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Abstract The current paper discusses the physically
correct evaluation of the driving force for fatigue crack
propagation in elastic–plastic materials using the J -
integral concept. This is important for low-cycle fatigue
and for short fatigue cracks, where the conventional
stress intensity range (�K ) concept cannot be applied.
Using the configurational force concept, Simha et al. (J
Mech Phys Solids 56:2876–2895, 2008) , have derived
the J -integral for elastic–plastic materials with incre-
mental theory of plasticity, J ep, which is applicable for
cyclic loading and/or for growing cracks, in contrast to
the conventional J -integral. The variation of this incre-
mental plasticity J -integral J ep is studied in numeri-
cal investigations conducted on two-dimensional C(T)-
specimens with long cracks under cyclic Mode I load-
ing. The crack propagates by an increment after each
load cycle. The maximum load is varied so that small-
and large-scale yielding conditions prevail. Three dif-
ferent load ratios are considered, from pure tension to
tension-compression loading. By theoretical consider-
ations and comparisons with the variation of the crack
tip opening displacement δt , it is demonstrated that the
cyclic, incremental plasticity J -integral �J ep

actPZ, which
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is computed for a contour around the active plastic
zone of the growing crack, is physically appropriate
to characterize the growth rate of fatigue cracks. The
validity of the experimental cyclic J -integral, �J exp,
proposed by Dowling and Begley (ASTM STP 590:82–
103, 1976), is also investigated. The results show that
�J exp is correct for the first load cycle, however, not
fully appropriate for a growing fatigue crack.

Keywords Configurational force concept · Crack
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1 Introduction

This paper deals with the physically correct evaluation
of the driving force of cyclically loaded, growing cracks
in elastic–plastic materials for cases where linear elas-
tic fracture mechanics is not applicable.

The conventional J -integral J conv (Rice 1968a, b),
which is commonly applied in the regime of non-
linear fracture mechanics, relies on deformation the-
ory of plasticity, i.e. the elastic–plastic material is
treated as being nonlinear elastic. For this reason,
J conv suffers from two fundamental problems when
it is applied to elastic–plastic materials: (i) J conv is
formally not applicable for non-proportional loading
conditions (Rice 1968a, b; Anderson 1995), (ii) J conv

does not describe the real driving force of a crack in
elastic–plastic materials (Rice 1968a, b). In spite of
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these problems, Dowling and Begley (1976) proposed
the experimental cyclic J -integral �J exp as a para-
meter characterizing the growth rate da/dN of fatigue
cracks for cases where the stress intensity range �K is
not applicable. Although supported for some materials
by experimental data (e.g. Dowling and Begley 1976;
Dowling 1976; Lambert et al. 1988; Banks-Sills and
Volpert 1991), the applicability of �J exp has remained
doubtful due to the lack of its theoretical basis (Suresh
1998).

New insight into this problem has been gained by
adopting the concept of configurational forces, which
enables the derivation of the J -integral for elastic–
plastic materials with incremental theory of plastic-
ity (Simha et al. 2008). This incremental plasticity J -
integral J ep has the physical meaning of a real driving
force term of a crack in an elastic–plastic material
even under strongly non-proportional loading condi-
tions, however it is path dependent (Simha et al. 2008).
Kolednik et al. (2014) studied this path dependence and
demonstrated the usefulness of J ep for stationary and
growing cracks under monotonic loading conditions. In
a very recent study, Ochensberger and Kolednik (2014)
have investigated the application of J ep for stationary
cracks in elastic–plastic materials that are cyclically
loaded, and it has been shown that the experimental
cyclic J -integral �J exp is, in principle, correct, if cer-
tain conditions are observed.

The current paper complements the study of Ochens-
berger and Kolednik (2014) by considering growing
cracks in elastic–plastic, cyclically loaded materials. It
will be demonstrated that important differences occur
compared to the case of a stationary crack. The paper
shall provide a new basis for the application of the J -
integral concept for characterizing the crack growth
rate in fatigue.

The next section briefly reviews the incremental
plasticity J -integral J ep and the findings of the papers
by Kolednik et al. (2014) and Ochensberger and Koled-
nik (2014) that are necessary for the understanding of
the current paper. Readers who are already familiar
with the topic may continue reading at the last para-
graph in Sect. 2.

2 Incremental plasticity J-integral Jep and crack
driving force

Configurational forces are thermodynamic driving
forces on defects in materials (Maugin 1995; Gurtin

1995, 2000; Kienzler and Herrmann 2000). The appli-
cation of the configurational force concept for study-
ing fracture mechanics problems has gained increasing
research interest, see e.g. Simha et al. (2003; 2005),
Nguyen et al. (2005), Özenç et al. (2014), Sistaninia and
Kolednik (2014), Kolednik et al. (2014) and the accord-
ing references in Sect. 2 therein. The concept rests on
the notion of the second-rank configurational stress
tensor, which is defined in the form, C = φI − FTS
(Eshelby 1951, 1970).1 The parameter φ denotes the
strain energy density, I the identity tensor, FT the trans-
posed of the deformation gradient tensor F, and S the
1st Piola-Kirchhoff stress. A configurational force f in
a body is associated with the divergence of the config-
urational stress tensor,

f = −∇ · C = −∇ ·
(
φI − FTS

)
. (1)

The vector f gives the magnitude and direction of the
thermodynamic driving force acting on the defect.

2.1 Configurational forces and J -integrals for
elastic–plastic materials

A literature review on the application of configura-
tional force concept for the prediction of the behavior
of cracks has been given in Kolednik et al. (2014) and
shall not be repeated here. Figure 1a shows a sketch of a
homogeneous body B containing a crack with length a0

and a unit vector in the nominal crack growth direction
e. The configurational force concept allows the deriva-
tion of the J -integral. The scalar, near-tip J -integral
Jtip is related to the configurational force vector ema-
nating from the crack tip, ftip, in the form (see e.g.
Simha et al. 2003),

Jtip = e · Jtip = e · (−ftip
) = e · lim

r→0

∫

�r

C n ds, (2)

where �r is a contour drawn from the lower to the
upper crack surface in counterclockwise direction at a
distance r around the crack tip; n is the outward unit
normal vector to the contour �, and ds is an increment
of the integration path. The scalar J -integral Jtip of
Eq. (2) is the projection of the near-tip J -integral vec-
tor Jtip into the nominal crack growth direction e. The

1 For the mathematical expressions in this paper the direct
(coordinate-free) notation is used as in Gurtin (2000). The nota-
tion is specified in Ochensberger and Kolednik (2014).
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Physically appropriate characterization of fatigue crack propagation 27

J -integral along an arbitrary contour � can be evalu-
ated from the relation,

J = e · J = e ·
∫

�

C n ds = e ·
∫

�

(
φI − FTS

)
n ds

= Jtip − e ·
∫

D
f dA, (3)

where D denotes the area bounded by �, but excluding
the crack tip. Note that Eqs. (2) and (3) do not rely on
constitutive equations of the material.

We assume that body B is homogeneous and con-
sists of elastic–plastic material. Then we can distin-
guish between two different types of J -integral, the
conventional J -integral J conv, which presumes defor-
mation theory of plasticity (see e.g. Simha et al. 2003),
and the incremental plasticity J -integral J ep for mate-
rials with incremental theory of plasticity (Simha et al.
2008),

J conv = J conv
tip + e ·

∫

D
∇ ·

(
φI − FTS

)
dA

= J conv
tip − e ·

∫

D
fdef.pldA, (4)

J ep = J ep
tip + e ·

∫

D
∇ ·

(
φeI − FTS

)
dA

= J ep
tip − e ·

∫

D
fepdA. (5)

The difference between J conv and J ep appears in the
substitution of the strain energy density φ. For defor-
mation plasticity, the total strain energy density φ is
inserted as for a nonlinear elastic material, whereas for
incremental plasticity only the elastic part of the strain
energy density φe is inserted, see Fig. 1c. From Eqs.
(4) and (5), or by inserting either φ or φe into Eq. (1),
it is clear that also two different types of configura-
tional force exist, the deformation plasticity configu-
rational force fdef.pl and the elastic–plastic configura-
tional force fep.

