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Abstract The standard virtual crack closure tech-
nique may calculate negative values of the modal con-
tributions to the energy release rate when analysing
problems with highly asymmetric cracks. To avoid such
physically meaningless results, a method is proposed,
where the partitioning of fracture modes is based on the
decomposition of the crack-tip nodal force into energet-
ically orthogonal components. As an example, a delam-
inated cantilever beam subjected to bending moments
is analysed. Both geometric and algebraic interpreta-
tions of the method are discussed.

Keywords Mixed-mode fracture · Energy release
rate · Virtual crack closure technique · Energetic
orthogonality · Ellipse of elasticity

1 Introduction

The virtual crack closure technique (VCCT) is a well-
established method for calculating the energy release
rate, G, when analysing fracture problems via the
finite element method (FEM) (Krueger 2004; Krueger
et al. 2013). The technique is based on the numeri-
cal implementation of the crack closure integral (Irwin
1958), as first proposed for two-dimensional problems
by Rybicki and Kanninen (1977) and later extended
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to three-dimensional problems by Shivakumar et al.
(1988).

For mixed-mode fracture problems, such as the
delamination of composite materials and interfacial
fracture, the energy release rate is the sum of three
contributions, GI, GII, and GIII, associated to the three
basic fracture modes (I or opening, II or sliding, and
III or tearing). According to the standard VCCT, the
modal contributions correspond to the amounts of work
done to close the extended crack by the Cartesian com-
ponents of the crack-tip nodal force. In particular, for
I/II mixed-mode fracture problems, GI is related to the
work done by the normal crack-tip force component, Z ,
on the corresponding crack-tip opening displacement,
�w, while GII is related to the work done by the tangen-
tial crack-tip force component, X , on the correspond-
ing crack-tip sliding displacement, �u (here, normal
and tangential refer to the direction of crack propaga-
tion). Nevertheless, Valvo (2012) has shown that the
standard VCCT may be inappropriate to analyse prob-
lems with highly asymmetric cracks, as negative val-
ues of GI and GII may be calculated. Furthermore, he
has found that the origin of such physically meaning-
less results resides in the lack of energetic orthogonal-
ity between the Cartesian components of the crack-tip
force used to compute GI and GII. In fact, for asym-
metric cracks, the normal and tangential crack-tip force
components may cause opening and sliding displace-
ments that give rise to non-zero mutual work (in the
sense of Betti’s reciprocity theorem). When the mutual
work is negative, depending on the geometry and loads
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of the analysed problem, either GI or GII may take on
negative values.

To overcome the above described drawback, Valvo
(2012) has proposed a revised VCCT, where non-
negative GI and GII are obtained by associating such
quantities to the amounts of work done by two energet-
ically orthogonal—i.e. having a null mutual work—
systems of forces. The latter correspond to the compo-
nents of the crack-tip nodal force along the directions
of two conjugate diameters of an ellipse of crack-tip
flexibility, similar to the ellipse of elasticity (Culmann
1875). However, since there are infinitely many couples
of conjugate diameters—all corresponding to two ener-
getically orthogonal systems of forces—there are infi-
nitely many ways to define GI and GII as non-negative
quantities. The definition adopted by Valvo (2012)
leads to the result that pure mode I fracture (GII = 0)
is obtained when the tangential crack-tip force compo-
nent is zero (X = 0), while pure mode II fracture (GI =
0) is obtained when the crack-tip opening displace-
ment is zero (�w = 0). Accordingly, however—as the
example analysed in this paper will show—there is a
range of behaviour where contributions to GI come also
from compressive normal crack-tip force components
(Z < 0), which should instead be excluded (Fett 2001).

The present brief note aims at making a further
step towards the development of a physically consis-
tent VCCT. Here, the partitioning of fracture modes
proposed by Valvo (2012) is called into question. In its
place, a different definition is advanced, based on the
assumption that pure mode I fracture corresponds to a
null crack-tip sliding displacement (�u = 0). Accord-
ingly, GI and GII are still associated to the amounts
of work done by two energetically orthogonal systems
of crack-tip forces. But, pure mode II corresponds to a
null normal crack-tip force (Z = 0). As a result, it is
possible to enforce GI = 0 when Z < 0 and obtain
a ‘smooth’ transition from the range of I/II mixed-
mode behaviour to pure mode II conditions. However,
it should be noted that, when Z < 0, the computation
of GII requires some additional considerations, which
are postponed to a forthcoming paper (Valvo 2015).

