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Abstract Mixed-mode fracture presents spectacular,
scale-independent, pattern formation in nature and
engineering applications. The criteria for crack initia-
tion and growth under such mixed mode loading, how-
ever, are not well established. This work is aimed at
exploring the failure criteria and the pattern formation
under combined modes I and III. Specific designs of
specimens based on boundary element simulations are
considered with the aim of examining crack path selec-
tion at nucleation, threshold behavior of crack front
fragmentation and, spacing of fragmentation. Exper-
imental investigations with these specially designed
geometries show that there does not exist a threshold
ratio of K ∞

I I I /K ∞
I below which a crack will propagate

smoothly without fragmenting into facets. The crack
front is shown to fragment immediately as soon as it is
perturbed by a small amplitude mode III loading. The
experimental results show further that spacing of the
fragmentation is set not by any intrinsic length scale of
the material, but by the characteristic dimension of the
driving crack and the global loading.
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1 Introduction

The question of an appropriate criterion for fracture,
although originally raised by Griffith nearly one cen-
tury ago, is still being discussed, even within the
restricted setting of linearly elastic materials, exhibit-
ing a small-scale (nonlinear) fracture process zone.
Griffith’s criterion, as originally stated, is itself quite
remarkable in its generality; subsequent attempts have
only provided simplified implementations of this idea
such as to permit applications to specific conditions of
loading symmetries. For completeness, we quote the
theory of rupture postulated by Griffith:

“…the problem of the rupture of elastic solids has
been attacked from a new standpoint. According
to the well-known ‘theorem of minimum energy’,
the equilibrium state of an elastic solid body,
deformed by specified surface forces, is such that
the potential energy of the whole system is a min-
imum. The new criterion of rupture is obtained
by adding to this theorem the statement that, the
equilibrium position, if equilibrium is possible,
must be one in which rupture of the solid has
occurred, if the system can pass from the unbro-
ken to the broken condition by a process involv-
ing a continuous decrease in potential energy. In
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order, however, to apply this extended theorem
to the problem of finding the breaking loads of
real solids, it is necessary to take account of the
increase in potential energy which occurs in the
formation of new surfaces in the interior of such
solids.” …A.A. Griffith (1920).

In principle, this criterion should be able to predict arbi-
trary evolution of the crack(s), if such evolution is pos-
sible quasi-statically.1 The total energy of the system
is written as: E = � + Us where Us is the surface
energy and � = −W∂ R + UR is the potential energy
of the mechanical system. Griffith’s postulated frac-
ture criterion is then: E ′(a) = 0 where a represents
the equilibrium crack length. Griffith’s example was a
crack loaded with an opening mode symmetry with the
consequence of a straight extension of the crack and he
equated the fracture energy to the surface energy (sur-
face tension), but the theory itself corresponds to the
standard idea of energy minimization, and has no such
restrictions. In principle, when considering E ′ (a) = 0,
all possible crack configurations must be considered,
and all possible source of dissipation that occur prior
to generation of failure could be introduced into Us ,
not just the surface energy. Therefore, the criterion for
selection of the crack path (or nucleation of a crack)
is embedded in Griffith’s postulate; the main hurdle is
that it is extremely difficult to extract the path corre-
sponding to this minimization unless special methods
are introduced to permit crack surface evolution! The
change in the mechanical potential energy (outside of
the crack surface energy) −d�/da = G is labeled the
elastic energy release rate.

Practical fracture criteria (note plural) have been
introduced since the time of Irwin (1957), that, while
still based on the Griffith theory, are of limited validity.
Nevertheless, such criteria are of enormous practical
significance since they permit the design of fracture
critical structures, determination of residual strength
of structural components in the presence of cracks, and
assessment of structural integrity in a large number
of applications. The separation of the global loading
into the three symmetries—opening mode (mode I),
in-plane shearing mode (mode II) and anti-plane shear
mode (mode III)—is an extremely useful exercise that
decouples the problem of crack path selection from

1 If dynamic fracture is to be considered, inclusion of kinetic
energy is essential.

the energy balance equation, at least for mode I. Since
mode I loading is perhaps the most prevalent in struc-
tural applications, such decoupling has permitted suc-
cessful development of a practical fracture theory.

For mode I, based on the Williams (1952) and Irwin
(1957) estimate of the singular crack tip stress field,
σαβ = K ∞

I (2πr)−1/2 fαβ (θ), where K ∞
I is the mode

I stress intensity factor (SIF), and f I
αβ (θ) is a known

angular distribution, the connection to the Griffith cri-
terion can be written as G = (

1 − ν2
) (

K ∞
I

)2
/E . The

Griffith fracture criterion can be written as K ∞
I = K I C

at onset of crack growth, where K I C is the fracture
toughness and is related to the fracture energy per unit
area Gc by

√
EGc ≡ K I C . This should be consid-

ered to be a solved problem, apart from the search for
numerical methods that can implement this in a robust
calculation.

For problems involving coupled in-plane modes
I+II, the stress field in the vicinity of the crack
tip is written as: σαβ = K ∞

I (2πr)−1/2 f I
αβ (θ) +

K ∞
I I (2πr)−1/2 f I I

αβ (θ), where K ∞
I I is the mode II stress

intensity factor, f I I
αβ (θ) is another known angular dis-

tribution, and the connection to the Griffith criterion
can be written formally as: G = (

1 − ν2
) ((

K ∞
I

)2

+ (
K ∞

I I

)2
)

/E . However, it must be noted that this esti-

mate of the energy release rate is strictly valid only
for a straight line extension of the crack; however, it
is expected that due to the asymmetry in the loading
under combined modes I+II, that the crack will in gen-
eral experience a curved or kinked crack evolution,
depending on the magnitude of the asymmetry that
is dictated by the ratio: K ∞

I I /K ∞
I . At least three dif-

ferent formulations of the failure criterion have been
used in the literature: (i) Griffith—crack grows in the
direction of the maximum energy release, when this
attains the fracture energy, Gc. Calculation and imple-
mentation of this criterion has been difficult and awaits
the development of numerical or other methods—such
as the phase field method—for determining this path.
(ii) Maximum hoop stress criterion—crack grows in
the direction perpendicular to which the hoop stress
reaches a maximum; of course, the energy released
in this direction will be a function of the stress inten-
sity factors; therefore, this criterion can be written as:
F

(
K ∞

I , K ∞
I I

) = 0. (iii) Principle of local symme-
try (PLS): consider an infinitesimal extension of the
main crack along some direction, γ , and denote the
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stress intensity factors at the tip of such extension
as (kI (γ ), kI I (γ )); the crack will grow in the direc-
tion γc in which the local mode II stress intensity
factor vanishes: kI I (γc) = 0, when kI (γc) = K I C .
The scatter in the available experimental data prevents
a positive discrimination between the predictions of
the maximum hoop stress criterion and the principle
of local symmetry; within these limits, both the PLS
and the maximum hoop-stress criterion appear to pro-
vide acceptable predictions of crack path and growth.
Combined modes I+II also represents a nearly solved
problem; additional investigations could be fruitful if
directed towards design of suitable experiments that
could discriminate between the different failure criteria
and towards development of robust numerical methods
for implementation of these failure criteria.

