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Abstract The Dugdale model has been extended to a
dynamically expanding crack in an orthotropic mate-
rial. The stresses in the plastic zone as functions of
applied stress, plastic zone tip speed and crack speed
are derived. Expression for the energy release rate is
obtained. The effects of plastic anisotropy and elas-
tic anisotropy on ductile crack propagation are studied
using a quadratic yield criterion and an admissible con-
dition for self-similar crack expansion.

Keywords Dugdale model · Expanding crack ·
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1 Introduction

Rapid unstable crack growth in which dynamic effects
are significant is a research topic of practical impor-
tance in preventing catastrophic failure. To gain insight
into the mechanical aspect of dynamic crack propaga-
tion, several analytic solutions have been obtained. The
first dynamic solution was given by Yoffe (1951) who
considered a crack of constant length propagating with
constant speed in an isotropic medium. The first solu-
tion to a more realistic problem of an expanding crack
was provided by Broberg (1960) and Craggs (1963) for
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isotropic materials. The expanding crack solution for
orthotropic materials was obtained by Atkinson (1965)
and for general anisotropic materials by Wu (2000).

In all of the aforementioned works the materials
were assumed to be purely elastic and the stress field is
singular at the crack tips. The Dugdale model (Dugdale
1960) is a simplified model commonly used to remove
the stress singularity with crack-tip plasticity. In the
Dugdale model, yielding is assumed to take place only
in a line plastic zone along the crack edge. This line
plastic zone is then treated as an extended part of the
physical crack with the closure stress σ22 = Y act-
ing on the extended crack faces. The line plastic zone
and the physical crack form the effective mathemati-
cal crack. With the Dugdale model, the elastic-plastic
crack problem is reduced to an elastic one with finite
stresses at the effective crack tip, which is actually the
end of the plastic zone.

The Dugdale model was first developed for a sta-
tionary mode I crack in an isotropic material. The
model was subsequently extended to a propagating
semi-infinite crack by Goodier and Field (1963), a mov-
ing crack of castanet length by Kanninen (1968), and
an expanding crack by Atkinson (1968), Embley and
Sih (1972) for mode I and Wu and Huang (2013) for
mode II and III cracks. An extension to a stationary
mode I crack in orthotropic materials was provided by
Stormont et al. (1972). However, the Dugdale model
has not been applied to an expanding mode I crack in
an orthotropic medium yet. The objective of this paper
is thus to generalize the Dugdale model so that the iner-
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tial and anisotropic effects are both included for mode
I cracks.

In the original Dugdale model, Tresca yield criterion
is implicitly assumed and Y is simply taken as the uni-
axial yield stress of the material. This is true for static or
slowly moving cracks in isotropic materials where the
normal stress parallel to the crack line σ11 = T < Y .
However, anisotropy as well as inertia effects may sig-
nificantly increase T (Stormont et al. 1972; Wu and
Ru 2014) so that the influence of T cannot be ignored.
Here a more general yield criterion F (T, Y ) = 0 is
considered. Moreover, a limiting crack speed with the
elastic and plastic anisotropy taken into account will be
determined using a yield criterion.

2 Moving dislocation solution

Consider an infinite orthotropic elastic medium at rest
and stress-free at t = 0 with the x1 and x2 axes as the
material symmetry axes. A straight infinitely-long dis-
location with relative displacement �u2, aligned par-
allel to the x3-axis, appears at t = 0+and moves on the
plane x2 = 0 thereafter with constant subsonic speed
v along the x1-axis. The corresponding σ11 and σ22 are
given by (Wu 2002)

σ22(x1, t) = Re [L22 (y1)]

2π t (y1 − v)
�u2, (1)

σ11(x1, t) = − Re [S12(y1)]

2π t (y1 − v) s11
�u2 − s12

s11
σ22(x1, t),

(2)

where y1 = x1/t, si j is the contracted notation for the
elastic compliance, Re denotes the real part and

L22(y1) = X (y1)√
Ĉ11C66Y (y1)

, (3)

S12(y1) = − Z(y1)√
Ĉ11C66Y (y1)

. (4)

Here

X (y1) =
(

Ĉ11C22 − C2
12

) √
Ĉ66C66 − ρy2

1 C66

√
Ĉ11C22,

Y (y1) =
(√

Ĉ11C22 +
√

Ĉ66C66

)2
− (C12 + C66)2,

Z(y1) =
(√

Ĉ11C22C66 − C12

√
Ĉ66C66

)
,

Ĉi j = Ci j − ρy2
1 , Ci j is the contracted notation for

the elastic constants and ρ is the density. The values of
S12 (y1) and L22 (y1) are real if y1 < c2 = √

C66/ρ.
They are purely imaginary if y1 > c1 = √

C11/ρ.
The Rayleigh surface wave speed cR is determined
by L22 (cR) = 0 (Ting 1996). The expressions shown
above are for plane strain (ε33 = 0) deformation. For
plane stress deformation (σ33 = 0) considered in this
paper the elastic constant C pq should be replaced with
the reduced elastic constant C ′

pq defined as (Ting 1996)

C ′
pq = C pq − C p3C3q

C33
.