About the definition of pure fracture modes, it seems
appropriate to recall the contributions by Wang and
Guan (2012), Wang and Harvey (2012), and Wang
et al. (2013). They propose an orthogonal fracture mode
partition theory and define two pairs of ‘locally’ pure
modes. Interestingly, their first and second pairs of pure
modes respectively correspond to the two, alternative

conditions for pure modes obtained in the present work
(�u = 0 and Z = 0) and in Valvo (2012) (X = 0 and
�w = 0). It should also be mentioned that Wang and
co-workers calculate negative GI and GII for load cases
falling in between the ‘locally’ pure modes.

The paper is structured as follows. First, the basics
of the VCCT are briefly recalled and an expression of G
based on the definition of a crack-tip flexibility matrix
is deduced. Then, GI and GII are defined by associ-
ating such quantities to the amounts of work done by
the crack-tip forces in an ideal two-step process of clo-
sure of the extended crack. As an example, the analysis
of a delaminated cantilever beam subjected to bend-
ing moments is illustrated. Discussion about possible
geometric and algebraic interpretations of the method
follows. In particular, the ellipse of crack-tip flexibility
is introduced, which helps to visualise the relationship
between the directions of the crack-tip force and rel-
ative displacement vectors. Furthermore, it is shown
how the proposed partitioning of fracture modes cor-
responds to a particular decomposition of the crack-tip
flexibility matrix.

2 Virtual crack closure technique

2.1 Problem formulation

A two-dimensional (plane stress or plane strain) prob-
lem is considered, where a body of width B is affected
by a straight crack of length a (Fig. 1a). Suitable sta-
tic and/or kinematic conditions are prescribed at the
body’s boundary. The material is assumed to be linearly
elastic. A Cartesian reference system, Oxz, is fixed with
the x- and z-axes respectively parallel and orthogonal
to the crack propagation direction. Let u and w denote
the displacement components along the x- and z-axes,
respectively.

The problem is analysed via the finite element
method (FEM). In the neighbourhood of the crack tip
(Fig. 1b), the body is discretised through a regular mesh
of 4-node plane elements of size �a in the x-direction.
The nodes placed on the fracture surface are orderly
labelled with the letters A, B, C, . . . in the direction
of crack advance. Superscripts − and + respectively
denote the nodes on the lower and upper crack faces.
Such nodes are initially bonded together by suitable
internal constraints, which are progressively released to
simulate crack growth. The crack tip is initially located
at node C− (coincident with C+).
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Virtual crack closure technique 237

Fig. 1 Problem formulation: a cracked body; b finite element
mesh in a neighbourhood of the crack tip

2.2 Energy release rate

The energy release rate, G, is the total potential energy
of the system spent in the crack growth process, per
unit area of new surface created. According to Irwin
(1958), the energy spent to produce an extension of the
crack is equal to the work done to close the crack by the
forces acting on the crack faces prior to crack extension.
Within the adopted FEM framework, Irwin’s concept
yields

G = 1

2B�a
(X�u + Z�w), (1)

where X and Z respectively are the tangential (x-axis)
and normal (z-axis) components of the crack-tip nodal
force (Fig. 2a), while �u and �w are the corresponding
relative displacements (Fig. 2b) (Rybicki and Kanninen
1977; Krueger 2004).

The relative displacements caused by crack advance
are equal in magnitude (and opposite in sign) to the
relative displacements produced by application of the

Fig. 2 Virtual crack closure technique: a crack-tip forces; b
crack-tip relative displacements

crack-tip forces. Thus, for a linearly elastic body it turns
out that

�u = fxx X + fxz Z and �w = fzx X + fzz Z , (2)

where fxx , fxz, fzx , and fzz are flexibility coefficients,
equal to the crack-tip relative displacements produced
by unit forces applied at nodes C+ and C− (Fig. 3). The
flexibility coefficients can be computed by conducting
two preliminary analyses on the finite element mesh
with the extended crack (Valvo 2012). It is noted that the
coefficient fxz (= fzx by virtue of Betti’s reciprocity the-
orem) expresses an elastic coupling between the crack-
tip force in the x-direction and the relative displacement
in the z-direction and, vice versa, between the crack-tip
force in the z-direction and the relative displacement in
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Fig. 3 Flexibility coefficients: a unit forces in the x-direction;
b unit forces in the z-direction

the x-direction. This coupling vanishes ( fxz = 0) for
bodies with symmetric cracks, but is generally present
( fxz �= 0) for bodies with asymmetric cracks.