For problems involving mixed modes I+III, the situ-
ation is much less developed for many different rea-
sons. First, there have been limited attempts, some
experimental and others analytical, to extract/elucidate
the appropriate failure criterion. Second, the avail-
able experimental investigations have been clouded
somewhat by uncertainties associated with the actual
loading/boundary conditions that bring to question
the mode mix really responsible for crack initia-
tion/growth. Lastly, while the anti-plane shear prob-
lem for deformation is governed by Laplace’s equa-
tion in two-dimensions, the corresponding fracture
problem must include additional specification of the
nature of the failure process before the need for three-
dimensional analysis can be determined; thus, on the
one hand, if failure is taken to be caused by slip
along planes of maximum shear (as in the work of
Barenblatt and Cherepanov 1961), the mode III prob-
lem remains two-dimensional, and such “shear cracks”
can propagate with the normal to the crack surface
remaining in the plane and maintaining the anti-plane
symmetry. In fact, in this case, the mode III prob-
lem is fully decoupled from the in-plane modes I+II.
Barenblatt and Cherepanov (1961) used this crite-
rion to solve a number of different crack problem in
pure mode III. On the other hand, if one considers
that failure is caused by opening stresses, one must
abandon the assumption that the solutions retain anti-
plane symmetry; the fracture problem is then inher-
ently three dimensional, and indicates possibly dis-
continuous evolution of the crack that make analysis
difficult. This distinction has not always been main-
tained clearly in the literature, with most analyses of
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Fig. 1 Schematic diagram of a three dimensional crack front. CF
and CP represent the crack front and crack plane, respectively.
(b, n, t) represent the directions normal to CF, normal to CP,
and tangent to the CF respectively

the problem implicitly assuming failure by opening
stresses.

One generalization of the PLS was proposed by
Goldstein and Salganik (1974) is the following postu-
late: kI I (γc) = 0, with f (kI , kI I I ) = 0; here kI I I

represents the mode III SIF at the extension of the
main crack along the orientation γc. As with the cri-
terion posed by Barenblatt and Cherepanov (1961),
this is a possible criterion and its implications must
be evaluated for specific mixed mode loading condi-
tions to determine its suitability. In order to explore
the predictions of this criterion, we use the perturba-
tion estimates of Leblond (1999) to express the frac-
ture criterion in terms of the SIF on the original crack
faces. Consider a local region of a curved crack front
(CF), with the position along the crack indicated by
the arc length s as shown in Fig. 1. The unit vec-
tor t(s) is tangent to the CF, the unit vector n(s) is
normal to the original crack plane (CP) and the unit
vector b(s) indicates the normal to the CF and com-
pletes the triad of unit vectors at the point s. The
cracked solid is subjected to arbitrary loading such that
the crack tip experiences a combined mode I+II+III
loading indicated by

(
K ∞

I (s), K ∞
I I (s), K ∞

I I I (s)
)

along
the (n(s), b(s), t(s)) directions, respectively. Leblond
(1999) established that for a perturbation of the crack
that evolves continuously from the original crack font,
that kp(γ ) = Fp,i K ∞

i , where p and i take the val-
ues I,II,III, (summation over repeated index is implied,
but the comma is used simply to separate the two sub-
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scripts) and γ is the tilt angle with respect to the t(s)
axis. Using symmetry arguments Leblond (1999) sug-
gests that Fi,p = 0 when either p or i takes the value
III; this results in a complete decoupling of the in-plane
(b×n) loading modes from the anti-plane modes.2 The
consequences of this decoupling are examined in the
following; the fracture criterion according to the PLS
can now be written as

kI I (γ ) = FI I,I (γ )K ∞
I + FI I,I I (γ )K ∞

I I = 0

kI I I (γ ) = FI I I,I I I (γ )K ∞
I I I

f
[
FI,I K ∞

I + FI,I I K ∞
I I , FI I,I K ∞

I

+FI I,I I K ∞
I I , FI I I,I I I K ∞

I I I

] = 0 (1)

The first equation above dictates the direction of crack
extension γc: setting kI I (γc) = 0 yield indicates
that the direction of crack extension is influenced
only by the ratio of K ∞

I I (s)/K ∞
I (s), the second equa-

tion provides the value of kI I I (γ ), while the third is
the energy balance equation; note that K ∞

I I I (s) con-
tributes only to the energy released or equivalently
the crack initiation load level, but does not influ-
ence the crack path. This situation is clearly of lim-
ited validity: for example, consider a half-plane crack
with a straight crack front subjected to a constant ini-
tial SIF:

(
K ∞

I (s) = a, K ∞
I I (s) = b, K ∞

I I I (s) = c
)
. The

PLS criterion suggests that the angle γc is dictated
only by the ratio b/a and is completely independent
of c. If we take b = 0, thereby considering a pure
mode I crack, the PLS failure criterion as postulated
above predicts crack extension along γc = 0 for all
values of c. Experiments, going all the way back to
Smekal (1953) have shown that even a small magni-
tude of c in a dominant mode I problem will nucleate
new crack fragments along the CF that are inclined
at an angle so as to eliminate kI I I . The insistence on
continuous evolution of the crack that is inherent in
this criterion makes it applicable only when K ∞

I I I is
small; this raises one fundamental question of whether
there exists a threshold ratio K ∞

I I I /K ∞
I below which

continuous extension of the crack may occur. Such a
threshold will place a limit on the applicability of the
PLS criterion.

Since we know that mode III loading is important
in crack front evolution, we seek a different general-
ization of the PLS: if in-plane cracks evolve so as to

2 It should be noted that the coupling between the in-plane and
anti-plane modes occurs in case of helicoidal perturbation (see
Leblond et al. 2011).

eliminate shear, the natural generalization would be to
insist that 3D cracks also evolve so as to eliminate
shear. Based on the experiments of Sommer (1969),
Knauss (1970), Cooke and Pollard (1996), and Lin et al.
(2010), we revisit the criterion that eliminates all shear
induced SIF and postulate that the crack will propagate
along the direction (γc, φc) when kI (γc, φc) = K I C ,
kI I (γc, φc) = 0, kI I I (γc, φc) = 0. A simple inter-
pretation of this criterion is that the first provides the
condition of criticality, while the second and third dic-
tate the rotation angle γc of the crack normal about
the t(s) and angle φc about the b(s) axes—the tilt and
twist, respectively. However, crack twisting cannot be
achieved by a continuous evolution of the crack front;
this requires the crack front to fragment—through the
generation of crack nuclei—immediately upon appli-
cation of a nonzero K I I I . This raises the second fun-
damental question: what, if any, sets the intrinsic scale
for the spacing between the nucleated crack front frag-
ments. Since linear elastic fracture theory does not pro-
vide an intrinsic length scale, this length must arise
from other geometrical features of the problem—either
an intrinsic process zone or a macroscopic length
scale.