3 Dugdale model

A crack is assumed to be initiated at the origin at t = 0,
and subsequently expands at constant speed U along
the x1 axis under an applied uniform stress σ22 = P .
Plastic yielding is assumed to occur in the region Ut ≤
|x1| ≤ V t, or U ≤ |y1| ≤ V, where V < cR is the
plastic zone tip speed. The stress is required to be finite
in the entire body. The configuration of the problem is
shown in Fig. 1. In the yielding zone, it is assumed that
σ11 = T and σ22 = Y, where T and Y are constants.
The constant stress Y on the plastic-zone boundary is
related to the yield properties of the material through a
yield criterion. In the original Dugdale model, Tresca
yield criterion is implicitly assumed so that Y is simply
the uniaxial tensile yield stress of the material. In this
paper the stresses T and Y are assumed to satisfy a
criterion F (T, Y ) = 0.

The problem may also be formulated as the problem
of a crack of length 2V t with the following stress on
the crack faces:

σ22(y1) = [1 + H (y1 − U )

− H (y1 + U )] Y − P, |y1| < V, (5)

or

σ ′
22(y1) = [δ (y1 − U ) − δ (y1 + U )] Y, |y1| < V,

(6)

where σ ′
22(y1) denotes the derivative of σ22(y1) with

respect to y1, δ the Dirac delta function and H the unit
step function. The crack can be simulated by a dis-
tribution of dislocations moving at a constant speed
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Fig. 1 An expanding line crack with Dugdale plastic zone

v,−V ≤ v ≤ V along the x1 axis. However, the
applied stress is a homogeneous function of degree 0,
while the stress given by (1) for the moving disloca-
tion is homogeneous function of degree −1, thus time
rate of σ22, instead of σ22, is represented by (Wu and
Huang 2013)

σ ′
22(y1) = 1

2πy1
Re [L22 (y1)]

∫ V

−V

1

v − y1
g (v) dv,

(7)

where L22 (y1) is given by Eq. (3), g (y1) is related to
the relative crack face displacement �u2 by

g (y1) = − ∂

∂y1

(
∂�u2

∂t

)
. (8)

The crack closure conditions lead to

∫ V

−V

(∫ y1

0

g (η)

η
dη

)
dy1 = 0. (9)

The general solution of g (y1) satisfying Eqs. (7 ) and
(9) is given by

g (y1) = − 2

π

1√
V 2 − y2

1

∫ V

−V

η
√

V 2 − η2

η − y1

σ ′
22(η)

L22 (η)
dη,

(10)

where the finite stress requirement has been taken into
account. With (6), (10) yields

σ ′
22(y1) = 2U

(
V 2 − U 2

)1/2

π

× Re

[
1

(
y2

1 − V 2
)1/2 (

U 2 − y2
1

)
]

× Re [L22 (y1)]

L22 (U )
P. (11)

Integrating Eq. (11) leads to

σ22(y1) =
2U

√(
V 2 − U 2

)

π

× Re

[∫ y1+i0

∞+i0

L22 (z)√
z2 − V 2

(
U 2 − z2

)dz

]
Y

L22 (U )
.

(12)

A link between the remote applied stress P and the
stress Y can be established by setting y1 = 0 in Eq.
(12) as

P = λ(U, V )Y, (13)

where

λ(U, V ) =
2

√
1 −

(
U
V

)2

π

L̃22(U, V )

L22 (U )
, (14)

L̃22(U, V ) = U V Re

[∫ ∞+i0

i0

L22 (z)√
z2 − V 2

(
U2 − z2

)dz

]
.

(15)

Note that the integrand for L̃22 of (15) contains a simple
pole at z = U and a branch point at z = V . In view of
the fact that Re [L22 (y1)] = 0 if y1 > c1, Eq. (15 )
may also be rewritten as

L̃22(U, V ) = π

2
√

1 − (U
V

)2
L22 (U ) + L̂22 (U, V ) ,

(16)

where

L̂22 (U, V ) = U V Re

[∫ c1

V

L22 (z)√
z2 − V 2

(
U 2 − z2

)dz

]
.