If the body B deforms only elastically, there exists
no difference between fdef.pl and fep, or between J conv

and J ep. The bulk configurational force f vanishes, and
configurational forces appear only at the crack tip, ftip,
and at the external boundary ∂B (Fischer et al. 2012).
Therefore, the J -integral is path-independent, see the
right-hand side extension of Eq. (4).

Fig. 1 a Homogeneous elastic–plastic body B with a long, sta-
tionary crack. The contour �PZ encloses the crack tip plastic
zone. b Body B after crack extension �a. The contour �actPZ
encloses the active plastic zone of the current crack tip, whereas
the contour �PZ encloses the entire crack tip plastic zone, includ-
ing the plastic wake. c Stress–strain (σ − ε) curve for point P in
the plastic zone. Only the elastic part of the strain energy density
φe is reversible. The total strain energy density φ = φe + φp
would be recoverable in a comparable nonlinear elastic material
with the identical σ − ε-curve
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28 W. Ochensberger, O. Kolednik

If body B is also plastically deformed, bulk con-
figurational forces fep are induced in the plastically
deformed regions of the body and, according to the
right-hand side extension of Eq. (5), the incremental
plasticity J -integral J ep becomes path-dependent. The
bulk configurational force fep at a material point in the
elastic–plastic body evolves proportional to the gradi-
ent of the plastic component of the deformation gradi-
ent (Simha et al. 2008),

fep = (
Fe)T S : ∂Fp

∂X
. (6)

In Eq. (6), Fe and Fp are the elastic and plastic compo-
nents of the deformation gradient tensor F, and ∂Fp/∂X
is the gradient of Fp with respect to the unloaded ref-
erence coordinate system.

Performing a numerical cyclic tensile test, Kolednik
et al. (2014) have demonstrated the problem of ideal-
izing elastic–plastic materials with deformation theory
of plasticity: artificial bulk configurational forces fdef.pl

emerge on positions with a gradient in plastic strain as
soon as non-proportional loading occurs. These bulk
configurational forces do not have a physical back-
ground and lead to an artificial path dependence of
J conv, compare Eq. (4); see also Brocks et al. (2003)
or, e.g., in Kuna (2008).

A big advantage of the incremental plasticity J -
integral J ep is that it has the physical meaning of a true
driving force term in elastic–plastic materials even for
non-proportional loading conditions, such as a growing
crack or a cyclically loaded crack, while, on the con-
trary, the conventional J -integral J conv possesses the
well-known restrictions outlined in the Introduction.

2.2 Path dependence of J ep and driving force for
cracks under monotonic loading

The path dependence of the incremental plasticity
J -integral J ep for stationary and growing cracks
in monotonically loaded elastic–plastic materials has
been investigated in Kolednik et al. (2014). The investi-
gation showed that for a stationary crack, the J -integral
for a contour enclosing the entire crack tip plastic zone
J ep

PZ, Fig. 1a, should be taken as parameter characteriz-
ing the driving force. Crack extension occurs, if J ep

PZ is
equal or larger than the crack growth resistance.

The incremental plasticity J -integral for a contour
enclosing the crack tip plastic zone J ep

PZ has the phys-

ical meaning of the driving force for the combined
movement of the crack tip and the crack tip plastic
zone. From a comparison of Fig. 1a, b it becomes clear
that it is impossible for a crack to grow in an elastic–
plastic material without the simultaneous movement
of the surrounding plastic zone. Thus, the near-tip J -
integral J ep

tip , which is the driving force for the transla-
tional movement of the crack tip alone, is meaningless
for the assessment of crack extension. The numerical
results in Kolednik et al. (2014) suggest that the mag-
nitude of the incremental plasticity near-tip J -integral
is zero, J ep

tip = 0, for both a stationary and a growing
crack under monotonic loading. As noted already in
classical papers, e.g. Rice and Johnson (1970) or Rice
(1979), also the conventional, deformation plasticity
near-tip J -integral is zero, J conv

tip = 0, for stationary
and growing cracks under monotonic loading.

For a contour around the crack tip plastic zone, the
conventional J -integral J conv

PZ is identical to the incre-
mental plasticity J -integral J ep

PZ,

J ep
PZ = J conv

PZ . (7)

The requirement for this equality is that the crack tip
plastic zone is completely surrounded by material that
is only elastically deformed. In this case there is no
difference in the formulation between deformation- and
incremental plasticity, see middle term in Eq. (3).

Notice that a relation similar to Eq. (7) for the
far-field J -integrals, J ep

far = J conv
far , only exists, if no

part of the outer boundary of the specimen is plasti-
cally deformed. A back-face plasticity region appears
in case of large-scale yielding (lsy) conditions, com-
pare Fig. 4b. Configurational forces fep with a positive
component in x-direction are induced in the back-face
plasticity region so that J ep decreases and J ep

far < J ep
PZ,

compare Eq. (5). On the contrary, the conventional J -
integral remains constant, J conv

far = J conv
PZ , since pro-

portional loading conditions prevail. It is well known
that for a stationary crack the conventional J -integral
J conv equals the experimental J -integral J exp, which
is determined from the load–displacement curve (Rice
et al. 1973; Kolednik 1991). Therefore, the incremen-
tal plasticity J -integral for a contour around the crack
tip plastic zone J ep

PZ equals the experimental J -integral
for a stationary crack, J ep

PZ = J conv
PZ = J conv

far = J exp.
This means that both the conventional and the experi-
mental J -integral give the correct driving force for the
initiation of crack growth.
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Physically appropriate characterization of fatigue crack propagation 29

For a continuously growing crack at constant load,
the J -integral J ep

actPZ for a contour �actPZ around the
active plastic zone of the moving crack tip, Fig. 1b,
is the physically correct crack driving force parameter
(Kolednik et al. 2014). Here, the contour �PZ encloses
the initial plastic zone of the stationary crack, the plas-
tically deformed regions along the crack flanks (plas-
tic wake), and the active plastic zone around the cur-
rent crack tip. Since the contour �PZ goes only through
elastic deformed regions, Eq. (7) is still valid. How-
ever, note that J ep

actPZ �= J conv
actPZ, since the contour �actPZ

crosses the plastic wake along the crack flanks (Fig. 1b).
It should be mentioned that the experimental J -integral
J exp does, in general, not reflect the driving force for
a growing crack, J ep

actPZ �= J exp; see Kolednik (1991;
1993) and Turner and Kolednik (1994). This means
that neither the conventional nor the experimental J -
integral give the correct driving force for a continuously
growing crack under monotonic loading.

2.3 Driving force for cyclically loaded, stationary
cracks in elastic–plastic materials

The characteristic properties of the incremental plas-
ticity J -integral J ep under cyclic loading conditions,
but for a stationary crack, have recently been pre-
sented in Ochensberger and Kolednik (2014). The path-
dependence of J ep was investigated for various, pos-
itive and negative, load ratios R = Fmin/Fmax under
lsy-conditions. It has been shown that negative J ep-
values can appear during the unloading stages on con-
tours close to the crack tip; they originate from com-
pressive residual stresses caused by reverse plasticity
within the crack tip plastic zone.

The incremental plasticity J -integral for a contour
enclosing the crack tip plastic zone J ep

PZ also character-
izes the driving force of a crack in an elastic–plastic
material, which is monotonically loaded after a cyclic
pre-deformation. It is clear that J ep

PZ = J conv
PZ , since Eq.

(7) is valid also for cyclic loading conditions, as long
as the crack tip plastic zone is surrounded by elastically
deformed material.