The focus of this article is on the initiation of mode
I+III cracks, addressing the two fundamental questions
raised above. We examine the initiation of mixed mode
I+III cracks through a systematic variation of specimen
design that enables addressing the issue of the exis-
tence of a threshold as well as an intrinsic length scale
for the fragmentation of the crack front. This article
is organized as follows: recent work on mixed-mode
I+III cracks is reviewed in Sect. 2. The design of spec-
imens aimed at revealing the underlying reasons for
crack front fragmentation are discussed in Sect. 3. The
results are discussed in Sect. 4, with particular atten-
tion to the question of the existence of a threshold
for the occurrence of fragmentation along the crack
front, and the question of pattern formation from the
resulting crack initiation. The main outcomes and their
implication on fracture modeling are summarized in
Sect. 5.

2 Background for the mode I+III problem

We assume that fragmentation of the crack front into
facets of new cracks is an important aspect of mixed
mode I+III crack initiation and address two main ques-
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tions: (i) is there a threshold level of K ∞
I I I , below which

continuous evolution of the crack front is possible, and
(ii) what sets the length scale of fragmentation? The
relevant literature is reviewed in this section.

It has long been postulated that the crack will propa-
gate in a direction perpendicular to the maximum prin-
cipal stress (see Sommer 1969; Knauss 1970); under
this criterion, the orientation for conditions of plane
strain is given by Cooke and Pollard (1996):

(
1

2
− ν

)
tan (2φc) = K ∞

I I I

K ∞
I

(2)

Experimental observations support the above postu-
late for crack initiation (see Knauss 1970; Yates and
Miller 1989; Cooke and Pollard 1996; Lazarus et al.
2008; Lin et al. 2010); in particular, the pure mode
III experiment of Knauss (1970) indicates an angle of
the cracks to be π/4 in agreement with the prediction
of Eq. (2). Cooke and Pollard (1996) showed that this
criterion is equivalent to kI I I = 0 and maximum kI

criterion; both these criteria indicate that φc → π/4
as K ∞

I I I /K ∞
I → ∞. Cooke and Pollard (1996) also

considered the maximum energy release rate criterion;
this was evaluated by a simple perturbation analysis
where the SIFs on the twisted cracks were obtained by
imposing the stress from the parent crack; for values
of K ∞

I I I /K ∞
I > 1.4 (for ν = 0.38), the predictions of

this criterion deviated from that of the maximum princi-
pal stress criterion with two branches, tending towards
φc → 0 or φc → π/2 as K ∞

I I I /K ∞
I → ∞. Clearly,

the pure mode III results of Knauss (1970) indicate
that φc → π/4 as K ∞

I I I /K ∞
I → ∞ and contradict the

predictions based on energy release. Nevertheless, one
cannot discard the maximum energy release rate crite-
rion since it is obtained from a fundamental principle;
it would appear that the perturbation estimate for the
energy release rate requires additional investigation.
In the following, we shall assume that the crack will
develop fragments in agreement with the orientation
predicted by the maximum principal stress criterion in
Eq. (2).

Sommer (1969) examined the role of superposed
mode III loading on a crack growing under a domi-
nant mode I loading. The lateral surface of a cylin-
drical glass rod was subjected to fluid pressure; the
fluid penetrated to the inside through surface flaws and
then generated an opening mode interior crack perpen-
dicular to the axis of the rod. By superposing a small

torque on the rod, the fluid pressure driven crack was
then subjected to a small additional mode III load-
ing. In this case, Sommer observed a transition from
a smooth to faceted fracture surface; such a transi-
tion had been observed earlier by Smekal (1953), who
called the fragments “fracture lances” and associated
this transition with the competition of mode III and
mode I. In Sommer’s experiments, mode III is neg-
ligibly small when the crack is in the central portion
of the rod but increases as it grows towards the outer
surface. The experiments were performed at three lev-
els of torsion and the radius and crack tilt angle at the
location of the initiation of faceted cracks were mea-
sured. Based on the experimental data, Sommer postu-
lated that for lance initiation (fragmentation), a mini-
mum angle of twist of the principal axis was necessary.
This minimum angle is presumably dictated by intrin-
sic material properties and was measured to be 3.3◦
with respect to the nominal crack plane for the AR-
glass tested. The existence of the minimum twist angle
of the crack is equivalent to a threshold ratio K ∞

I I I /K ∞
I

above which the crack front will fragment into facets
and below which the crack surface will exhibit smooth
undulations.

Recently, Pons and Karma (2010) studied the insta-
bility of helical crack-fronts under mixed mode loading
using a continuous phase-field method that permitted
the evolution of the crack front to be examined. In their
notation, the (b, n, t) directions at a local point on the
CF are denoted as (x, y, z). Mixed mode I+III load-
ing was imposed by choosing the initial opening and
out-of-plane sliding displacements in y and z direc-
tions, respectively. The crack front was perturbed heli-
coidally; the perturbation amplitude also changes expo-
nentially in time (or crack extension along x) and was
parameterized in the form:

δx f ront (z, t) + iδy f ront (z, t)

= A0 exp

[
−ikz + σ(k)t

τ

]
(3)

Based on this parameterization, the variation of the per-
turbation amplitude versus time for simulations with
different wave number k and K ∞

I I I /K ∞
I were obtained

and used to extract the linear stability spectrum σ (k).
The simulated data was fitted to the form σ (k) =
ak −bk2. The spectrum is characterized by the fastest-
growing wavelength �max = 2π/kmax, where σ (kmax)

reaches the peak value, and the marginally stable wave-
length �stable = 2π/kstable, where σ (kstable) van-
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ishes and �max ≈ 2�stable. Then a relation between
�stable and K ∞

I I I /K ∞
I and a “process zone” length

scale ξ was developed by equating the configurational
force with the cohesive force and imposing the maxi-
mum fracture energy release rate criterion. This yields
an approximate relation for the maximally unstable
wavelength:

�max ≈ 2�stable ≈ 4πξ

(
K ∞

I

K ∞
I I I

)
(4)

Based on this result, the authors postulated that the ini-
tial instability wavelength depends solely on the stress
intensity factors for modes I+III and the process zone
scale. It should be noted that a threshold behavior is
not predicted by this analysis; for each loading con-
dition, K ∞

I I I /K ∞
I , there exists a critical wavelength

of fragmentation. Following on this numerical effort,
Leblond et al. (2011) derived an analytical expression
of the variation of the SIF near a helicoidally perturbed
crack front using the results of Movchan et al. (1998).
They used this expression in linear stability analysis
and identified that helicoidal perturbations are unsta-
ble beyond a critical ratio of K ∞

I I I /K ∞
I that depends

on the Poisson’s ratio:

(
K ∞

I I I

K ∞
I

)

cr

=
√

(1 − ν) (2 − 3ν)

3 (2 − ν) − 4
√

2 (1 − 2ν)
(5)

For a Poisson’s ratio of ν = 0.22 and ν = 0.34, corre-
sponding to glass and Homalite-100,3 respectively, the
critical values are 0.69 and 0.45. However, Sommer’s
experimental results indicate that fragmentation occurs
when the ratio K ∞

I I I /K ∞
I ∼ 0.03; this observation

suggests that there is possibly another mode of insta-
bility that intervenes prior to reaching the helocoidal
instability with a continuous evolution of the crack
front.

