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Abstract This paper provides a solution for a crack
stiffened by elliptic layer in antiplane elasticity. The
crack is embedded in an elliptic region and stiffened
by a confocally elliptic layer. The whole medium is
composed of three portions, the cracked elliptic plate,
the confocally elliptic layer and the infinite matrix. The
remote loading is applied. The cracked elliptic plate
and the infinite matrix have the same shear modulus
of elasticity. The stiffening elliptic layer has a higher
shear modulus of elasticity. By using the complex vari-
able and the continuity conditions along interfaces, the
problem can be solved. One numerical example with
different sizes and properties of materials is given to
show the effect of the stiffening layer.

Keywords Stress intensity factors · Crack in
inclusion · Stiffening problem for crack · Complex
variable method · Antiplane elasticity

1 Introduction

Many stiffening problems for the cracked components
were proposed (Isida 1973; Chen 1994; Umamaheswar
and Singh 1999; Duong and Yu 1997; Antipov et al.
1997). The tension problem of a long cracked strip with
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stiffened edges was investigated (Isida 1973). The ten-
sion problem of a finite cracked plate with stiffened
edges was studied (Chen 1994). Two contact problems
referring to the partially stiffened elastic half-plane
were studied (Antipov et al. 1997).

The problem of assessing the effectiveness of a
bonded repair to a cracked plate can be reduced to
a one-dimensional integral equation for the special
case when both the plate and the reinforcement are
isotropic and have the same Poisson’s ratio (Wang and
Rose 1998). Bonded composite repairs are efficient
and cost effective means of repairing cracks and cor-
rosion grind-out cavity in metallic structures (Duong
andWang 2007). Fundamental concept of crack patch-
ing was studied. The crack growth behavior of an alu-
minum plate cracked at the tip and repaired with a
bonded boron/epoxy composite patch in the case of
full-width disbond was investigated (Errouane et al.
2014). A numerical model for the optimization of com-
posite patch repair of aluminum plate containing a cen-
tral crack was developed (Errouane et al. 2014).

On the other hand, many researchers studied the
antiplane problem for the elastic elliptic inclusion or
layers (Gong 1995; Ru and Schiavone 1996; Chao and
Young 1998; Shen et al. 2006; Chen and Wu 2007;
Chen 2013). A generalized and unified treatment was
presented for the antiplane problem of an elastic ellip-
tic inclusion undergoing uniform eigenstrains and sub-
jected to arbitrary loading in the surrounding matrix
(Gong 1995). A novel efficient procedure to analyze
the two-phase confocally elliptic inclusion embedded
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in an unbounded matrix under antiplane loadings was
provided (Shen et al. 2006). Dual null-field integral
equations was suggested for the multi-inclusion prob-
lem under antiplane shears (Chen and Wu 2007). A
closed form solution for the Eshelby’s elliptic inclu-
sion in antiplane elasticity was provided (Chen 2013).
The interaction problem between a circular inclusion
and a symmetrically branched crack embedded in an
infinite elastic medium was solved (Lam et al. 1998).
A crack problem for an array of collinear microc-
racks in composite matrix was investigated (Profant
and Kotoul 2005). It is found that most previously pub-
lished papers in the solution for confocally elliptic lay-
ers were devoted to a perfect inclusion without crack.

This paper provides a solution for a crack stiffened
by elliptic layer in antiplane elasticity. The crack is
embedded in an elliptic region and stiffened by a con-
focally elliptic layer. The whole medium is composed
of three portions, the cracked elliptic plate, the confo-
cally elliptic layer and the infinite matrix. The remote
loading is denoted by σ∞

yz . The cracked elliptic plate
and the infinite matrix have the same shear modulus
of elasticity. The stiffening elliptic layer has a higher
shear modulus of elasticity. By using the complex vari-
able and the continuity conditions along interfaces, the
problem can be solved. One numerical example with
different sizes and properties of materials is given to
show the effect of the stiffening layer.