In the fatigue of metals and alloys, the magnitude of
the crack driving force at the maximum load J ep

PZ,max is
considerably smaller than the crack growth resistance,
so that the crack cannot extend at Fmax = constant.
Driving force terms for fatigue crack growth have been
introduced, which should allow the prediction of the

Fig. 2 To the determination of the experimental cyclic J -integral
�J exp for a C(T) or deeply notched bend specimen from the
area �A below a single loading branch of the load–displacement
(F − v) curve, a for load ratio R > 0 without crack closure, b
for R < 0. The load Fop denotes the point of crack opening

crack propagation rate of a fatigue crack (e.g. see
Suresh 1998). Note that these terms are not neces-
sarily real driving force terms in the thermodynamic
sense. The stress intensity range �K (Paris et al. 1961;
Paris and Erdogan 1963) or the effective stress inten-
sity range �Keff (Elber 1970, 1971) are used, if lin-
ear elastic fracture mechanics is applicable. For the
regime of elastic–plastic fracture mechanics, Dowl-
ing and Begley (1976) proposed the application of the
experimental cyclic J -integral �J exp, which is deter-
mined from a single loading or unloading branch of
the load–displacement (F − v) curve, similar to J exp

for monotonic loading. For deeply notched bend- and
C(T)-specimens, �J exp is given by the relation

�J exp = η�A

bB
, (8)
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30 W. Ochensberger, O. Kolednik

where �A is the area below a single loading branch
of the F − v-curve (Fig. 2a), b = W − a is the lig-
ament length, with W as the specimen width and a
as the crack length, and B is the specimen thickness.
The geometry factor η(a/W ) depends on the speci-
men type (see also ESIS P2-92 1992 or ASTM E1820
2005). In spite of empirical results showing that �J exp

correlates to da/dN for specific materials under cer-
tain cyclic loading conditions (e.g. Dowling and Begley
1976; Dowling 1976; Lambert et al. 1988; Banks-Sills
and Volpert 1991), the general applicability of �J exp

remained doubtful due to the lack of theoretical basis
(Anderson 1995; Suresh 1998).

Ochensberger and Kolednik (2014) have shown that
the incremental plasticity cyclic J -integral for a con-
tour around the crack tip plastic zone, �J ep

PZ, is a
physically appropriate parameter for characterizing the
driving force for a cyclically loaded, stationary crack.
The parameter �J ep

PZ should be evaluated by the rela-
tion,

�J ep
PZ = J ep

PZ,max + J ep
PZ, min − 2

√
J ep

PZ, max J ep
PZ, min. (9)

Here, J ep
PZ,max and J ep

PZ,min denote the maximum and

minimum J ep
PZ-values achieved in a single load cycle.

It should be mentioned that the magnitude of �J ep
PZ

is, due to the square root term in Eq. (9), very sensi-
tive to small values of J ep

PZ,min. This fact is especially
important for small positive load ratios. For a stationary
crack, negative load ratios gave minimum J ep

PZ-values of
exactly zero, J ep

PZ,min = 0, leading to �J ep
PZ = J ep

PZ,max
(Ochensberger and Kolednik 2014).

The application of Eq. (9) for the correct calculation
of the cyclic J -integral can be demonstrated by compar-
ison with the cyclic crack tip opening displacement �δt

(Ochensberger and Kolednik 2014). In a very recent
study, Metzger et al. (2014) demonstrated the correla-
tion between the conventional cyclic J -integral (Lamba
1975; Wüthrich 1982; Tanaka 1983) and �δt . Note that
the conventional cyclic J -integral used in Metzger et
al. (2014) is, in principle, equal to the expression in
Eq. (9), see Appendix in Ochensberger and Kolednik
(2014) for details.

If the crack tip plastic zone is completely surrounded
by elastically deformed material, Eq. (7) applies for
both the J ep-values at maximum and minimum load.
Therefore, the incremental plasticity and deformation
plasticity cyclic J -integrals for a contour around the
crack tip plastic zone must be equal,

�J ep
PZ = �J conv

PZ = �J exp. (10)

The right-hand side extension of Eq. (10) results from
Ochensberger and Kolednik (2014), who have shown
that the experimental cyclic J -integral �J exp reflects
the magnitude of �J ep

PZ, provided that in cases of crack
closure a correct procedure is applied for the determi-
nation of the area �A in Eq. (8). The conventionally
applied procedure via the determination of the closure-
or opening loads, Fcl and Fop (Fig. 2b), as proposed
by Dowling and Begley (1976), can lead to inaccurate
results, see also Sect. 5.2 below.

The results of Ochensberger and Kolednik (2014)
demonstrate that the experimental cyclic J -integral
�J exp proposed by Dowling and Begley (1976) is, in
principle, a physically appropriate driving force para-
meter for a cyclically loaded specimen. It should be
noted, however, that this investigation has been con-
ducted for a stationary crack. Therefore, the question
remains to be solved whether these findings are applica-
ble also in the case where the crack grows under cyclic
loading, as it occurs in fatigue crack growth.

We consider in the current paper cyclic loading with
crack extension. It will be demonstrated in this paper
that important differences appear between a stationary
and a growing crack, although the crack growth rate
per load cycle is small.

3 Numerical modeling and computational aspects

For the numerical investigations the same procedure
is applied as in Ochensberger and Kolednik (2014).
The simulations are performed using the finite element
(FE) program ABAQUS (see http://www.simulia.com/
products/abaqus_fea.html). A two-dimensional C(T)-
specimen (ASTM E1820, 2005) is modeled with a
straight crack in horizontal x-direction, Fig. 3a. The
specimen dimensions are: width W = 50 mm, height
H = 60 mm, nominal thickness B = 25 mm, and ini-
tial crack length a0 = 25 mm. The specimen is sub-
jected to cyclic Mode I loading by prescribing the load
F at the load application point. Plane strain conditions
are assumed.

The specimen consists of homogeneous, isotropic,
elastic–ideally plastic material with Young’s modulus
E = 200 GPa, Poisson’s ratio ν = 0.3, and yield
strength σy = 270 MPa. A small strip near the left
boundary of the specimen is adopted as linear elastic,
with Young’s modulus E = 200 GPa and Poisson’s
ratio ν = 0.3. This is done to prevent large plastic
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Physically appropriate characterization of fatigue crack propagation 31

Fig. 3 a Model of the C(T)-specimen with boundary conditions.
b Applied load F versus time t for a load ratio R = 0; the incre-
ment of crack extension per load cycle �(�a) is two element
lengths. Apart from the cases with constant loads, an additional
study is conducted for a single tensile overload FOL, applied
during the fourth load cycle

deformation at the load application point. Note that this
does not cause any problems, since the plastic zone does
not approach the elastic region.

Half of the specimen is discretized (Fig. 3a). The
mesh consists of bilinear 4-node continuum elements.
The inner region A, where the crack propagates, has a
dimension of 13.5×3.0 mm2; it is filled with elements
of equal size. If not specified otherwise, the element
size is m = 0.1 mm. Geometric nonlinearity is applied
to consider large deformations around the crack tip.
Crack flank contact without friction is modeled; a rigid
body serves as counterpart to the upper half of the speci-
men. The nodes on the plane y = 0, except the nodes on
the crack flank, are locked in y-direction, but unlocked
in x-direction.

The loading steps are shown in Fig. 3b. Each load
cycle N can be divided into three steps. In the first step,
finished at time t = 3N − 2 with N ∈ N, the speci-
men is loaded to maximum load Fmax. In the second
step, finished at t = 3N − 1, the specimen is unloaded
to minimum load Fmin. The crack length is held fixed
during the loading and unloading stages. In the third
step, finished at t = 3N , the crack extends by an incre-
ment at the minimum load Fmin. We refer to Solanki et
al. (2004) regarding the preferred load level for incre-
mental crack extension. Incremental crack extension is
modeled by adopting the node release technique (Ohji
et al. 1975; Newman 1976). Hereby initially bonded
nodes on the plane y = 0 are released according to
a pre-defined crack length function of time (see also
Kuna 2008). Two elements are chosen as crack exten-
sion increment per load cycle, �(�a) = 2m. The num-
ber of applied load cycles is N = 24; the total crack
advance is �a = ∑N

i=1 �(�a)i = 4.8 mm.
The maximum load is varied so that we get small-

scale yielding (ssy) and large-scale yielding (lsy) con-
ditions at Fmax = 12.5 kN and Fmax = 27 kN, respec-
tively (Fig. 4a, b). Large-scale yielding is assumed to
start with the onset of plasticity at the back face of the
specimen (Fig. 4b). Three load ratios are considered,
R = 0 (zero-tension loading, Fig. 3b), R = 0.5 (pure
tension), and R = −1 (tension-compression).