Lin et al. (2010) suggested a generalization of the
PLS criterion. They impose that both local shear SIFs
vanish on the incipient crack, and that the local open-
ing mode SIF approaches the critical value for the
material:

kI = K I C , kI I = 0, kI I I = 0, (6)

3 Homalite-100 (abbreviated as H-100) is a brittle thermosetting
polymer commonly used in fracture studies.

(a)

(b)

(c)

(d)

b

B φA

d

R R R

Fig. 2 a Geometry of the “factory roof” profile in a plane
perpendicular to the crack propagation direction; the red lines
indicate type A cracks inclined at an angle φ with respect to the
nominal crack plane and the black dashed lines indicate type B
cracks; b “Hand-shaking” mode of linking of the type A cracks;
c Bridging cracks linking type A cracks, formed after rearrange-
ment of the stress field; d Representation of bringing regions R
that connect the type A cracks and provide energy penalty for the
overall extension of the crack. (reproduced from Lin et al. 2010)

This criterion requires the crack front to fragment into
new faceted cracks as soon as a small amount of mode
III loading is applied. The plane of the prospective
crack (twist angle φc) is dictated by the Eq. (2). The
cross-section perpendicular to the original crack sur-
face exhibits a “factory roof” profile (see Fig. 2). There
are two types of cracks corresponding to the two twist
angles in this factory-roof pattern: cracks of type A
(en echelon cracks) are formed by opening mode I,
and cracks of type B which are not favorably ori-
ented with respect to local opening mode I. Therefore,
type B cracks cannot form concurrently with the type
A cracks. Based on experimental observation of the
dynamic crack growth, Lin et al. (2010) proposed that
type A cracks form first, but the region between them
(bridging region) is either uncracked or breaks later.
The energy penalty associated with the bridging region
must be paid as the type A cracks develop. By balanc-
ing the local energy dissipation per unit crack extension
with the global dissipation, Lin et al. (2010) developed
a relationship between the twist angle and the space of
new crack fronts:

�d sec φc + γsαd tan φc = �̃

(
K ∞

I

K ∞
I I I

)
b (7)
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Fig. 3 a The specimen
configurations used by
Goldstein–Osipenko b
schematic representation of
sections of the specimen at
different distances from the
notch and c images of
similar sections from the
notch on cheese specimens
indicating (i) the absence of
type B cracks and (ii) the
coarsening of the fractures
(reproduced with
permission from Goldstein
and Osipenko 2012)

where b, d and φc are defined in Fig. 2. � is the energy
penalty per unit area for type A cracks. �̃ is the global
fracture energy corresponding to the appropriate ratio
of K ∞

I I I /K ∞
I . γs, α are the energy penalty per unit vol-

ume and the characteristic width associated with the
bridging region. Based on Eq. (7), they postulated that
there exists an intrinsic length scale b (the scale of non-
locality) which is set by material properties. Experi-
mental data on d and twist angle φc of the fracture
surface from three point bending specimens with slant
crack at the center was collected. Fitting the data to the
model, they were able to extract the scale of nonlocality
b and the energy penalty associated with the bridging
region γs .

Recently, Goldstein and Osipenko (2012) examined
this problem by performing and interpreting experi-
ments on gypsum and cheese; their specimen, shown
in Fig. 3, experiences dominant mode I, with a super-
posed mode III loading. They calculated the stress
intensity factor at the fragmented crack approximately
and explored the reasons for the coarsening of the
crack fragments; we will examine this configuration
in greater detail in this work. An important outcome

of their work is the demonstration (see Fig. 3) that
type B cracks are not formed at the same time as the
type A cracks. Coarsening of the spacing between the
fragmented cracks was also observed, but we will not
consider this aspect in the present work. Lazarus et al.
(2008) had examined this issue earlier in PMMA spec-
imens subjected to fatigue cyclic loading and demon-
strated the absence of type B.

3 Specimen design

As discussed above, different specimen geometry and
loading configurations have been explored in the liter-
ature in order to elucidate initiation and growth of frac-
ture under mixed mode I+III conditions. However, con-
trolling the exact combination of mixed mode loading
is quite difficult; in particular, while the primary interest
is in the combination of modes I+III, it is extremely dif-
ficult to eliminate mode II loading, except in some spe-
cial cases, such as the internal pressure combined with
superposed torsion. In the present work, we begin with
the geometry and loading considered by Goldstein and
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Fig. 4 The variation of the stress intensity factors
K ∞

I (s), K ∞
I I (s), K ∞

I I I (s) along the crack front in the Goldstein–
Osipenko configuration with slant cracks with γ = 15◦

Osipenko (2012) shown in Fig. 3. Then, we consider
modifications to this geometry and loading in order to
control the crack tip state; specific designs of specimens
were based on accurate calculations of the stress inten-
sity variations using a boundary element technique, and
are aimed at examining crack path selection at nucle-
ation, threshold behavior of crack front fragmentation,
and the spacing of fragmentation. Using these variants
of the Goldstein–Osipenko geometry, we are able to
expand the range of K ∞

I I I /K ∞
I that can be examined.

3.1 Goldstein–Opisenko geometry and variants

We performed a number of simulations to calculate
the SIFs using a Symmetric Galerkin Boundary Ele-
ment code (Li and Mear 1998; Li et al. 1998). First,
the Goldstein–Osipenko geometry shown in Fig. 3 was
simulated with the following dimensions: H = 2.0,
w = 1.0, γ = 15◦ and a = 0.25w. The variation of
the mode I, II and III SIFs for this geometry along one
of the cracks is shown in Fig. 4;4 it is clear that the mode
I SIF is negative, indicating crack closure/contact for
sharp cracks, and that the mode III SIF reaches very
large values. We note that the simulations considered
an ideally sharp crack, while the experimental crack
would have some bluntness arising from the fabrica-
tion process. At the central portions of the crack front,

4 In this and other plots showing the stress intensity factor vari-
ation, the curvilinear coordinate normalized by the total crack
front length along the pre-crack front is used as the normalized
crack front position s.

this combined mode I+III SIF will cause crack initia-
tion with an angle φc with respect to the main crack
plane and possibly trigger crack front fragmentation.
However, in addition to these two modes, it can be
identified readily that the mode II SIF is singular at the
surface where the crack intersects the free surface and
varies monotonically across the specimen. Such varia-
tion of K ∞

I I was pointed out by Lin et al. (2010) for the
bending specimen. The role of this K ∞

I I is to kink the
crack to attain local mode I conditions; in brittle mate-
rials such as glass and H-100, the effect of mode II is
very strong and causes the crack to follow a tortuous
surface under all three modes. Therefore, we sought a
modification to the Goldstein–Osipenko geometry that
would eliminate the mode II SIF.