2 Analysis

For convenience in derivation, we make a substitution
φ(z) = −iψ (z) in (Chen et al. 2003) and obtain the
following complex potential for antiplane elasticity

ψ(z) = −f(x, y) + iGw(x, y) (1)

where G is the shear modulus of elasticity, w(x, y) is
the longitudinal displacement in antiplane elasticity. In
addition, the result force function f(x, y) is defined by

f(x, y) =
∫ z

zo

(
σxzdy − σyzdx

)
(2)

In Eq. (2), the integration is performed from a fixed
point zo to a moving point “z”. In addition, σxz and σyz
denote two stress components. Clearly, the displace-
ment componentw(x,y) and the resultant force function
f(x,y) satisfy the following Laplace equation

y
Some applied loadings

o x

Fig. 1 An edge crack problem in antiplane elasticity

∇2w(x, y) = 0, ∇2f(x, y) = 0 where

∇2 = ∂2

∂x2
+ ∂2

∂y2
(3)

From Eqs. (1) to (3), we can define the stress compo-
nents by

ψ′ (z) = σyz + iσxz = − ∂f

∂x
+ iG

∂w

∂x

= G

(
∂w

∂y
+ i

∂w

∂x

)
(4)

In addition, from Eq. (1) we can get the following
equations

2Gw(x, y) = −i(ψ(z) − ψ(z)) (5)

f(x, y) = −1

2
(ψ(z) + ψ(z)) (6)

For an edge crack shown in Fig. 1, the stress intensity
factor at the crack tip can be defined by (Chen et al.
2003)

K3 = Lim
z→0

√
2πzψ′(z) (7)

It was proved that, the right hand term of Eq. (7) gen-
erally takes a real value in general (Chen et al. 2003).

If the stresses σ∞
xz and σ∞

yz are applied at infinity for
an infinite medium, from Eq. (4) the relevant complex
potential is as follows

ψ(z) = (σ∞
yz + iσ∞

xz)z (8)

For the crack embedded in an elliptic plate in
antiplane elasticity, the following mapping function is
used (Muskhelishvili 1953)

z = ω(ς) = a

2

(
ς + 1

ς

)
(9)

which maps the unit circle and its exterior region in
the ς-plane into the crack configuration (−a, a) and its
exterior region in the z-plane. The cracked medium is
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Fig. 2 Mapping relations for z = ω(ς) = a
2 (ς + 1

ς ), (a) Ring
region bounded by �o (with ρo = 1) and �1 in the ς-plane into
the corresponding elliptic region bounded by�o[crack along (−a
a)] and�1 in the z-plane, (b) Ring region bounded by �1 with ρ1

and�2 with ρ2 in the ς- plane into the corresponding elliptic layer
bounded by�1 and�2 in the z-plane and (c) Infinite region exte-
rior to �2 with ρ2 in the ς-plane into the corresponding infinite
region exterior to �2 in the z-plane

composed of (a) a cracked elliptic plate bounded by
�o [crack along (−a a)] and �1, (b) an elliptic layer
bounded by �1 and �2 and (c) an infinite region exte-
rior to the contour �2 (Fig. 2).

The mapping function also provides the following
mappings: (a) it maps the circle�o (with ς = ρo eiθ and
ρo = 1) in the ς-plane into a crack configuration �o

[along the interval (−a, a)] in the z-plane, (b) it maps
circles �j (with ς = ρjeiθ, j =1, 2) in the ς-plane into
contours �j (j =1, 2) in the z-plane (Fig. 2).

In the formulation (Fig. 2), the layer bounded by�1

and �2 is thicker than other portions. In this case, we
can assume the layer possesses a higher shear modulus
of elasticity. However, if the layer bounded by �1 and
�2 is a dissimilar material with a different modulus of
elasticity, the derivation in this case is the same as in
the studied case.