It is convenient to introduce vector notation by col-
lecting the crack-tip force and displacement compo-
nents into the crack-tip force vector, r = (X, Z)T,
and crack-tip relative displacement vector, �s =
(�u,�w)T, respectively (superscript T denotes the
matrix transpose operation). As a consequence, Eq. (2)
can be written compactly as

�s = Fr, (3)

where

F =
[

fxx fxz

fzx fzz

]
(4)

is the (symmetric) crack-tip flexibility matrix. With Eqs.
(3) and (4), the expression for the energy release rate
Eq. (1) becomes

G = 1

2B�a
rT�s = 1

2B�a
rTFr

= 1

2B�a
(X, Z)

[
fxx fxz

fzx fzz

] {
X
Z

}
. (5)

It is worth noting that, because of its physical meaning,
G is a non-negative quantity. Hence, F is a positive
definite matrix, which implies

fxx > 0 and det(F) = fxx fzz − f 2
xz > 0. (6)

2.3 Fracture mode partitioning

According to Rybicki and Kanninen (1977), the modal
contributions to G correspond to the two addends in
parenthesis in Eq. (1):

GI = Z�w

2B�a
and GII = X�u

2B�a
. (7)

However, a physically meaningful partitioning of frac-
ture modes requires decomposing the energy release
rate into the sum of two non-negative modal contribu-
tions. Instead, Valvo (2012) has demonstrated that Eq.
(7) may yield negative values of GI and GII. This hap-
pens when one crack-tip force component, X or Z , is
opposite in sign with respect to the corresponding rel-
ative displacement, �u or �w, and thus does negative
work in closing the crack (Wang and Guan 2012). In
particular, this shortcoming has been revealed in the
analysis of bodies with highly asymmetric cracks. In
this respect, it should be noted that Rybicki and Kan-
ninen (1977)—following Irwin (1958)—have obtained
Eq. (7) having in mind Westergaard’s (1939) solution
for the problem of a single straight crack in an infi-
nite plane body made of a linearly elastic, isotropic,
and homogeneous material. In this case, the system of
acting forces can be decomposed into the sum of a sym-
metric part and an antisymmetric part (with respect to
the crack plane), respectively related to fracture modes
I and II. Such a decomposition leads to the correct par-
titioning of fracture modes for symmetrically cracked
bodies. However, it makes little sense in the case of
bodies with asymmetric cracks (including bimaterial
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interface cracks), for which it is not surprising that Eq.
(7) may be no longer valid.

As an alternative, fracture mode partitioning is based
here on the assumption that pure mode I fracture corre-
sponds to a null crack-tip sliding displacement (�u =
0). As a consequence, the mode II contribution to G
will be related to the closure of �u, while the mode
I contribution will be given by the difference between
the total energy release rate and the mode II contri-
bution. In practice, GI and GII can be calculated as
associated to the amounts of work done by the crack-
tip force components in an ideal two-step process of
closure of the extended crack. Starting from the fully
open crack (Fig. 4a), in the first ideal step, correspond-
ing to the mode II contribution, the crack-tip sliding
displacement, �u, is closed by applying a suitable tan-
gential crack-tip force, XII, and a null normal crack-tip
force (Fig. 4b). Equation (2) show that the necessary
forces are

XII = �u

fxx
= X + fxz

fxx
Z and ZII = 0, (8)

which produce the relative displacements

�uII = �u and �wII = fxz

fxx
�u. (9)

In the second ideal step, corresponding to the mode
I contribution, the remainders of the crack-tip forces
(Fig. 4c),

XI = X − XII = − fxz

fxx
Z and ZI = Z − ZII = Z ,

(10)

are applied to the crack-tip nodes, which—according
to Eq. (2)—undergo the relative displacements

�uI = 0 and

�wI = �w − �wII = 1

fxx
( fxx fzz − f 2

xz)Z . (11)

Equation (9) show that in the first ideal step the gap
in the x-direction, �u, is completely closed, while the
gap in the z-direction, �w, may be partly closed (if
fxz �u > 0) or further opened (if fxz �u < 0). Equa-
tion (11) indicate that in the second ideal step the gap
in the x-direction is not altered, while the residual gap
in the z-direction, �w–�wII, is closed.