The FE stress and strain analyses are in all cases per-
formed using the incremental plasticity model provided
by ABAQUS. Subsequently, the configurational forces
are evaluated by a self-written post-processing routine,
which is based on the papers by Müller et al. (2002;
2004) and Denzer et al. (2003). Deformation plasticity
and incremental plasticity are alternatively applied for
this post-processing in order to calculate at each node
the deformation- and incremental plasticity configura-
tional force, fdef.pl and fep, by inserting either φ and φe

into Eq. (1).
The scalar J -integral for an arbitrary contour � is

calculated by a summation of the configurational forces
over all nodes within the area D bounded by �, includ-
ing the crack tip node, compare Eqs. (4) and (5). The
J -integrals for deformation plasticity and incremental
plasticity, J conv and J ep, are given by

J conv
� =

∑
n∈D∪tip

−
(

e · fdef.pl
)

�An, (11)

J ep
� =

∑
n∈D∪tip

− (
e · fep) �An . (12)
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32 W. Ochensberger, O. Kolednik

Fig. 4 Maps of the
equivalent plastic strain ε

p
eq

at an applied load of
a Fmax = 12.5 kN
(small-scale yielding
conditions),
b Fmax = 27 kN (large-scale
yielding, i.e. after onset of
back face plasticity), and c
at Fmax = 27 kN and
�a = 4.6 mm (general
yielding). In a the
configuration after
�a = 1 mm crack extension
is depicted, when the active
plastic zone has completely
left the monotonic plastic
zone of the initial crack tip;
the plastic zone shapes are
marked with dashed lines.
�PZ and �actPZ denote the
contours around the entire
and the active plastic zone,
respectively. Directions of
the bulk configurational
force fep are schematically
indicated
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Fig. 5 Incremental
plasticity J -integrals around
the crack tip plastic zone,
J ep

PZ, and around the active
plastic zone, J ep

actPZ, versus
time t for a small-scale
yielding; c large-scale
yielding, turning to general
yielding after show
t = 69,�a = 4.6 mm. b, d
show a detail of the 11th

load cycle. The values
reached at maximum load,
J ep

PZ,max and J ep
actPZ,max, are

marked with full and open
dots, respectively. The
vertical dashed lines
indicate when the active
plastic zones leave the
initial crack tip plastic zones

The parameter �An denotes the element area corre-
sponding to a specific node n.

Important are the computation of J -integrals around
the crack tip plastic zone JPZ and around the active plas-
tic zone JactPZ, see Fig. 1b. The shape of the active plas-
tic zone is obtained by observation of currently yield-
ing integration points, i.e. when the plastic strain εp

changes during a loading sequence. An example is pre-
sented in Fig. 4a; currently yielding integration points
are marked by x-symbols. The integration path �actPZ is
chosen so that it includes all marked integration points
at maximum load Fmax. It should be noted that the mag-
nitude of the integration path is held fixed for a specific
loading and unloading sequence, i.e. �actPZ does not
vary with increasing or decreasing load.

In addition to the J -integrals derived from configu-
rational forces, J conv and J ep, the conventional compu-
tational J -integral of ABAQUS J VCE, which is based

on the virtual crack extension method developed by
Parks (1977), is also computed. Note that J VCE implic-
itly relies on deformation plasticity, when applied to
elastic–plastic materials.

4 Incremental plasticity J-integral Jep for crack
extension under cyclic loading

4.1 Characteristic incremental plasticity J -integral
terms, J ep

PZ and J ep
actPZ

Figure 5a, c present, for a load ratio R = 0, the vari-
ations of the incremental plasticity J -integrals around
the crack tip plastic zone, J ep

PZ, and around the active
plastic zone, J ep

actPZ, under ssy- and lsy-conditions, i.e.
Fmax = 12.5 kN and Fmax = 27 kN, respectively.
Shown are N = 24 load cycles; Fig. 5b, d show in more
detail the 11th load cycle. The J ep-values reached at
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Table 1 Values of the incremental plasticity J -integrals around the crack tip plastic zone, J ep
PZ, and around the active plastic zone,

J ep
actPZ, for small-scale yielding conditions

R N �a J ep
PZ,max J ep

PZ,min J ep
actPZ,max J ep

actPZ,min �
JactPZ,max
JPZ,max �J ep

PZ �J ep
actPZ �J exp ��JactPZ

�JPZ
(mm) (kJ/m2) (%) (kJ/m2) (%)

0 1 0 2.132 0.000 2.132 0.000 0.00 − − 2.082 −
0 2 0.2 2.184 8.0e−5 2.341 −0.621 6.71 2.157 2.341 2.121 7.86

0 6 1 2.415 2.0e−4 2.280 −0.062 −5.92 2.372 2.280 2.358 −4.04

0 11 2 2.759 2.8e−4 2.653 −0.087 −4.00 2.703 2.653 2.705 −1.88

0 16 3 3.177 3.8e−4 3.059 −0.119 −3.86 3.108 3.059 3.119 −1.60

0 21 4 3.691 5.6e−4 3.558 −0.134 −3.74 3.600 3.558 3.621 −1.18

0 24 4.6 4.056 7.1e−4 3.882 −0.156 −4.48 3.949 3.882 3.973 −1.73

0.5 1 0 2.132 0.000 2.132 0.540 0.00 − − 2.082 −
0.5 2 0.2 2.183 0.540 2.264 0.444 3.58 0.552 0.703 0.549 21.5

0.5 6 1 2.414 0.612 2.279 0.576 −5.92 0.595 0.564 0.595 −5.50

0.5 11 2 2.755 0.700 2.633 0.604 −4.63 0.678 0.715 0.683 5.17

0.5 16 3 3.170 0.809 2.948 0.609 −7.53 0.776 0.877 0.790 11.5

0.5 21 4 3.682 0.943 3.417 0.698 −7.76 0.898 1.026 0.918 12.5

0.5 24 4.6 4.046 1.039 3.748 0.762 −7.95 0.984 1.130 1.009 12.9

−1 1 0 2.132 0.000 2.132 5.7e−6 0.00 − − 2.082 −
−1 2 0.2 2.184 5.7e−6 2.352 −0.625 7.23 2.177 2.352 2.129 7.44

−1 6 1 2.415 1.6e−4 2.300 −0.066 −5.00 2.376 2.300 2.359 −3.30

−1 11 2 2.760 2.0e−4 2.654 −0.090 −3.99 2.713 2.654 2.705 −2.22

−1 16 3 3.178 2.8e−4 3.061 −0.120 −3.82 3.119 3.061 3.119 −1.89

−1 21 4 3.692 4.4e−4 3.560 −0.122 −3.71 3.612 3.560 3.621 −1.46

−1 24 4.6 4.058 5.6e−4 3.883 −0.156 −4.51 3.962 3.883 3.974 −2.03

The parameter R denotes the load ratio, N the load cycle number, and �a the crack extension. The indices “max” and “min” denote
maximum and minimum values during a load cycle. The values of the experimental cyclic J -integral �J exp are shown for comparison.
Columns with �i

j denote the relative difference between two values i, j

maximum load Fmax are marked with full (for J ep
PZ,max)

and open (for J ep
actPZ,max) dots.