In addition, the shear modulus of elasticity for con-
focally elliptic layer bounded �j and �j+1 is denoted
by Gj (j=0, 1). The shear modulus of elasticity for the
medium exterior to �2 is denoted by G2 (Fig. 2). In
this case, we have Go, G1 = h1 Go/ho and G2 = Go

for different portions, respectively (Fig. 2).
The inverse of the mapping function of z = ω(ς) is

denoted by

ς = �(z) = 1

a
(z +

√
z2 − a2) (10)

Clearly, for ς ∈ �j+1, or ς = ρj+1eiθ (j= − 1, 0, 1),
from Eq. (9) we have

ςς̄ = ρ2j+1,
(
ς ∈ �j+1, or ς = ρj+1e

iθ
)

(11)

ω(ς) = a

2

(
ς

ρ2
j+1

+
ρ2
j+1

ς

)
,

(
ς ∈ �j+1, or ς = ρj+1e

iθ
)

(12)

Eq. (12) reveals that along the boundary ς ∈ �j+1, or
ς = ρj+1eiθ, the function ω(ς) can be converted into
the form of an analytic function.

If the remote loading is σ∞
xz only, the stress inten-

sity factor K3 always equal to zero. Therefore, we only
study the case of the remote loading σ∞

yz .
The complex potentials defined on many confo-

cally elliptic layers bounded by �jand �j+1 (j = 0, 1)
are denoted by ψ∗

j (z) (j = 0, 1). The complex poten-
tial defined exterior to the �2 is denoted by ψ∗

2(z)
(Fig. 2).

Based on those complex potentials ψ∗
j (z) (j = 0, 1,

2), we can define the following complex potentials in
the ς-plane as follows

ψj(ς) = ψ∗
j (z) |z=ω(ς) , (j = 0, 1.2) (13)

Clearly, the displacement and traction and along the
interface ς ∈ �j+1 (j = 0, 1) should be continu-
ous. Therefore, from Eqs. (1), (5) and (6) we can
propose the continuity conditions along the interfaces
ς ∈ �j+1 (j = 0, 1) as follows
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1

Gj+1
(ψj+1(ς) − ψj+1(ς))

= 1

Gj
(ψj(ς) − ψj(ς)),

(
ς ∈ �j+1, j = 0, 1

)
(14)

ψj+1(ς) + ψj+1(ς)

= ψj(ς) + ψj(ς),
(
ς ∈ �j+1, j = 0, 1

)
(15)

Eq. (14) is derived Eq. (5), which represents the dis-
placement continuity condition along interfaces. In
addition, Eq. (15) is derived Eq. (6), which represents
the traction continuity condition along interfaces. It
is easy to verify that the traction continuity condition
along interfaces is equivalent to the same condition for
resultant force “f” shown in Eq. (1). Thus, the equality
shown by Eq. (15) is obtained.

The complex potentials for the cracked elliptic plate,
confocal layer and infinite matrix are expressed in the
form

ψj(ς) = cjς + dj
1
ς
,

(
j = 0, 1, 2with cj, dj real value

)
(16)

From Eqs. (14) to (16), we can link the two sets of
two undetermined coefficients in the adjacent layers as
follows

cj+1 = αjcj −
β j

ρ2
j+1

dj,

dj+1 = −ρ2j+1βjcj + αjdj, (j = 0, 1) (17)

where

αj = Gj+1 + Gj

2Gj
, βj = Gj+1 − Gj

2Gj
, (j = 0, 1) (18)

We prefer to write Eq. (17) in an explicit form

c1 = α0c0 − β0

ρ2
1

d0, d1 = −ρ21β0c0 + α0d0 (19)

c2 = α1c1 − β1

ρ2
2

d1, d2 = −ρ22β1c1 + α1d1 (20)

On the other hand, from Eqs. (1), (6) and (16), we can
propose the traction free condition along the crack face

ψo(ς) + ψo(ς) = 0, (for ς ∈ �o, or ς = ei ϑ) (21)

From Eq. (16) we can express the complex potential
ψo(ς) as follows

ψo(ς) = co ς +do
ς

(22)

Substituting Eq. (22) into (21) yields

do = −co, orψo(ς) = coς − co
ς

(23)