According to the above, the mode I and II contribu-
tions to the energy release rate respectively correspond
to the amounts of work done by the force component
ZI on the displacement �wI and by XII on �uII:

Fig. 4 Fracture mode partitioning: a fully open crack; b step (1)
mode II contribution, residual crack-tip opening displacement; c
step (2) mode I contribution, complete crack closure
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GI = ZI�wI

2B�a
and GII = XII�uII

2B�a
. (12)

By substituting Eqs. (8)–(11) into (12), the following
expressions for the modal contributions are obtained:

GI = 1

2B�a

1

fxx

(
fxx fzz − f 2

xz

)
Z2 and

GII = 1

2B�a

1

fxx
( fxx X + fxz Z)2 . (13)

Equation (13)—by recalling also Eq. (6)—show that
the present assumption on fracture mode partitioning
leads to calculate both GI and GII as non-negative
quantities. This result can be regarded as a consequence
of the energetic orthogonality of the systems of forces
defined by Eqs. (8) and (10). Actually, it is an easy task
to demonstrate that they give rise to a null mutual work,
XI �uII + ZI �wII = XII �uI + ZII �wI = 0.

For implementation, it is also convenient to express
GI and GII as functions of the displacements only. To
this aim, by inverting Eq. (2) and substituting the result
into (13), the following expressions are obtained:

GI = 1

2B�a

1

fxx

( fxz�u − fxx�w)2

fxx fzz − f 2
xz

and

GII = 1

2B�a

�u2

fxx
. (14)

Equations (13) and (14) also reveal the conditions for
pure fracture modes: pure mode I (GII = 0) is obtained
when �u = 0, pure mode II (GI = 0) when Z = 0.

Lastly, it is noted that for fxz = 0, Eqs. (8) and (11)
yield XII = X and �wI = �w. In this case—since
from Eqs. (9) and (10) also �uII = �u and ZI = Z—
Eqs. (7) and (12) coincide, hence the proposed method
reduces to the standard VCCT. This happens, in partic-
ular, for bodies with symmetric cracks.

3 Example

3.1 Finite element analysis

As an illustrative example, the method is applied to
the problem of a delaminated cantilever beam sub-
jected to bending moments, M1 and M2, on its upper
and lower arms, respectively (Fig. 5a). The beam has
length L = 100 mm, width B = 25 mm, and thickness
H = 10 mm. The delamination length is a = 50 mm.
The two arms have thicknesses H1 = 0.5 mm and H2 =
9.5 mm. The material is linearly elastic, isotropic, and

homogeneous, with Young’s modulus E = 100 GPa
and Poisson’s ratio ν = 0.3. A finite element analysis
of the problem has been carried out using the com-
mercial software Abaqus 6.9. The beam has been mod-
elled with 4-node linear plane stress (CPS4) elements
(Fig. 5b). The element size in the crack-tip region is
�a = 0.10 mm (Fig. 5c). The present analysis does not
account for contact and interpenetration constraints,
which means that the crack faces may overlap freely.
Such constraints will be instead considered in a forth-
coming paper (Valvo 2015).

3.2 Results

In order to explore a wide range of mode mixities,
M1 = 1 N m is kept fixed, while M2 varies. Figure 6a,
b respectively show the normal and tangential compo-
nents of the crack-tip nodal force, X and Z , and crack-
tip relative displacements, Δu and Δw, as functions of
M2. Figure 6c shows the mode I and II contributions to
the energy release rate, GI and GII, as functions of M2.
Continuous lines correspond to the present method, Eq.
(14). Dotted lines correspond to the standard VCCT,
Eq. (7).

The standard VCCT predicts pure mode I conditions
(GII = 0) for two distinct values of M2, corresponding
to �u = 0 and X = 0, and negative mode II contri-
bution (GII < 0) for M2 in the range between those
values. Likewise, it predicts pure mode II conditions
(GI = 0) for M2 corresponding to Z = 0 and �w = 0
and negative mode I contribution (GI < 0) for M2

in the range between. Instead, the present method fur-
nishes always non negative values of GI and GII and
predicts pure mode I and II conditions for M2 = M2I ∼=
−187.67 N m (�u = 0) and M2 = M2II ∼= 249.51 N m
(Z = 0), respectively.