It is seen from Fig. 5 that, due to the crack exten-
sion after each load cycle, the J ep-values at maximum
load, J ep

PZ,max and J ep
actPZ,max, continuously increase,

whereas the values taken at minimum load, J ep
PZ,min and

J ep
actPZ,min, remain approximately constant. While J ep

PZ
shows a regular behavior, with values very close to zero
at Fmin, the J ep

actPZ-curve exhibits some irregularities
during the first load cycles. The J ep

actPZ-curve appears
shifted downwards compared to the J ep

PZ-curve.
The values of J ep

actPZ and J ep
PZ are equal for the first

loading and unloading cycle, since crack extension has
not occurred yet. With the first crack extension step,
time t > 2, the active plastic zone starts to leave
the plastic zone of the initial crack tip, and J ep

actPZ dif-
fers from J ep

PZ. The active plastic zone has completely

left the initial plastic zone after a crack extension of
�a = 0.6 and 2 mm, N = 4 and 11, for ssy- and lsy-
conditions, respectively. This is indicated by a vertical
dashed line in Fig. 5a, c. It is seen that the irregularities
of the J ep

actPZ-curve occur before this line; e.g. especially
high J ep

actPZ,max-values appear during N = 2, followed

by especially low J ep
actPZ,min-values. This behavior will

be discussed in more detail in the next section.
The J -integral values are collected in Tables 1 and

2. The values of J ep
actPZ,max lie approximately 6 % lower

than the values of J ep
PZ,max; the difference decreases

to approximately 4 % with increasing crack extension.
The difference almost disappears, if the active plastic
zone merges with the back-face plasticity region so that
general yielding (gy) conditions prevail. This happens
for the values in Table 2 after �a = 4.6 mm, see also
Figs. 4c and 5c. The values of J ep

PZ,min are very close to
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Table 2 Values of the incremental plasticity J -integrals around the crack tip plastic zone, J ep
PZ, and around the active plastic zone,

J ep
actPZ, for large-scale yielding conditions

R N �a J ep
PZ,max J ep

PZ,min J ep
actPZ,max J ep

actPZ,min �
JactPZ,max
JPZ,max �J ep

PZ �J ep
actPZ �J exp ��JactPZ

�JPZ
(mm) (kJ/m2) (%) (kJ/m2) (%)

0 1 0 10.56 0.000 10.56 0.008 0.00 – – 10.42 –

0 2 0.2 10.83 0.008 15.27 −3.133 29.1 10.23 15.27 10.17 33.0

0 6 1 12.06 0.011 11.33 −0.575 −6.44 11.34 11.33 11.32 −0.09

0 11 2 14.02 0.019 13.30 −0.524 −5.41 13.01 13.30 13.06 2.18

0 16 3 16.81 0.045 16.19 −0.529 −3.83 15.12 16.19 15.24 6.61

0 21 4 21.40 0.143 21.25 −0.690 −0.71 18.04 21.25 18.12 15.1

0 24 4.6 27.95 0.367 27.86 −1.015 –0.32 21.91 27.86 22.51 21.4

0.5 1 0 10.56 0.000 10.56 2.832 0.00 – – 10.42 –

0.5 2 0.2 10.81 2.832 14.85 3.520 27.2 2.578 3.910 2.568 34.1

0.5 6 1 12.00 3.135 10.72 1.743 −11.9 2.868 3.818 2.867 24.9

0.5 11 2 13.93 3.670 12.20 2.364 −14.2 3.300 3.823 3.321 13.7

0.5 16 3 16.69 4.511 15.05 3.111 −10.9 3.847 4.476 3.889 14.0

0.5 21 4 21.24 6.039 19.70 4.511 −7.82 4.628 5.357 4.695 13.6

0.5 24 4.6 27.87 7.923 26.83 6.075 –3.88 6.073 7.371 6.419 17.6

−1 1 0 10.56 0.000 10.56 5.2e−4 0.00 – – 10.42 –

−1 2 0.2 10.84 5.2e−4 15.30 −3.608 29.1 10.69 15.30 10.57 30.1

−1 6 1 12.08 0.002 11.60 −0.484 −4.14 11.92 11.60 12.04 −2.76

−1 11 2 14.06 0.003 13.79 −0.454 −1.96 13.73 13.79 13.80 0.44

−1 16 3 16.90 0.004 17.04 −0.702 −0.82 16.45 17.04 16.63 3.46

−1 21 4 21.57 0.006 22.19 −1.166 −2.79 20.99 22.19 21.04 5.41

−1 24 4.6 27.96 0.020 29.22 −1.680 –4.31 26.48 29.22 26.13 9.38

The parameter R denotes the load ratio, N the load cycle number, and �a the crack extension. The indices “max” and “min” denote
maximum and minimum values during a load cycle. The values of the experimental cyclic J -integral �J exp are shown for comparison.
General yielding conditions prevail for the rows marked in italics

zero for ssy-conditions (Table 1), whereas they reach
several tenths of kJ/m2 for lsy-conditions (Table 2),
probably caused by irreversible elastic strain energy
stored around the crack tip (Atkins and Mai 1986). The
J ep

actPZ,min-values are, in general, negative.

The incremental plasticity far-field J -integral J ep
far

equals J ep
PZ for ssy-conditions. Due to the appearance

of back-face plasticity, J ep
far is lower than J ep

PZ for lsy- and
gy-conditions. With increasing crack length the differ-
ence between J ep

far,max and J ep
PZ,max increases from 0.5 %

up to 33 %, due to the increase of the back-face plas-
ticity region.

In all cases the J -integral for deformation plas-
ticity J conv equals the computational J -integral of
ABAQUS, J VCE. It is clear from Eq. (7) that J conv

PZ =
J ep

PZ, unless gy-conditions appear. At the maximum load
of every load cycle the deformation plasticity far-field

J -integral comes close to the value around the plas-
tic zone, J conv

far,max ≈ J conv
PZ,max = J ep

PZ,max, whereas at
the minimum load of each load cycle, J conv

far,min strongly

differs from the values of J conv
PZ,min = J ep

PZ,min. The rea-
son has been already explained in detail in Ochens-
berger and Kolednik (2014), Sect. 4.2 therein: Artificial
bulk configurational forces are induced in the back-
face plasticity region since the conditions of propor-
tional loading are violated during unloading. The defor-
mation plasticity J -integral around the active plastic
zone J conv

actPZ shows an oscillating curve that continu-
ously decreases with every load cycle, so that after a
certain number of load cycles the values are negative
even at maximum load.

Tables 1 and 2 collect also additional results of J ep
actPZ

and J ep
PZ for load ratios R = 0.5 and −1 under ssy-

and lsy-conditions. Especially for R = 0.5 and lsy-
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Fig. 6 Distribution of
incremental plasticity bulk
configurational force fep in
the entire crack tip plastic
zone at a maximum load,
Fmax = 12.5 kN, after a
crack extension of
�a = 1 mm, compare
Fig. 4a. Regions on the
boundaries of the plastic
zone and the bunting region
of the initial crack tip are
enlarged in detailed views; a
finer mesh size of
m = 0.033 mm is used for a
better visualization of the
fep-vectors

conditions, the difference between the values at maxi-
mum load, J ep

actPZ,max and J ep
PZ,max, can be significant.

4.2 Bulk configurational forces in the crack tip plastic
zone

In order to explore the differences that appear in Fig. 5
between J ep

actPZ and J ep
PZ, we analyze in this section the

distribution of the bulk configurational force fep in the
crack tip plastic zone. For easier understanding, it is
useful to transform Eq. (6) into small strain plasticity
(Simha et al. 2008),

fep = σ : ∂εp

∂x
, (13)

where σ denotes the Cauchy stress tensor and εp the
plastic part of the linear strain tensor ε. Note that for
crack and crack growth in x-direction, only the x-
component of the configurational force fep-vector,

f ep
x = σxx

∂ε
p
xx

∂x
+ 2σxy

∂ε
p
xy

∂x
+ σyy

∂ε
p
yy

∂x
, (14)

contributes to the scalar J ep-integral, see Eq. (5).
Figure 6 presents, for a load ratio R = 0, the dis-

tribution of the bulk configurational force fep in the

total crack tip plastic zone at maximum load Fmax =
12.5 kN during the 6th load cycle, after 1 mm of crack
growth. Important regions are enlarged in the detailed
views where a finer mesh of m = 0.033 mm is used to
obtain a better visualization of the fep-vectors.2

On the left boundary of the crack tip plastic zone,
fep-vectors appear with a positive f ep

x -component,
while f ep

x is negative for fep-vectors on the right bound-
ary. Along the upper boundary, fep-vectors emerge with
x-components of almost zero; they only have a neg-
ative y-component f ep

y . It is seen that in all cases
the direction of fep-vectors clearly follows the gra-
dient of the plastic strain, corresponding to Eq. (13);
Fig. 4a includes schematically the directions of these
fep-vectors. In the blunting region of the initial crack
tip, the fep-vectors point to either direction, but the
resulting configurational force, i.e. the sum of the x-
components of all fep-vectors lying within this region,
points into the negative x-direction.

