynamic model captures the correct amount
of energy dissipated via increasing the process zone,
reported in experiments to happen just before branch-
ing takes place. Without the right amount of energy
(determined by the flow of strain energy around the
crack tip) dissipated near that critical point, one gets
spurious damage paths or the wrong crack propagation
speed. In any dynamic simulation, results that follow a
“slightly” wrong move, depart further and further from
the actual result.

It is noteworthy that the nonlocality introduced by
this simplest peridynamic model of a linear micro-
elastic brittlematerial does not require nonlinear elastic
behavior near the crack tip to predict crack branching.
Such an idea was used in Buehler and Gao (2006) to
provide an explanation for crack branching via atom-
istic modeling. We conclude that, at least to first order,
a continuum-level linear elastic model and a capable
damage model (the peridynamic model) are the only
ingredients necessary to correctly predict crack branch-
ing in brittle, homogeneous and isotropic linear elastic
materials. The input data for this model (material den-
sity, elastic constants, and fracture energy) appears to

be the minimal set of input data possible. While more
complex models may provide more accurate descrip-
tions of the branching process for particular material
types, the principles of crack branching in linear-elastic
brittle materials can be reproduced with the proposed
peridynamic model. The results answer the question
we promised to answer (see Sect. 1), whether quan-
tum or atomistic, or coupled across-scale models are
necessary for modeling of the crack branching phe-
nomenon. They are not, as long as the continuum-
level model used is one of the type employed here
(peridynamic).
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