Despite contact and interpenetration of the crack
faces have not been modelled in the present FEM analy-
sis, some comments can be made. As can be noted from
Fig. 6a, for M2 > M2II, the normal crack-tip force com-
ponent is compressive (Z < 0). However, Fig. 6b also
shows that right of M2II there is a (small) range of val-
ues of M2, for which the crack faces open (�w > 0),
before entering the interpenetration region (�w < 0).
In this range, according to Valvo (2012), fracture would
occur in I/II mixed-mode, with a GI contribution stem-
ming from a negative normal crack-tip force. Instead,
according to the present method, pure mode II can be
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Fig. 5 Delaminated
cantilever beam subjected to
bending moments:
a geometry and loads;
b FEM model; c detail of
the mesh at the crack tip

enforced by setting GI = 0 for Z < 0 (Fig. 6c). The
transition from the range of I/II mixed-mode behaviour
to pure mode II conditions turn out to be ‘smooth’ (i.e.
there is continuous join between the plots of GI left
and right of M2II). It should be noted, however, that the
expressions derived in Sect. 2.3 are not generally valid
in this range of behaviour, so that a different derivation
for GII is needed for M2 > M2II (Valvo 2015).

4 Discussion

4.1 Ellipse of crack-tip flexibility

A geometric construction can help to shed light on the
matter at hand. To this aim, the conic section associated
to the crack-tip flexibility matrix, F, is considered. It is
defined by the equation

fxx x2 + 2 fxz xz + fzz z2 − 1 = 0, (15)

in the Oxz-plane. Since det(F) > 0 (recall Eq. 6), this
conic section turns out to be an ellipse, �, termed
the ellipse of crack-tip flexibility (Valvo 2012). The
ellipse’s centre coincides with the origin of the ref-
erence system, Oxz. Its major and minor axes, a and

b, are rotated by an angle φ (different from 0 unless
fxz = 0) with respect to the reference axes (Fig. 7a).

The ellipse of crack-tip flexibility shares many prop-
erties with Culmann’s (1875) ellipse of elasticity. The
latter can be used to visualise the direction of the dis-
placement caused by the application of a force to an
elastic body. Likewise, the ellipse of crack-tip flexi-
bility enables visualisation of the relationship between
the directions of the crack-tip force vector, r, and rel-
ative displacement vector, �s. In fact, let r and s be
the ellipse’s diameters respectively parallel to r and
�s (Fig. 7b). In addition, let t be the diameter con-
jugate to r (i.e. the diameter which is parallel to the
tangents, t ′ and t ′′, to the ellipse at the endpoints, P ′
and P ′′, of the diameter r ). Valvo (2012) has demon-
strated that s is orthogonal to t . This means the direc-
tion of the crack-tip displacement vector, �s, can be
obtained as follows. Given the crack-tip force vector,
r, trace the diameter r . Let n be the outer normal to
the ellipse at P ′, the endpoint of r in the direction of
r. The direction of �s will be the same as the direction
of n.

The above described graphic construction can be
applied to better understand the meaning of the two-
step crack closure process defined in Sect. 2.3. To this
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Fig. 6 Results for the delaminated cantilever beam: a crack-tip
nodal force components; b crack-tip relative displacements; c
energy release rate contributions

aim, the crack-tip force components defined by Eqs. (8)
and (10) are collected into two crack-tip force vectors,

rI =
{

XI

ZI

}
=

{
− fxz

fxx
Z

Z

}
and

rII =
{

XII

ZII

}
=

{
X + fxz

fxx
Z

0

}
. (16)

The vectors rII and rI respectively are the compo-
nents of r along the directions of the x-axis and a new
axis denoted with z̄. Such axes intersect the ellipse at
points PII and PI, respectively (Fig. 7c). In particular,
the z̄-axis is such that the outer normal to the ellipse
at PI is orthogonal to the x-axis (which implies that
the x- and z̄-axes have the directions of two conju-
gate diameters of the ellipse). During the first of the
two crack closure steps, the application of the force rII

at the crack-tip nodes produces the displacement �sII

(parallel to the outer normal to the ellipse at PII). Dur-

Fig. 7 Ellipse of crack-tip flexibility: a definition; b crack-tip
force and relative displacement vectors; c decomposition of the
crack-tip force vector into energetically orthogonal components

ing the second step, the application of rI produces the
displacement �sI (parallel to the outer normal to the
ellipse at PI). It can be verified that �sI is orthogo-
nal to rII, while �sII is orthogonal to rI. Consequently,
the mutual work done by rI on �sII is zero, as well as
the work done by rII on �sI. In other words, rI and rII

are energetically orthogonal, as anticipated in Sect. 2.3.
This result is a consequence of the fact that the x- and
z̄-axes have the directions of two conjugate diameters
of the ellipse. Actually, energetic orthogonality would
be obtained as well, if r was decomposed along the
directions of any other two conjugate diameters.
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Fig. 8 Ellipse of crack-tip flexibility: determination of fracture
mode