(17)
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With Eq. (16), Eq. (14) may be expressed as

λ(U, V ) = 1+2
√

1 − (U
V

)2

π

L̂22 (U, V )

L22 (U )
. (18)

The stress σ11(y1) can be derived by the same pro-
cedure as that for σ22(y1). The result is

σ11(y1) = 1

s11
Re

[
U V

∫ y1+i0

∞+i0

S12 (z)√
z2 − V 2

(
U2 − z2

)dz

]

× Y − P

L̂22 (U, V )
− s12

s11
σ22(y1), (19)

where Eqs. (12), (13) and (18) have been incorporated.
In particular, at y1 = V, Eq. (19) yields

T

Y
= 1

s11

⎡
⎣2

√
1 − (U

V

)2
Ŝ12 (U, V )

π L22 (U )
+ s12 (λ(U, V ) − 1)

⎤
⎦,

(20)

where

Ŝ12 (U, V )

= Re

[
U V

∫ c1

V

1√
z2 − V 2

(
U 2 − z2

) S12 (z) dz

]
.

(21)

As the crack propagates energy is dissipated by the
plastic flow in the yield zone. The rate of the plastic
energy dissipation at the right crack tip is given by

Ẇp = σ
(0)
22

∫ V t

Ut
�u̇2 (y1, t) dx1

= 4

π
U2t

⎛
⎝log

(
U

V

)
+

√(
V

U

)2
− 1cos−1

(
U

V

)⎞
⎠

× Y 2

L22 (U )
. (22)

Equation (22) is a generalization of the result obtained
by Embley and Sih (1972) for isotropic material. The
energy release rate per unit crack extension, G, may be
defined as

G = Ẇp

U
= 4

π
Ut

⎛
⎝log

(
U

V

)
+

√(
V

U

)2

− 1 cos−1
(

U

V

)⎞
⎠

× Y 2

L22 (U )
. (23)

From Eq. (13), Eq. (23) may also be expressed as
G = πUt

×
log

(
U
V

)
+

√(
V
U

)2 −1 cos−1
(

U
V

)

1−
(

U
V

)2
P2 L22 (U )

[
L̃22(U, V )

]2 .

(24)

For small scale yielding, U → V , and Eq. (24)
becomes

G = πV t

2

P2 L22 (V )[
L̃22(V, V )

]2 . (25)

Equation (25) is identical with the energy release rate
for a crack expanding with the constant speed V under
the applied stress P in a purely elastic solid (Wu 2000).

For stationary cracks, U → 0, the limiting form of
either L̂22(U, V ) or Ŝ12(U, V ) is given by
[

L̂22(U, V ), Ŝ12(U, V )
]

= − sin−1
(U

V

)
√

1 − (U
V

)2
[L22 (0) , S12 (0)] . (26)

With Eq. (26), Eq. (14) becomes

λ = 2

π
cos−1

(a

b

)
, (27)

with a = Ut and b = V t representing the half crack
length and the half plastic zone length, respectively.
Equation (27) shows that for stationary cracks the pro-
portionality factor λ is independent of the elastic con-
stants. Equation (20) is simplified as (Ting 1996)

T

Y
=

√
s22

s11

(
1 − P

Y

)
. (28)

Equation (28) agrees with the result obtained by Stor-
mont et al. (1972). Equation (24) becomes

G = πa
log

( a
b

) +
√( b

a

)2 − 1 cos−1
( a

b

)
(
cos−1

( a
b

))2

P2

L22 (0)
.

(29)

For small scale yielding, a → b, Eq. (29) yields the
energy release rate for a stationary crack of half length
a under the applied stress P in a purely elastic material:
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G0 = πa

2

P2

L22 (0)
. (30)

4 Yield criterion and limiting crack speed

The results derived in the previous section depend only
on the elastic properties of the material and are valid
regardless of the form of the yield criterion. To pro-
ceed further, the following quadratic Mises–Hill yield
criterion (Kaminskii and Bogdanova 1996) is used:

T 2

Y 2
1

− T Y

Y1Y2
+ Y 2

Y 2
2

= 1, (31)

where Y1 and Y2 are, respectively, the tensile yield
stresses in the x1 and x2 directions. From Eq. (31),
the ratio φ = Y/Y2 can be expressed as

φ (U, V ) =
[(

BT

Y

)2

− BT

Y
+ 1

]−1/2

, (32)

where B = Y2/Y1 and T/Y as a function of U and V
is given by Eq. (20). A normalized applied stress may
be introduced as