The largest fep-vectors appear around the current
crack tip, since there both stress and gradient of plas-
tic strain are largest, Eq. (13). Due to symmetry, each

2 For generating Fig. 6, the simulation was repeated with a FE-
mesh size of m = 0.033 mm.
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fep-vector that emerges from a node directly along the
ligament in front of the current crack tip does have
a “companion” fep-vector from the lower specimen
half. The resulting fep-vector of both specimen halves
has only a component in x-direction. This applies also
for fep

tip which emerges from the current crack tip. For

numerical reasons, J ep
tip = e ·

(
−fep

tip

)
has a finite value

which depends on the FE-mesh size, see Kolednik et
al. (2014). A decrease of the mesh size leads to a reduc-
tion of the magnitude of J ep

tip and yields finally J ep
tip = 0.

However, the values of J ep
actPZ (and J ep

PZ) are not affected
by a mesh refinement; Sect. 5.1 provides an example.

The variation of the difference between J ep
actPZ,max

and J ep
PZ,max shown in Fig. 5a can be understood from

Fig. 6 and Eq. (12): More and more bulk configu-
rational forces fep of the initial plastic zone become
excluded from the integration contour �actPZ, when
it is shifted to the right during crack extension. First,
the fep-vectors with positive f ep

x -components from the
left boundary are excluded, leading to the peak value
of J ep

actPZ,max observed at N = 2. Next, the integra-
tion contour �actPZ excludes the blunting region of the
initial crack tip. Since the resulting fep in this blunt-
ing region has a negative x-component, the value of
J ep

actPZ,max drops below the value of J ep
PZ,max. With fur-

ther crack extension the difference between J ep
actPZ,max

and J ep
PZ,max remains equal, since the excluded fep-

vectors of the plastic wake have no x-component. It
should be mentioned that a similar variation of J ep

actPZ
is reported in Section 5.3 of Kolednik et al. (2014) for
a growing crack under constant load.

For lsy-conditions, the difference between the val-
ues of J ep

actPZ,max and J ep
PZ,max decreases with increas-

ing crack extension, because the right boundary of
the active plastic zone, with fep-vectors in negative x-
direction, increases. Finally, the difference nearly van-
ishes under gy-conditions.

The differences between J ep
actPZ,min and J ep

PZ,min at
minimum load Fmin can be explained analogously.
Note that, due to the appearance of compressive stresses
during unloading, the fep-vectors at Fmin point into the
opposite x-direction compared to the Fmax-stage. This
has been explained already in Ochensberger and Koled-
nik (2014), see also Sect. 2.3. It can be shown that
negative J ep

actPZ,min-values originate for R ≤ 0 from
these negative stresses; the relevance of these negative
J ep

actPZ,min-values will be discussed in the next section.

5 Driving force for fatigue crack growth

For a cyclically loaded, stationary crack, Ochensberger
and Kolednik (2014) proposed the cyclic, incremen-
tal plasticity J -integral around the crack tip plastic
zone, �J ep

PZ, as physically appropriate driving force
parameter. Consequently, for a growing fatigue crack
it is reasonable to adopt the cyclic, incremental plastic-
ity J -integral around the active crack tip plastic zone,
�J ep

actPZ, as the appropriate driving force parameter for
fatigue crack growth. One argument is that only the
active plastic zone travels with the crack tip during
crack extension; the initial plastic zone and the plas-
tic wake do not move. Another reason is that plasticity
far from the current crack tip cannot be responsible
for fatigue crack propagation that occurs due to cyclic
plastic deformation at the current tip.

It seems obvious that �J ep
actPZ should be evaluated,

analogously to Eq. (9), by the relation,

�J ep
actPZ = J ep

actPZ,max + J ep
actPZ,min

− 2
√

J ep
actPZ,max J ep

actPZ,min. (15)

At this point we arrive at a dilemma when the incremen-
tal plasticity J -integral at minimum load, J ep

actPZ,min, is
negative, as shown in Tables 1 and 2 for load ratios
R = 0 and R = −1, since this leads to a complex
square root term. Therefore, it should be clarified in
which form the negative values of J ep

actPZ in a load
cycle deliver a contribution to the driving force for
fatigue crack growth. We do this by studying the rela-
tion between the incremental plasticity J -integral J ep

and the crack tip opening displacement δt .

5.1 Incremental plasticity J -integral J ep and crack tip
opening displacement

Fatigue crack growth in ductile metals and alloys is
driven by cyclic plasticity at the current crack tip (Laird
1967, 1979). The crucial role of crack tip plasticity was
confirmed by experiments, e.g. Tanaka (1989), Krupp
et al. (2002), and Pippan et al. (2010), where it was
shown that the crack growth rate of a fatigue crack
da/dN is a function of the cyclic crack tip opening
displacement at the current crack tip, da/dN ∝ �δt

with �δt = δt,max − δt,min.
A correct numerical evaluation of the crack tip

opening displacement δt during fatigue crack propa-
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gation is difficult, since it requires a very fine FE-
mesh. Experimental investigations using stereopho-
togrammetric measurements show that the crack tip
opening displacement should be determined a distance
behind the blunted crack tip, which corresponds to the
width of the stretched zone (Kolednik and Stüwe 1985;
Kolednik and Kutlesa 1989; Siegmund et al. 1990); a
good approximation of this distance is for many mate-
rials given by 0.4 δt , see Kolednik and Stüwe (1987),
Heerens et al. (1988). Therefore, δt should not be deter-
mined at a fixed distance behind the crack tip, since
measurements at too large distances lead to an over-
estimate of δt , and vice versa. However, it is difficult
to fulfill these requirements in practice. Dougherty et
al. (1997) give a minimum element size m in order
to determine accurate δt-values, m/rpl ≤ 0.1, where
rpl denotes the radius of the crack tip plastic zone.
According to Solanki et al. (2003, 2004) the mesh size
shall be further reduced by a factor 3 ÷ 4. The relation
rpl = β J E/σ2

y, with β ≈ 0.1, yields for the maxi-
mum load of the 1st load cycle rpl ≈ 0.59 mm and
rpl ≈ 2.90 mm for ssy- and lsy-conditions, respec-
tively; this is roughly in agreement with Fig. 4a, b.
The relation J = k σy δt , with J = J ep

PZ and k ≈ 2,
yields values of the crack tip opening displacement,
δt ≈ 3.95 μm and δt ≈ 19.6 μm, for ssy- and lsy-
conditions, respectively. According to the criterion by
Solanki et al. (1997), a mesh size of approximately
m ≈ 4δt would be sufficient for gaining accurate δt-
values, which appears somewhat doubtful to us.

However, the computation of accurate δt-values is
not very important for our purposes; our interest lies
only in the correct reflection of crack tip opening and
-closure behavior during the loading and unloading
stages. Therefore, a mesh size of m = 0.1 mm should
be sufficient for lsy-conditions; additional computa-
tions with smaller mesh size, m = 10 μm, are con-
ducted for ssy-conditions. The crack tip opening dis-
placement is taken one element behind the current crack
tip, as e.g. in Solanki et al. (2004).

Figure 7 shows the curves J ep
actPZ versus δt during

loading from Fmin to Fmax during the 6th load cycle,
i.e. after a crack extension of �a = 1 mm. The val-
ues for J ep

PZ are included for comparison. The curves
for ssy-conditions are plotted in Fig. 7a; Fig. 7b gives
a detailed view of the region near the minimum load.
Figure 7c, d present the curves for lsy-conditions. It is
seen that δt = 0 during the very initial loading stages.

The curves suggest that the crack tip opening displace-
ment δt does not start to increase before J ep

actPZ becomes
positive.

Thus, we state that negative values of J ep
actPZ do

not deliver a contribution to the fatigue crack growth
rate, since the crack tip is closed during this stage.
Moreover, from a thermodynamic view, a negative x-
component of the Jep

actPZ-vector means that the crack
feels a driving force for shortening its length. There-
fore, the stage where the crack driving force is negative
cannot deliver a contribution to the driving force for
fatigue crack growth. For these reasons, we conclude
that the negative values of J ep

actPZ are not relevant for
calculating the driving force for fatigue crack growth,
and �J ep

actPZ = J ep
actPZ,max for R = 0.