3.2 Calculation of stress intensity factors

In the second set of simulations, the geometry was mod-
ified with a design of a part-through crack as shown in
Fig. 5; for the loading configurations considered, the
part through crack is not expected to generate a mode
II stress intensity factor at the point where the crack
meets a free surface. Two interesting specimen types
were found, Type I that introduces predominantly mode
I+III loading, while Type II generates negative mode I
along most of the pre-crack front.

Specimen Type I: The geometry is shown in Fig. 5a.
The specimen is loaded from the top and supported at
the bottom of two pre-cracks. The specific dimensions
used are as follows: L = 3.0, H = 2.0, d = 2.25,
a = 0.186, b = 0.2, r = 1.5, γ = 26.6◦, and D = 0.5
for H-100 and D = 0.75 for glass. The variation of
the stress intensity factors for all three modes along
the curved crack front are shown in Fig. 6. There exist
some interesting characteristics to the variation of the
SIFs along the crack front that are useful in mixed-
mode I+III investigations. K ∞

I is positive and domi-
nates the loading with a very large amplitude. K ∞

I I is
very small in the central regions of the CF 0.4s − 1.0s;
it should also be noted that, as expected, it goes to zero
at s = 0 and s = 1, where the crack pierces to the free
surface. K ∞

I I I is large over some portion of the crack
front, but only in locations where K ∞

I is small. The
most interesting part is that K ∞

I I I switches sign along
the pre-crack front; at s = 0.82 K ∞

I reaches the maxi-
mum value, and both K ∞

I I and K ∞
I I I nearly vanish; (we

will refer to this location as the transition point). The
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Fig. 5 Geometry of
modified
Goldstein–Opisenko
configurations. The crack
fronts are curved and break
the surface on planes
y = ±D/2. Specimen Type
II is obtained merely by
flipping the loading about
the xy-plane. a Specimen
Type I. b Specimen Type II.
c Specimen Type III

(a) (b) (c)
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Fig. 6 The variation of the stress intensity factors
K ∞

I (s), K ∞
I I (s), K ∞

I I I (s) along the crack front for speci-
men type I. The origin of s is located at the top of the specimen.
Elastic properties of glass have been assumed in the simulations.
The specimen redesign has eliminated the concentration of
mode II stress intensity factor where the crack meets a free
surface (γ = 26◦)

importance of this specimen design is that it can pro-
vide a critical test to the existence of a threshold for
the fragmentation of the crack front. First, according to

the criterion postulated by Lin et al. (2010), we expect
the initiation of crack growth to occur at the transition
point, where K ∞

I approaches the critical value K I C ,
while K ∞

I I and K ∞
I I I both vanish; the principle of local

symmetry would also suggest crack initiation at this
location. Based on Eq. (2), we would also expect to see
the twist angle on either side of the transition point to
be of opposite signs. However, if there exists a thresh-
old ratio of K ∞

I I I /K ∞
I where the fragmentation does

not occur, we should observe a continuous evolution of
the crack front without fragmentation in region around
the transition point. The extent of this region can be
estimated from the Sommer’s results (Sommer 1969);
if a minimum twist angle of 3.3◦ is necessary for frag-
mentation to occur in glass, based on Eq. (2), this yields
a threshold ratio of K ∞

I I I /K ∞
I equal to 0.029 for glass

assuming ν = 0.25. From the simulation result for the
SIFs, one should observe a flat portion of normalized
length 0.042 (equivalent to 2.044 mm for the speci-
men dimensions indicated earlier) around the transi-
tion point. We will address this through experiments
on glass and H-100.

Specimen Type II: Specimen Type I has a very large
mode I stress intensity factor. As a result, when crack
initiation occurs (particularly in the somewhat blunted
specimens that were manufactured), further growth is
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Fig. 7 The variation of the stress intensity factors
K ∞

I (s), K ∞
I I (s), K ∞

I I I (s) along the crack front for speci-
men type II. The origin of s is located at the top of the specimen.
Elastic properties of Homalite-100 have been assumed in the
simulations (γ = 26◦)

extremely dynamic and interpretation of the fracture
surface beyond the onset of crack initiation becomes
quite difficult. In an effort to modify the stability of
crack growth in the specimen, we flipped the orientation
of the specimen with respect to the loading direction for
specimen Type I as shown in Fig. 5b, making it close to
the Goldstein–Osipenko specimen geometry, with the
exception of the curved crack fronts. The variation of
the three stress intensity factors along the crack front is
shown in Fig. 7. In contrast to the Type I specimen, K ∞

I
is negative over most of the crack front except for the
portion close to the bottom of the specimen; the largest
compressive values of K ∞

I occur in the same region
where K ∞

I I I is also large; K ∞
I I ∼ 0 in this segment,

indicating that we have a segment over which crack
initiation will be governed by K ∞

I I I and K ∞
I , but with

tilt angles that are opposite to that expected in Type
I specimens. The nucleation should occur first in the
central regions and the cracks may grow in a stable
manner until nucleation occurs in the region of positive
K ∞

I .
Other variants of the Goldstein–Osipenko geome-

try were considered; for example, in order to prevent
the possible nucleation of cracks from the positive K ∞

I
in specimen Type II, a compressive stress was applied
on the two vertical surfaces as indicated in Fig. 5c; The
resulting variation of the three stress intensity factors is
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Fig. 8 The variation of the stress intensity factors
K ∞

I (s), K ∞
I I (s), K ∞

I I I (s) along the crack front for specimen
type III. The origin of s is located at the top of the specimen.
Elastic properties of Homalite-100 have been assumed in the
simulations (γ = 26◦)

shown in Fig. 8. This geometry provides a nice symme-
try in the loading; compressive , nearly negligible K ∞

I I ,
and a large K ∞

I I I are observed. However, the large com-
pression in the vicinity of the maximum shear makes it
difficult to initiate crack growth in this geometry. Pre-
liminary experiments indicated that prior to crack ini-
tiation from the machined crack tips, cracks nucleated
from other defects near the free surfaces of the spec-
imen under mode I conditions and grew dynamically.
Tabulated values of the stress intensity factor variation
for the Goldstein–Osipenko geometry and its three vari-
ants considered here are given in the “Appendix”.