Since ψ∗
2(z) = σ∞

yzz + O(1/z) and z ≈ aς/2 at the
remote place, from Eqs. (9) and (16) we will find

c2 = a

2
σ∞
yz (24)

and

ψ2(ς) = c2ς + d2
1
ς

= a

2
σ∞
yzς + d2

1
ς
, (25)

In the formulation, there are six unknowns, or co, do,
c1, d1, c2, d2. In the meantime, we also have six equa-
tions for six unknowns: (1) four equations from Eqs.
(19) and (20), representing the continuity conditions
along two interfaces �1 and �2, (2) do = −co from
Eq. (23), representing the traction free condition along
the crack face and (3) c2 = a

2σ∞
yz from Eq. (24), repre-

senting the remote loading condition. Finally, we can
obtain six undetermined coefficients.

In addition, from Eq. (7) the stress intensity factor
at the crack tip can be defined by

K3 = Lim
ς→1

√
2π(ω(ς) − a)

ψ′
0(ς)

ω′(ς)
, (with a = ω(1))

(26)

Subsisting Eq. (23) into (26) yields

K3 = 2co
a

√
π a (27)

3 Numerical example

In the case of the remote loading σ∞
yz , one numerical

example is provided to show the influence to stress
intensity factor K3 from (a) the area of the thicker por-
tion and (b) the assumed ratio for the shear modulus
G1/Go under the condition G2 = Go.

In the example, the mapping function z = ω(ς) =
a
2 (ς + 1

ς ) shown by Eq. (9) is used (Fig.2). In addition,
wedefine the following three parameters. Thefirst para-
meter δ is defined by

δ = ρ1

ρo
, (with ρo = 1, or δ = ρ1) (28)

The second parameter is used for defining the rela-
tion of ρ2 to δ = ρ1. The semi-axes corresponding to
ρj(j = 1, 2) are denoted by aj and bj(j = 1, 2). It is
assumed that the area bounded by �1 and �2 (Fig. 2)
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keeps a definite value. In this case we can define second
parameter α by

α = π(a2b2 − a1b1)
π a2

= a2b2 − a1b1
a2

(29)

Clearly, from the mapping function shown by Eq. (9),
we have

a1
b1

= a

2

(
ρ1 ± ρ−1

1

)
,

a2
b2

= a

2

(
ρ2 ± ρ−1

2

)
(30)

Substituting (30) into (29) yields

α = 1

4

(
(ρ22 − ρ−2

2 ) − (ρ21 − ρ−2
1 )

)
, or (ρ22 − ρ−2

2 )

= 4 α+(ρ21 − ρ−2
1 ) (31)

Eq. (31) reveals that if α and ρ1 are given before-
hand, we can get ρ2 from Eq. (31) accordingly. In the
example, we choose α = 0.25 or 0.5.

Finally, the third parameter γ is defined by

γ = G1

Go
(32)

In the example, we choose G2 = Go.
In the example, we assume (1) δ = ρ1/ρo= 1.01,

1.02, 1.05, 1.1. 1.2, 1.5, 2, 5 (with ρo = 1), (2) γ =
G1/Go =1, 2, 3, 4, 5, 8, 10 and (3) α = 0.25, 0.5. After
using Eq. (27), the computed results for K3 at the crack
tip can be expressed as

K3 = h(δ, γ, α)σ∞
yz

√
πa (33)

The computed non-dimensional stress intensity factors
h(δ, γ, α) are listed in Table 1.

From Table 1 we see that, the γ value (γ = G1/Go)

has a significant influence to the non-dimensional stress
intensity factors (SIFs) h(δ, γ, α)(= K3/(σ

∞
yz

√
πa)).

For example, in the case of α = 0.25, we have
h(δ, γ, α) |δ=1.01 γ=1 = 1.000 andh(δ, γ, α) |δ=1.01 γ=5
= 0.571. That is to say, if the thickness of elliptic
layer is magnified by five time, the non-dimensional
SIF is reduced from 1 to 0.571. Similarly, the δvalue
(δ = ρ1/ρo) also has a significant influence to
the non-dimensional stress intensity factors (SIFs)
h(δ, γ, α)(= K3/(σ

∞
yz

√
πa)). For example, in the case

of α = 0.25, we have h(δ, γ, α) |δ=2γ=1 = 1.000,
h(δ, γ, α) |δ=2 γ=2 = 0.960 and h(δ, γ, α) |δ=2 γ=5 =
0.825. That is to say, if the stiffening layer is far away
(δ = 2 case) from the crack tip, the reduction of the
non-dimensional SIF is not significant.