It should be mentioned that the values of J ep
actPZ,max

(and J ep
PZ,max) are not affected by the decrease in mesh

size m by a factor ten for ssy-conditions. For example,
at maximum load we get J ep

actPZ,max = 2.279 kJ/m2

for m = 10 μm and J ep
actPZ,max = 2.280 kJ/m2 for

m = 0.1 mm. On the contrary, the values of the crack
tip opening displacement show a big variation: at max-
imum load we get δt = 3.11 μm for m = 10 μm and
δt = 4.65 μm for m = 0.1 mm. This clearly demon-
strates the advantage of the J -integral concept.

For negative load ratios R < 0 it can be also shown
that negative J ep

actPZ,min-values do not give a contribu-

tion to the cyclic J -integral �J ep
actPZ. Therefore, the

driving force for fatigue crack growth is equal to the
incremental plasticity J -integral around the active plas-
tic zone at maximum load for zero-tension and tension-
compression loading,

�J ep
actPZ = J ep

actPZ,max for R ≤ 0. (16)

Note that the exact upper boundary for the validity of
Eq. (16) has not been determined. For positive load
ratios R > 0, the curves J ep

actPZ and J ep
PZ versus δt are

almost linear and do not have a vertical part near Fmin.
Since both the J ep

actPZ,min- and δt,min-values are positive
at minimum load, Eq. (15) must be used to evaluate
�J ep

actPZ.
Table 1 lists �J ep

actPZ-values with increasing load
cycle number N and crack extension �a for load
ratios, R = 0, 0.5 and −1, under ssy-conditions. The
results for �J ep

PZ, Eq. (9), are collected for compari-
son. The difference between �J ep

actPZ and �J ep
PZ is of

the order of 2 % for R ≤ 0; on the contrary, �J ep
actPZ

can even exceed �J ep
PZ by 13 % for R = 0.5. Table 2
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Fig. 7 Incremental
plasticity J -integrals, J ep

actPZ
and J ep

PZ, plotted against the
crack tip opening
displacement δt during
re-loading after �a = 1 mm
crack extension. Values are
depicted for a small-scale
yielding, mesh sizes
m = 0.1 mm and 10 μm; c
large scale yielding,
m = 0.1 mm. b, d Enlarged
views of the beginnings of
the loading sequences. The
results suggest that loading
stages where J ep

actPZ is
negative do not contribute to
fatigue crack propagation,
since δt is zero

lists corresponding values for lsy-conditions. Here, the
difference between �J ep

actPZ and �J ep
PZ can become

large for all load ratios. For R = 0.5, the values of
J ep

actPZ,min are distinctively smaller than the J ep
PZ,min-

values which cause lower square root terms in Eq. (15)
and, thus, significantly higher values of �J ep

actPZ com-
pared to �J ep

PZ. Figure 8 presents, for a load ratio R = 0,
the variations of �J ep

actPZ and �J ep
PZ with increasing

crack extension. The variations of the cyclic crack tip
opening displacement, �δt = δt,max−δt,min, with crack
extension are shown for comparison.

The conclusion of this section is that the load-
ing stages where J ep

actPZ,min becomes negative do not
play a role for the calculation of the driving force
for fatigue crack propagation. In the following sec-
tion, the validity of the experimental cyclic J -integral
�J exp proposed by Dowling and Begley (1976) shall be
checked.

5.2 Comparison to the experimental cyclic J -integral
�J exp

The experimental cyclic J -integral �J exp (Dowling
and Begley 1976) is computed from the area �A
below a single loading branch of the load–displacement
(F − v) curve, Eq. (8). The �J exp-values for R = 0
are drawn into Fig. 8 and listed in Tables 1 and 2.
It is seen that �J exp fits very well to the values of
the cyclic, incremental plasticity J -integral �J ep

PZ. This
corresponds to the findings reported in Sects. 2.2 and
2.3, and to Eq. (10). The experimental cyclic J -integral
�J exp does not fit so well to �J ep

actPZ, although the error
remains small for ssy-conditions. However, the error
can reach 20 % for lsy-conditions. The values listed for
��JactPZ

�JPZ in Tables 1 and 2 are approximately equal
to the relative difference between �J ep

actPZ and �J exp.
Note that a small error of about 2 % has to be taken
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Fig. 8 Development of the
cyclic, incremental
plasticity cyclic J -integrals
around the crack tip plastic
zone, �J ep

PZ, and around the
active plastic zone, �J ep

actPZ,
with crack extension �a.
Values of the cyclic crack
tip opening displacement
�δt and the experimental
cyclic J -integral �J exp are
drawn for comparison. a
Small-scale yielding, b
large-scale yielding
conditions. The
computations are made for a
FE-mesh size of
m = 0.1 mm; the first crack
growth periods are
re-calculated for a finer
mesh size, m = 10 μm, see
dotted curves

into account in the evaluation of �J exp, which seems
to result from an inaccuracy of the geometry factor η

taken from ASTM E1820 (2005), compare the values
listed for N = 1 in Tables 1 and 2.

Tables 1 and 2 collect also the �J exp-values for load
ratios R = 0.5 and −1. For load ratios R < 0, in pres-
ence of crack closure, the values of �J exp depend on
the correct determination of �A. According to Dowl-
ing and Begley (1976), the opening load Fop shall be
determined from the compliance change that is visi-
ble as kink in the F − v-curve, Fig. 2b. Ochensberger
and Kolednik (2014) showed for stationary cracks that
this procedure tends to overestimate the driving force.
Instead, �A should be determined as the area above
the load FJ ep

PZ=0, where the incremental plasticity J -
integral around the crack tip plastic zone reaches its
minimum value, J ep

PZ,min = 0. The same procedure is

used for the evaluation of the �J exp-values listed in
Tables 1 and 2 for R = −1. The results show that
�J exp fits very well to�J ep

PZ, and Eq. (10) remains
valid, unless gy-conditions prevail.

Crack closure does not occur for R > 0. It is seen
that the misfit between �J exp and �J ep

PZ is small for
various load ratios under ssy- and lsy-conditions, see
Tables 1 and 2. In both cases the misfit slightly increases
with increasing crack extension.

The validity of Eq. (10) becomes clear from the
following: the condition J ep

PZ = J conv
PZ , Eq. (7), is ful-

filled for cyclic loading conditions as long as the crack
tip plastic zone is surrounded by elastically deformed
material, see Sects. 2.2 and 2.3. The requirement for the
validity of the condition J conv

PZ = J exp is that a single
loading cycle of a growing fatigue crack can be treated
like a stationary crack under monotonic loading; only
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then, the conventional J -integral and the experimental
J -integral J exp lead to the same results, see Rice et al.
(1973), Kolednik (1991). This requirement is fulfilled
during loading in each load cycle.

Table 1 shows that the experimental cyclic J -integral
�J exp overestimates the driving force for fatigue
crack growth �J ep

actPZ by approximately 2 % for ssy-
conditions and R = 0 and R = −1. On the con-
trary, �J exp considerably underestimates �J ep

actPZ for
R = 0.5, whereby the misfit decreases up to 12 %
with increasing crack extension. For lsy-conditions,
Table 2, �J exp underestimates �J ep

actPZ for all load
ratios. The misfit increases with crack extension to
approximately 20 % for R = 0 and to 5 % for R = −1.
For R = 0.5, the misfit of about 15 % is rather indepen-
dent of crack extension. The reason for the high misfit
under R = 0.5, even for ssy-conditions, is currently not
fully understood by the authors, but it might be caused
by the fact that proportional loading is fulfilled for each
maximum load of a load cycle, which is required for
the validity of J ep

PZ = J exp, whereas this is not the case
for the minimum load.

We can conclude this section by stating that the
experimental cyclic J -integral does not exactly reflect
the driving force for growing fatigue cracks in elastic–
plastic materials, since it corresponds to the cyclic,
incremental plasticity J -integral around the crack tip
plastic zone, and not around the active plastic zone,
�J exp ≈ �J ep

PZ �= �J ep
actPZ. The difference between

�J exp and �J ep
actPZ can reach approximately 20 % for

lsy-conditions.