P

Y2
= λ (U, V ) φ (U, V ) , (33)

where λ is given by Eq. (18).
As will be shown in the next section that anisotropy

as well as inertia effects may significantly increase the
normal stress parallel to the crack line, T . The presence
of large T may cause yielding to spread out in a direc-
tion normal to the crack line and the crack to turn from
the original straight path. These cicumstances would
invalidate the use of the Dugdale model. Let Umax be
the limiting crack speed defined as the maximum speed
below which the crack propagates along the original
crack line. It is postulated here that at a fixed applied
stress P, a crack can expand at speed U only if

T

Y
≤ 1

B
. (34)

The limiting speed Umax is determined as the speed for
which equality sign in Eq. (34) holds. The condition is a
generalization of the one proposed by Kanninen (1968)
for isotropic materials (B = 1). From Eqs. (32), (34)

Fig. 2 The relative plastic zone size (V − U )/U as a function
of λ = P/Y for U = 0.5c2 and U → 0

implies that for U ≤ Umax, 1 ≤ φ ≤ 2/
√

3 ≈ 1.154
with φ = 1 at Umax. Moreover as P → 0, Eqs. (28)
and (34) yield

B ≤ √
A, (35)

where A = s11/s22 = C ′
22/C ′

11.Equation (35 ) is a nec-
essary condition for the Dugdale model to be applica-
ble.

5 Numerical results and discussions

Consider a class of orthotropic materials characterized
by the following reduced elastic constants for plane
stress condition

C ′
11/C ′

66 = 2.5, C ′
12/C ′

66 = 0.5, C ′
22/C ′

66 = 2.5A.

For A = 1 the material is isotropic with the Poisson
ratio ν = 0.2. Using the preceding equations, the rel-
ative plastic zone size (V − U )/U [Eq. (13)] and the
normalized energy release rate G/G0 [Eqs. (24) and
(30)], the stress ratio T/Y [Eq. (20)] are plotted as a
function of λ = P/Y [Eq. (18)] for U = 0.5c2 in
Figs. 2, 3, and 4, respectively, for A = 0.5, 1, 5. The
results were obtained by varying V from U to cR . The
Rayleigh surface wave speed, cR/c2, is 0.84, 0.90, 0.98
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Fig. 3 The normalized energy release rate G/G0 as a function
of λ = P/Y for U = 0.5c2 and U → 0

Fig. 4 The stress ratio T/Y as a function of λ = P/Y for
U = 0.5c2 and U → 0

for A = 0.5, 1, 5, respectively. For comparison pur-
poses, the corresponding results [Eqs. (27), (29) and
(28) ] for stationary cracks are also given in those plots.
Figures 2 and 3 show that the variations of (V −U )/U
and G/G0 with λ share the same feature. For a fixed
value of A, the quantities increase with λ at a given
U but decrease with U at a given λ. Moreover, the
reductions of the quantities due to U are inversely pro-

Fig. 5 The limiting crack speed Umax as a function of P/Y2 for
A = 0.5, 1, 5 and B = √

A

Fig. 6 The normalized energy release rate G/G0 as a function
of P/Y2 for A = 0.5, 1, 5 and B = 0,

√
A at U = 0.5c2

portional to A. Figure 4 reveals that, similar to the case
of stationary cracks, T decreases almost linearly with
λ for U = 0.5c2 regardless of the value of A; however,
the values of T are significantly larger than those for
stationary cracks.

Equation (35) shows that for a given A, B can only
vary from 0 to

√
A.The results displayed Figs. 2 and 3

may be regarded as those for the materials with the
lower bound B = 0 such that Y = Y2 as assumed in
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the original Dugdale model. For B = 0, Eq. (34) is
satisfied identically and the crack speed is only limited
by the elastic Rayleigh surface wave speed. To study the
influence of the plastic anisotropy characterized by B,
the limiting crack speed, Umax, as a function of P/Y2 is
plotted in Fig. 5 for A = 0.5, 1, 5 with the upper bound
B = √

A. It may be inferred from Fig. 5 that at a fixed
P, the limiting crack speed increases with decreasing
B for a given A but with increasing A for a given B.

Figure 5 also implies that there is a minimum applied
stress for a crack to propagate at a certain speed. For
example for U = 0.5c2 the minimum value of P/Y2 =
0.55, 0.47, 0.37, respectively, for A = 0.5, 1, 5 and
B = √

A. The plots of (V − U )/U and G/G0 with
P/Y2 for B = √

A can be obtained, respectively, from
Fig. 2, and 3 for B = 0 by adjusing the horizontal axis
according to Eq. (33). As an example, G/G0 with P/Y2

for A = 0.5, 1, 5 and B = √
A at U = 0.5c2 is shown

in Fig. 6. For comparison purposes, the corresponding
results in Fig. 3 for B = 0 are also plotted. It is clearly
seen that at a fixed P, the energy release rate decreases
as B increases for a given A but increases as A increases
for a given B.
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