The ellipse of crack-tip flexibility can also be used
to determine graphically the acting fracture mode in a
given problem (Fig. 8). When the direction of the crack-
tip force vector, r, coincides with the z̄-axis, fracture
occurs in mode I. When r lies on the x-axis, fracture
occurs in mode II. All the other directions of r corre-
spond to I/II mixed-mode fracture. Furthermore, con-
tact and interpenetration can be detected. To this aim,
the x̄-axis is introduced, which intersects the ellipse at
the points where the outer normal, n, is orthogonal to
the z-axis (it turns out that the x̄- and z-axes have the
directions of two conjugate diameters of the ellipse).
When r has the direction of the x̄-axis, contact between
the crack-tip nodes occurs (�w = 0). When r falls
in the region below the x̄-axis, interpenetration of the
crack faces is expected (�w < 0). Lastly, it is noted
that when r falls in the region below the x-axis, the
normal crack-tip force is compressive (Z < 0). In this
case, as explained at the end of Sect. 3.2, pure mode II
can be enforced by setting GI = 0, but the computation
of GII requires a more refined analysis (Valvo 2015).

4.2 Decomposition of the flexibility matrix

Besides the geometric interpretation illustrated in
Sect. 4.1, it will be useful to discuss also a possi-
ble algebraic interpretation of the proposed method.

To this aim, it is observed that the partitioning of
fracture modes described in Sect. 2.3 corresponds to
the Cholesky decomposition of the crack-tip flexibility
matrix:

F = UTDU, (17)

where

U =
[

1 fxz
fxx

0 1

]
(18)

is a dimensionless, unit upper triangular matrix and

D =
[

fxx 0

0 fzz − f 2
xz

fxx

]
=

[
fII 0
0 fI

]
(19)

is a diagonal flexibility matrix. By substituting Eq.
(17) into (5), the expression for the energy release rate
becomes

G = 1

2B�a
(Ur)TDUr = 1

2B�a
(r∗)TDr∗, (20)

where

r∗ =
{

rII

rI

}
= Ur =

[
1 fxz

fxx

0 1

] {
X
Z

}

=
{

X + fxz
fxx

Z

Z

}
(21)

is a ‘corrected’ crack-tip force vector.
With Eqs. (19) and (21), the energy release rate Eq.

(20) becomes

G = 1

2B�a
fIr

2
I + 1

2B�a
fIIr

2
II. (22)

It can be easily verified that the two addends in Eq. (22)
correspond to the modal contributions, GI and GII, as
given by Eq. (13).

The illustrated algebraic interpretation is the basis
to extend the method to three-dimensional problems
involving I/II/III mixed-mode fracture (Valvo 2014).

5 Concluding remarks

A modified VCCT has been presented for calculating
the energy release rate, G, and its modal contributions,
GI and GII, in I/II mixed-mode fracture problems. The
proposed method overcomes a shortcoming of the stan-
dard VCCT, which may calculate physically meaning-
less, negative values of GI and GII when analysing
problems with highly asymmetric cracks. The method
is based on the decomposition of the crack-tip nodal
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force into energetically orthogonal components and the
assumption that pure mode I fracture corresponds to a
null crack-tip sliding displacement (�u = 0). As a
result, the condition for pure mode II fracture is a null
normal crack-tip force (Z = 0). Thus, it is possible to
enforce mode II conditions (GI = 0) when the normal
crack-tip force is compressive (Z < 0) and obtain a
‘smooth’ transition from the range of I/II mixed-mode
behaviour to pure mode II conditions. As an example,
the analysis of a delaminated cantilever beam has been
presented. Lastly, both geometric and algebraic inter-
pretations of the method have been discussed.

The presented method and results can be consid-
ered as a continuation of the work started by Valvo
(2012) towards the development of a physically consis-
tent VCCT. But, further work is necessary, for instance,
to include the effects of contact and friction between
the crack faces in the analysis (Laursen 2002), as well
as to extend the method to bimaterial interface cracks
(Agrawal and Karlsson 2006; Krueger et al. 2013) and
three-dimensional problems (Valvo 2014). A full paper
accounting for some of the aforementioned topics is
currently in preparation (Valvo 2015).
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