4 Experimental results

Parallelopipedic specimens 50.8 × 76.2 mm (2 × 3 in;
height × length;) were machined from 12.7 mm (0.5
in) thick H-100 and 19 mm (0.75 in) thick glass sheets.
The cracks were cut according to the specimen design
of types I and II, using a diamond blade with radius
38.1 mm (1.5 in) and thickness 0.178 mm (0.007 in).
Although an extremely thin diamond blade was used
to machine the crack, the pre-crack front is far from
the idealized sharp crack front. There also exist many
groove lines along the blunt pre-crack front that are
caused by the hard particles that form the diamond-
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Fig. 9 Fractograph of
Homalite H-100 specimen
type I, showing the region
near the transition point. b
Shows a magnification of
the boxed region in a

coated cutting blade. The experiments were performed
under displacement control in an Instron Model 4482
testing machine. The load vs load-point displacement
was monitored. However, in all the tests performed, the
response was linear until abrupt and unstable fracture
initiation. The critical load varied significantly from
test to test due to the fact that there were variations in
crack tip state; however, the geometric aspects of the
response were repeatable to permit interpretation of the
threshold behavior, fragment spacing etc.

4.1 Threshold behavior

The main objective of the tests performed with speci-
men of Type I was to examine the response of the crack
when K ∞

I I I passes through zero. Therefore, the fracture
surface of the glass and H-100 specimens of Type I were
examined using a scanning electron microscope (SEM)
(Model Quanta 650 FEG) at different magnifications.
The fracture surface was coated with a very thin layer
of Pd/Pt material before performing SEM observations
to prevent charging of the specimens from the electron
beam. Figures 9 and 10 show the detailed fractography
of the H-100 and glass specimens, respectively. The
fracture surfaces of these materials exhibit many simi-
lar features at the early state of the crack growth. First,
it appears that initiation of the crack occurred on the
pre-crack front very close to the transition point iden-
tified through the analysis presented in Sect. 3.2. The
fact that nucleation occurs at the transition point is not

surprising; either fracture criterion under consideration
would indicate such initiation. The key difference is in
the prediction of the onset of fragmentation of the crack
front. Second, the fragmentation of the crack front into
multiple facets is immediate! This is clearly observed
by noting that in the neighborhood of the transition
point there does not exist a flat area where pre-crack
front grows without fragmentation. For the glass spec-
imen, if the threshold twist angle of 3.3◦ indicated by
Sommer (1969) is to hold, a straight extension of the
crack front is expected over a length of about 2.044
mm, but it is seen that fragments appear within the dis-
tance of 100 µm from the transition point. Within this
distance the value of K ∞

I I I /K ∞
I is only marginally dif-

ferent from zero. The same behavior is also observed
in Fig. 9 in H-100, with immediate fragmentation of
the crack over a length that is nearly the same as in
the glass specimen. Taken together, these observations
suggest that there appears to be no threshold value
of K ∞

I I I /K ∞
I required for fragmentation of the crack

front; a crack front will fragment immediately as soon
as it is perturbed by mode III. It remains to identify the
scale on which such fragmentation is observed and we
will consider some aspects of this problem in the next
section. Finally, beyond the initiation of crack growth
at the transition point, further crack growth occurred
dynamically, dominated by mode I loading. This spec-
imen design was not suitable for examining contin-
ued crack growth, if any, under the combined mode
loading

123



132 K. H. Pham, K. Ravi-Chandar

Fig. 10 a Fractograph of
glass specimen type I,
showing the region near the
transition point. (a1) Shows
a magnification of the boxed
region in a; (a2) Shows a
magnification of the boxed
region in a1. b Identifies the
region of interest (near the
transition point) where there
is a transition from positive
K ∞

I I I to negative K ∞
I I I

4.2 Intrinsic length scale

While the specimen Type I was well suited for consid-
ering the possible threshold behavior, continued growth
was dominated as indicated above by mode I. There-
fore, experiments were performed on H-100 with spec-
imen Type II, where it was anticipated that as a result
of the negative K ∞

I , the nucleated fragments along the
crack front may get arrested. However, cracks initi-
ated along the region of the positive K ∞

I on the pre-
crack front (see Fig. 7, between 0.9 and 1.0 s), grew
faster than the cracks nucleated in other regions, and
quickly reached an unstable state, popping across the
entire specimen dynamically. Nevertheless, the unsta-
ble cracks deviated away from the machined crack
fronts, and left parts of specimen containing “unbro-

ken” portions of the pre-crack that could be examined to
evaluate the nucleation of fragments from the machined
pre-crack. These unbroken portions were recovered,
polished to extremely thin sections on planes above
and below the pre-crack surface and imaged by an
optical microscope with magnification of 100×, 200×
and 300×; these images are shown in Fig. 11. It is
worth emphasizing that fragmentation spacing can be
observed at three different length scales in these spec-
imens. The third level, the largest scale observed, is
shown in Fig. 11a. The pre-crack front is identified by
an arrow; the width of the crack is dictated by the blade
used to cut the crack and as indicated earlier, this is
on the order of 175–200 µm. At this level, the nucle-
ated cracks are easily observed, and are indicated in
Fig. 11a, b; they appear to form a nice nearly periodic
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Fig. 11 Cascading length
scales of fragmentation
spacing. a Nucleation along
the pre-crack front on the
scale of the thickness of the
machined crack. A high
magnification image
covering a longer length
along the crack front is
provided as Supplementary
Material. b Nucleation
along the pre-crack front
influenced by the width of
the groove lines in the
machined crack. c
Nucleation along a natural
crack front. (d) A magnified
view of the boxed region
(100 µm × 500 µm)

indicated in c

pattern with a spacing of about two pre-crack thick-
nesses, but also indicate significant fluctuations. There
exists a smaller length scale—the second level—that
is associated with the width of the groove lines on
the pre-crack front. As indicated earlier, in addition
to the thickness of the blade that dictates the thick-
ness of the pre-crack, the crack front is decorated with
grooves that arise from the size of the cutting particles
that are part of the cutting blade. These grooves are
on the order of a few tens of microns in size and run
along the entire crack front. Nucleation of fragments
that occur at these grooves results in fragments with a
spacing of a few tens of microns. Finally, fragmenta-
tion at the smallest length scale—the first level—was
discovered along natural crack front (Fig. 11c, d). The
thickness of a naturally formed crack is typically much
smaller than the machined cracks and is of the order of
the fracture process zone. Therefore, one expects the
lower bound of the fragment spacing to be dictated by
this microstructural scale, as indicated by the results of
Lin et al. (2010). Indeed, fragments that were nucleated
from a natural crack exhibited a much smaller fragmen-
tation spacing in comparison to the machined cracks;
optical microscopy resolved this spacing to be about
10 µm, but there could be much smaller features that
are not resolved optically.

The SEM images for glass specimen discussed
in Sect. 4.1 (Fig. 10a2) also manifest the cascading
length scale of fragment spacing. The larger spacing in

Fig. 10a is associated with the width of the machined
pre-crack. But in Fig. 10a2 a small region along the
natural crack front captured at extremely high mag-
nification is shown. It is worth emphasizing that the
fragmentation spacing of a natural crack front is of the
order of 0.5–1.0 µm which is much smaller than the
fragmentation spacing for the machined crack front for
glass.