Table 1 The non-dimensional stress intensity factors h(δ, γ, α)

(= K3/(σ
∞
yz

√
πa)) at the crack tip with δ = ρ1/ρo(ρo = 1), γ =

G1/Go, G2 = Go [see Eq. (33) and Fig. 2]

γ 1 2 3 4 5 8 10
δ

h(δ, γ, α) values in the case of α = 0.25

1.01 1.000 0.842 0.727 0.639 0.571 0.432 0.371

1.02 1.000 0.845 0.730 0.643 0.574 0.435 0.375

1.05 1.000 0.852 0.740 0.654 0.586 0.446 0.385

1.1 1.000 0.863 0.756 0.672 0.604 0.464 0.402

1.2 1.000 0.882 0.784 0.705 0.639 0.500 0.436

1.5 1.000 0.924 0.850 0.785 0.728 0.597 0.533

2 1.000 0.960 0.912 0.867 0.825 0.720 0.663

5 1.000 0.995 0.986 0.977 0.968 0.942 0.925

h(δ, γ, α) values in the case of α = 0.5

1.01 1.000 0.777 0.635 0.536 0.464 0.331 0.278

1.02 1.000 0.780 0.639 0.541 0.468 0.335 0.281

1.05 1.000 0.790 0.650 0.553 0.480 0.345 0.290

1.1 1.000 0.804 0.669 0.572 0.499 0.361 0.305

1.2 1.000 0.830 0.703 0.608 0.535 0.394 0.335

1.5 1.000 0.885 0.781 0.697 0.628 0.483 0.418

2 1.000 0.934 0.861 0.795 0.737 0.604 0.538

5 1.000 0.990 0.974 0.958 0.941 0.894 0.864

In addition, in the case of α = 0.5, we have
h(δ, γ, α) |δ=1.01 γ=1 = 1.000 andh(δ, γ, α) |δ=1.01 γ=5
= 0.464. That is to say, the thickness of elliptic
layer is magnified by five time, the non-dimensional
SIF is reduced from 1 to 0.464. Similarly, in the
case of α = 0.5, we have h(δ, γ, α) |δ=2 γ=1 =
1.000, h(δ, γ, α) |δ=2 γ=2 = 0.934 and
h(δ, γ, α) |δ=2 γ=5 = 0.737. That is to say, if the
stiffening layer is far away (δ = 2 case) from the
crack tip, the reduction of the non-dimensional SIF is
minor.

Except for the γ = G1/Go = 1 case, the non-
dimensional SIFs in the case of α = 0.5 are generally
lower than those for the case of α = 0.2.

4 Conclusions

Generally, the continuity conditions along interfaces
in the problem is rather complicated. We found that
we only need to express the complex potentials in the
formofEq. (16). Therefore, the two sets of two undeter-
mined coefficients in the adjacent layers can be linked
by Eq. (17).
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This paper provides an effective solution for a crack
stiffened by elliptic layer in antiplane elasticity. A lot of
numerical results are provided in this paper. It is found
that if the stiffening layer is placed near the crack tip, for
example, ρ1 = 1.01, the stiffening effect is significant.
However, if the stiffening layer is placed far away from
the crack tip, for example ρ1 = 5, the stiffening effect
is weaker.

This paper provides a closed form solution for the
mentioned crack problem. In fact, after substituting the
relations do = −co and c2 = a

2σ∞
yz shown by Eqs.

(23) and (24) into Eqs. (19) and (20), we will obtain
an algebraic equation for four unknowns co, c1, d1 and
d2. This algebraic equation is indeed a very simple one,
and no error is actually involved in computation. Thus,
the computed results achieved must be very high.
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