6 The effect of a single tensile overload

In this section, a further test shall be conducted in
order to check whether the cyclic, incremental plas-
ticity J -integral for a contour around the active plas-
tic zone, �J ep

actPZ, is the appropriate parameter for
the characterization of the driving force for fatigue
crack propagation, and not the cyclic J -integral for a
contour around the plastic zone, �J ep

PZ. It is investi-
gated whether �J ep

actPZ is able to reflect the well-known
overload effect: Crack growth retardation occurs, after
a single tensile overload has been superimposed to
cyclic loading with constant load amplitude. With fur-
ther crack extension the crack growth rate gradually
increases, reaching again the crack growth rate per-
taining to the constant fatigue load somewhat after the

active plastic zone has escaped from the plastic zone
produced by the overload (Schijve 1960; Christensen
1959; von Euw et al. 1972; Suresh 1983; Fleck 1988;
Skorupa 1998; Sadananda et al. 1999).

The fatigue crack growth rate da/dN in ductile met-
als and alloys is proportional to the cyclic crack tip
opening displacement �δt; this is so also after applying
an overload. This fact was confirmed by experiments,
e.g. Pippan et al. (2005) and Bichler and Pippan (1999;
2007), and by numerical studies, e.g. Tvergaard (2005).
For example, Bichler and Pippan (2007) conducted
�K -controlled fatigue tests under ssy-conditions with
load ratio R = 0.05, using C(T)-specimens fabri-
cated of ductile austenitic CrNi steel. The constant
�K -fatigue history, with �K = 70 MPa

√
m, was

interrupted by a single tensile overload with vari-
ous overload ratios, ROL= FOL/Fmax = 1.1 ÷ 2.
By analyzing fatigue striations (Zappfe and Worden
1951), which usually correlate with da/dN (Forsyth
and Ryder 1960), and by conducting stereophotogram-
metric measurements (Kolednik 1981) of the crack tip
opening displacement δt , Bichler and Pippan (2007)
demonstrated that the relation, da/dN ∝ �δt , is valid
also in the post-overload regime.

Our numerical test is conducted for zero-tension
cyclic loading under ssy-conditions with applied max-
imum load, Fmax = 12.5 kN. A tensile overload,
FOL = 25 kN, is applied in the fourth load cycle after
�a = 0.6 mm crack extension (Fig. 3b); the over-
load ratio is ROL = FOL/Fmax = 2. Note that ssy-
conditions still prevail during application of the over-
load, i.e. no back-face plasticity occurs. For our pur-
pose, a FE-mesh size of m = 0.1 mm was seen to be
sufficient.

Figure 9 presents the variations of �J ep
actPZ,�J ep

PZ,
the cyclic experimental J -integral �J exp, and �δt as
functions of the crack extension �a. It is seen that
�J ep

actPZ varies analogously to �δt and clearly shows
the retardation effect, whereas this is not the case for
�J ep

PZ and �J exp.
The minimum value of �J ep

actPZ = 0.269kJ/m2 is
reached after 0.4 mm of crack growth following the
overload cycle, i.e. �a = 1 mm total crack exten-
sion. This gives a reduction of about 88 % compared
to the �J ep

actPZ-value at �a = 1 mm for a constant
fatigue load, see Fig. 8a and Table 1. This value is
in excellent agreement with the experimental results
obtained by Bichler and Pippan (2007) from 25 mm
thick C(T)-specimens (plane strain dominance), sub-
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Fig. 9 Effect of a single tensile overload, applied during the 4th

load cycle at �a = 0.6 mm. The cyclic, incremental plasticity J -
integrals around the crack tip plastic zone, �J ep

PZ, and around the
active plastic zone, �J ep

actPZ, are plotted against crack extension
�a. Values of the cyclic crack tip opening displacement �δt and
the experimental cyclic J -integral �J exp are drawn for com-
parison. The parameter �J ep

actPZ correlates perfectly with �δt ,
exhibiting a crack growth retardation effect, whereas this is not
the case for �J ep

PZ and �J exp

jected to ROL = 2, where a maximal reduction in
da/dN of about 84 % was observed after approximately
0.5 mm crack growth following the overload.

The overload case study has confirmed that the
cyclic, incremental plasticity J -integral for a contour
around the active plastic zone, �J ep

actPZ, is a physically
appropriate driving force parameter for assessing the
fatigue crack growth rate.

7 Computational aspects in the evaluation of
�Jep

actPZ

In the following, a few issues regarding the computa-
tion of �J ep

actPZ shall be pointed out, which might be
important for the practical application of the concept
presented in the current paper.

The values of J ep
actPZ are not affected of the used FE-

mesh size, especially, in comparison to the expensive
numerical effort that is necessary to obtain accurate
results for the crack tip opening displacement δt , see
Fig. 7a.

Provided that the active plastic zone has left the plas-
tic zone of the initial crack tip, the magnitude of J ep

actPZ
is not significantly influenced by the magnitude of the
integration contour �actPZ. The reason is that the con-
figurational forces in the plastic wake do not deliver a

contribution to the value of J ep
actPZ, see Sect. 4.2. There-

fore, it is not important to find the exact shape of the
active plastic zone (Fig. 4a).

However, one has to be careful during the initial
stages of crack extension, especially, before the active
plastic zone excludes the blunting region of the ini-
tial crack tip. In Sect. 4 we have shown that J ep

actPZ at
maximum load exhibits a peak value after the onset of
crack extension; compare the J ep

actPZ,max-values listed
for N = 2 in Tables 1 and 2. Note that both position
and magnitude of this peak value depend on the FE-
mesh size m: A smaller mesh size gives a higher peak
at smaller crack growth distance. The effect is shown in
Fig. 8, for a reduction of m by a factor ten and a crack
extension increment per load cycle of �(�a) = 2m.
In this way, the finer FE-mesh is connected to a smaller
crack extension increment per load cycle. Neverthe-
less, graphs similar to Fig. 7 can be also drawn for the
first load cycles, showing that the crack tip is closed
during the stages where J ep

actPZ is negative and, thus,
�J ep

actPZ = J ep
actPZ,max, Eq. (16), is still valid and that

�J ep
actPZ correlates to �δt .
The dependence of this peak value on the mesh size

m is caused by the inhomogeneity of the plastic strain
field around the crack tip, especially, near the blunted
tip. A coarse mesh leads to a smoothing of stress and
strain peaks and causes a reduction of the magnitude
of the configurational force fep, see Eq. (13).

Furthermore, it should be noted that additional FE-
analyses are conducted where the crack extension in
each load cycle occurs at maximum load. Basically,
the results do not change compared to the procedure
with crack extension at minimum load, and the same
conclusions can be drawn as presented above.

8 Summary

The current paper discusses the physically correct eval-
uation of the driving force for fatigue crack propaga-
tion in elastic–plastic materials using the J -integral
concept. Numerical investigations are conducted for a
two-dimensional compact tension specimen with a long
crack under cyclic Mode I loading. The crack extends
by an increment after each load cycle at the minimum
load. The maximum load is varied so that small- and
large-scale yielding conditions prevail. Three different
load ratios are considered, from pure tension to tension-
compression loading. In general, maximum and mini-
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mum load are held constant during crack extension; in
addition, the effect of a single tensile overload is also
studied.

The results of the analyses show that the cyclic,
incremental plasticity J -integral �J ep

actPZ, which is
computed for a contour around the active plastic zone of
the growing crack, is physically appropriate to charac-
terize the growth rate of fatigue cracks in elastic–plastic
materials.

The experimental cyclic J -integral �J exp, proposed
by Dowling and Begley (1976), measures the cyclic,
incremental plasticity J -integral for a contour around
the total plastic zone, �J ep

PZ; the contour includes also
the plastic zone around the initial crack tip and the
plastic wake. The experimental cyclic J -integral �J exp

reflects the driving force of a stationary crack, i.e. it
is valid for the first load cycle. After crack extension,
the incremental plasticity J -integral around the total
plastic zone J ep

PZ differs from that around the active
plastic zone J ep

actPZ. Therefore, �J ep
PZ �= �J ep

actPZ, and
the experimental cyclic J -integral �J exp is not fully
appropriate to reflect the driving force for a growing
fatigue crack.

The difference between �J ep
actPZ and �J ep

PZ is most
clearly seen in the overload case, where �J ep

actPZ is able
to correctly reflect the well-known crack growth retar-
dation effect, whereas �J ep

PZ and �J exp would predict
a constant crack growth rate.
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