For the specimens used in Sect. 4.1, over the dis-
tance of 100 µm near the transition point, the ratio of
K ∞

I I I /K ∞
I is nearly the same for both the glass and

H-100 specimens (K ∞
I I I /K ∞

I ∼ 0.001). Based on the
dependence of the fragmentation spacing on the frac-
ture process zone predicted by the stability analysis of
Pons and Karma (2010) (Eq. 4) one would expect dif-
ferences between glass and H-100, because the fracture
process zone size in H-100 is about two orders of mag-
nitude larger than that of glass. But it can be observed
clearly that the fragmentation spacing is approximately
of the order 30 µm for both materials (see Figs. 9,
10).

Together, these observations indicate that an intrin-
sic length scale for the crack front fragmentation spac-
ing does not exist, but that the spacing depends on the
characteristic dimension of the driving crack (thick-
ness of the crack). This provides an explanation for
the fact that fragmentation of the crack front has been
observed in scales ranging from the microscale to the
geological scale where the fragmentation space may

123



134 K. H. Pham, K. Ravi-Chandar

be on the order of meters. In the following, we will
explore the effect of the stress field shielding from
one nucleated crack front on the neighborhood of this
nucleus.

4.3 Shielding along the crack front resulting from
nucleation of a fragment

As discussed in Sects. 1 and 2, there have been many
attempts at understanding the initiation of cracks under
mixed mode I+III. Almost without exception, these
investigations have used the approach of getting the
stress intensity factor using a perturbation approach in
which a continuous (smooth) evolution from the “par-
ent” crack was considered. Linear stability analysis
was then considered on the basis of the PLS criterion;
as discussed earlier, the predictions of such analysis,
for example by Leblond et al. (2011), indicate that the
crack path is stable for much larger values of K ∞

I I I /K ∞
I

than observed experimentally. However, if the PLS gen-
eralization in Eq. (6) is used, we expect crack front
to fragment into multiple cracks; we explore the pos-
sible origins of the fragment spacing under this crite-
rion through a series of numerical simulations. In order
to explore the changes in the SIF that is triggered by
the nucleation of crack front fragments, we introduce
a fragmented crack in the middle of the parent crack;
we shall call this the “daughter” crack. Because of lim-
itations in the BEM code in representing intersecting
cracks, the following strategy was adopted. The parent
crack was represented as a sharp crack in a large block
of size (a × b × c). The specimen was subjected to
boundary loading that generated a mixed mode loading(
K ∞

I , K ∞
I I I

)
along the straight crack front. The daugh-

ter crack was represented by a three-dimensional geo-
metrical feature: the daughter crack was idealized as a
disk-like geometrical feature with a “crack tip radius”
rmicro = 12.7 µm, with a circular crack of radius
amicro = αrmicro, and α ∈ [5, 50]. The nucleated crack
was taken to be orientated at an angle φc, as dictated
by Eq. (2). The system of the parent-daughter cracks
is shown in Fig. 12a. The variation of the stress inten-
sity factors (kI , kI I , kI I I ) along the original crack front
that results from nucleation of the daughter crack was
calculated from the boundary element simulation. This
variation is shown in Fig. 12b, where the stress intensity
factors are normalized by K ∞

I and the distance along
the crack front from the daughter crack is normalized by

the radius of the daughter crack. The results shown cor-
respond toK ∞

I I I /K ∞
I = 0.42, resulting in φc = 35◦,

and for α ∈ [5, 50], corresponding to a daughter crack
of radius a ∈ [63.5, 635] µm. The shielding effect of
the nucleated crack on either side of the daughter crack
is evident: the stress intensity factors for modes I and
III on the parent crack drop in the immediate vicinity
of the microcrack; with distance away from the site of
the daughter crack, the stress intensity factors along
the parent crack gradually return to the far-field values
that correspond to the imposed uniform values, with a
small peak at about one radius from the daughter crack.
A local fluctuation in the mode II stress intensity factor
is also introduced, indicating the inherent coupling of
all three modes. It is clear that any crack nucleation
that occurs along the crack front will shield—by elas-
tic unloading—a neighborhood whose size depends on
φc and α. In order to obtain a quantitative measure
of this shielding, we need to identify the location at
which the next crack may nucleate: this could be at the
site of maximum kI located at a distance b1 from the
nucleation point. However, there is a significant amount
of kI I I at this location; nucleation could also occur at
the location of minimum kI I I , which is located at a
distance b3 from the nucleation point. The distances
b1 and b3 could be considered to indicate the spac-
ing between the nucleated cracks corresponding to any
twist angle φc and crack size α. These simulations were
repeated for values of φc ∈ [10, 35] at fixed α = 20
and the results of mode I and III stress intensity fac-
tors,

(
kI /K ∞

I , kI I I /K ∞
I I I

)
were obtained. From these

results, the dependence of the distances b1 and b3 on φc

were extracted and are plotted in Fig. 13. From these
results, it is seen that b1 increases with φc while b3 indi-
cates a decrease with an increase in φc; the latter trend
is similar to that indicated in the experimental results
of Lin et al. (2010) (see Fig. 7c of that reference). The
implication of this result is that the shielded length (and
therefore the fragment spacing) depends on the size of
the daughter crack, which in turn, would depend on the
characteristic thickness of the parent crack that drives
the nucleation. We conclude this discussion by point-
ing out that we have only considered the nucleation of
the crack fragments and not its further evolution. Upon
further loading, the nucleated population of daughter
cracks will interact with each other, and create a quite
complex state of local mode mix. The further evolu-
tion of the daughter cracks follows one of two possible
paths: if the global loading is dominant K ∞

I , the daugh-
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Fig. 12 a Schematic
diagram indicating the
parent crack under a mixed
mode loading, with a
daughter crack that
nucleated at the center. b
Change in crack tip SIFs
with daughter cracks size
amicro = αrmicro. The
daughter crack tip was
idealized by a rounded
geometrical feature
rmicro = 12.7 µm in the
simulations. The parent
crack is loaded such that
K ∞

I I I /K ∞
I = 0.42 (to

produce the twist angle
φ = 35◦). The distance
along the parent crack front
from the daughter crack is
normalized by amicro
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ter cracks will eventually coalesce into each other and
rotate the crack so as to eliminate K ∞

I I I . On the other
hand, if the global loading is dominant K ∞

I I I , within a
compressive field (negative K ∞

I ), the fragments may
continue to grow as independent cracks as indicated
in the experiments of Goldstein and Osipenko (2012)
and in the type II specimens reported in the present
work.

5 Conclusion

The criterion for initiation of cracks under mixed-mode
I+III loading has been examined further. Following
on the geometry suggested for such investigations by
Goldstein and Osipenko (2012), we explored alterna-
tive geometries that can be tailored to address spe-
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Fig. 13 Location b1 of maximum kI and b3 of minimum kI I I
for different daughter cracks angles φ. The daughter crack
tip was idealized by a rounded geometrical feature rmicro =
12.7 µm, with crack size amicro = αrmicro; α = 20 in these
simulations
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cific questions related to the initiation of cracks. All
designs were supported with calculation of the stress
intensity factors using a boundary element code (Li et
al. 1998). With the first design, mode II was nearly
completely eliminated, and the value of the mode III
stress intensity factor experienced a change of sign
from negative to positive in the location where the
mode I stress intensity factor attained a maximum.
This allowed examination of the question of exis-
tence of a threshold for crack front fragmentation.
The second design, in which the mode I stress inten-
sity factor was negative caused crack that nucleated
to be arrested, permitting examination of the spacing
between the nucleated crack front fragments. Exper-
iments were performed on two materials: glass and
H-100, both of which exhibit brittle or quasi-brittle
fracture behavior. Recovered specimens were exam-
ined to reveal the geometry of the nucleated crack front
fragments. From this study, two major conclusions are
reached:

i. Cracks subjected to combined modes I+III loading
cause fragmentation of the crack front without any
threshold; perturbations as small as K ∞

I I I /K ∞
I ∼

0.001 cause nucleation of fragmented daughter
cracks.

ii. The distance between the fragments is dictated
by the length scale corresponding to the decay of
the elastic field; this decay depends on the thick-
ness dimension of the parent crack from which

the daughter fragments are nucleated. The thick-
ness of the parent crack is governed either by the
microstructural scale of the fracture process zone
for a natural crack, or by the local radius of curva-
ture of grooves for a machined crack.

The continued growth or coalescence of the nucleated
crack fragments, which themselves could be subjected
to further mixed mode loading, would depend on the
global loading imposed and will been examined in a
future contribution.
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6 Appendix: Tables of stress intensity factors for
part-through cracks for specimen types I, II and
III

The variation of the stress intensity factor along the
crack front for the original Goldstein–Osipenko geom-
etry and its variants used in this work, labeled Type I,
II and III specimens are provided here; the stress inten-
sity factors were calculated using a boundary element
code developed by Li et al. (1998).

See Tables 1, 2 and Fig. 14.

Table 1 Stress intensity
factors for
Goldstein–Opisenko
configurations

s K ∞
I K ∞

I I K ∞
I I I s K ∞

I K ∞
I I K ∞

I I I

0.000 0.031 0.100 0.052 0.533 −0.200 0.003 0.341

0.022 −0.036 0.034 0.060 0.594 −0.177 0.000 0.334

0.047 −0.076 0.021 0.069 0.650 −0.153 −0.003 0.324

0.074 −0.114 0.015 0.082 0.701 −0.124 −0.006 0.313

0.103 −0.153 0.013 0.101 0.748 −0.088 −0.009 0.299

0.136 −0.191 0.014 0.128 0.790 −0.042 −0.013 0.281

0.171 −0.226 0.015 0.163 0.829 0.017 −0.018 0.260

0.210 −0.252 0.017 0.204 0.864 0.089 −0.024 0.239

0.252 −0.267 0.017 0.247 0.897 0.172 −0.033 0.221

0.299 −0.269 0.016 0.286 0.926 0.260 −0.046 0.207

0.350 −0.260 0.013 0.317 0.953 0.347 −0.067 0.199

0.406 −0.243 0.010 0.336 0.978 0.429 −0.104 0.195

0.467 −0.223 0.006 0.344 1.000 0.492 −0.295 0.210
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Table 2 Stress intensity
factors for part-through
cracks for types I, II and III

Specimen dimensions are
indicated in Sect. 3.2 (with
thickness D = 0.5).
Poisson’s ratio ν = 0.35 and
unit load distributed over the
length of 0.38 for specimen
type I and 1.0 for specimen
types II and III have been
assumed in the simulations

s Specimen type I Specimen type II Specimen type III

K ∞
I K ∞

I I K ∞
I I I K ∞

I K ∞
I I K ∞

I I I K ∞
I K ∞

I I K ∞
I I I

0.000 −0.003 −0.010 −0.022 0.000 0.000 0.000 0.001 −0.001 0.002

0.028 0.002 −0.054 −0.100 −0.039 −0.003 0.006 −0.029 −0.006 0.012

0.058 0.014 −0.055 −0.107 −0.058 −0.005 0.011 −0.047 −0.008 0.016

0.091 0.029 −0.048 −0.105 −0.075 −0.007 0.016 −0.065 −0.009 0.020

0.126 0.046 −0.040 −0.100 −0.091 −0.009 0.021 −0.083 −0.011 0.025

0.164 0.064 −0.031 −0.095 −0.106 −0.011 0.029 −0.101 −0.012 0.031

0.204 0.084 −0.024 −0.090 −0.120 −0.013 0.037 −0.117 −0.012 0.038

0.248 0.104 −0.017 −0.085 −0.131 −0.013 0.046 −0.132 −0.012 0.045

0.294 0.125 −0.010 −0.080 −0.139 −0.012 0.056 −0.145 −0.010 0.053

0.345 0.147 −0.004 −0.076 −0.144 −0.008 0.067 −0.155 −0.007 0.061

0.399 0.174 0.002 −0.074 −0.146 −0.002 0.077 −0.163 −0.001 0.069

0.450 0.199 0.002 −0.070 −0.144 −0.001 0.084 −0.167 0.000 0.074

0.500 0.221 0.002 −0.066 −0.136 −0.001 0.088 −0.166 0.001 0.076

0.550 0.239 0.003 −0.059 −0.125 0.000 0.089 −0.160 0.001 0.074

0.601 0.251 0.003 −0.051 −0.110 0.001 0.086 −0.150 0.002 0.069

0.655 0.261 0.007 −0.040 −0.092 0.008 0.081 −0.137 0.007 0.062

0.706 0.271 0.008 −0.030 −0.074 0.013 0.075 −0.125 0.010 0.054

0.752 0.277 0.008 −0.019 −0.057 0.016 0.069 −0.111 0.012 0.047

0.796 0.281 0.006 −0.009 −0.039 0.019 0.063 −0.096 0.013 0.040

0.836 0.280 0.003 0.001 −0.021 0.020 0.058 −0.080 0.012 0.035

0.874 0.275 0.000 0.010 −0.004 0.021 0.054 −0.063 0.012 0.030

0.909 0.265 −0.004 0.017 0.010 0.021 0.049 −0.047 0.011 0.026

0.942 0.247 −0.007 0.022 0.022 0.021 0.044 −0.031 0.010 0.022

0.972 0.211 −0.009 0.023 0.028 0.018 0.036 −0.016 0.009 0.017

1.000 0.023 −0.003 0.005 0.006 0.003 0.006 0.002 0.001 0.003

Fig. 14 a Mesh
discretization of
Goldstein–Osipenko
configurations. b Typical
mesh discretization for
part-through crack
configurations
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