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Abstract This paper discusses dynamic crack growth
and arrest in an elastic double cantilever beam (DCB)
specimen, simulated using the Bernoulli–Euler beam
theory. The specimen is made from two different mate-
rials. The section of interest, where the dynamic crack
growth takes place, is made from a material, the fracture
energy of which will be denoted 2�1. The initial crack
grows slowly in a starter material with a fracture energy
2�0 (�0 > �1), while opposed displacements on both
arms of the specimen are continuously increased. As
the crack reaches the material interface at � = �c, the
loading displacement is instantly suspended, and the
crack suddenly propagates through the test zone, until
it stops at � = �A. During this process, the energy
2�1(�A − �c) is dissipated. The beam motion and the
fracture process during the fast crack growth stage are
investigated, based on the balance energy associated to
the Griffith criterion. The motion equations are approx-
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imated using a modal decomposition up to order N of
the beam deflection (the analysis has been performed
up to N = 10 but in most cases N = 5 is sufficient
to obtain an accurate solution). This process leads to
a set of N second order differential equations whose
unknowns are the mode amplitudes and their deriva-
tives, and another equation the unknowns of which are
the current crack length �(t), velocity �̇(t) and acceler-
ation �̈(t). To demonstrate the accuracy of this method,
it is first tested on a one dimensional peeling stretched
film problem, with an insignificant bending energy. An
exact solution exists, accurately approximated by the
modal solution. The method is then applied to the DCB
specimen described above. Despite the rather crude
nature of the Bernoulli–Euler model, the results crack
kinematics, and specially the arrest length, correspond
well to those obtained by the combined use of finite ele-
ments and cohesive zone models, even for a few modes.
Moreover, for the basic mode N = 0 (also referred to
as Mott solution), even if the crack kinematics is not
accurately reproduced, the prediction of the crack arrest
length remains correct for moderate ratios. Some para-
metric studies about the beam geometry and the ini-
tial crack velocity are performed. The relative crack
arrest �A/�c appears to be almost insensitive to these
parameters, and is mainly governed by the ratio R =
�0/�1 which is the key parameter to predict the crack
arrest.

Keywords Dynamic crack growth · Crack arrest ·
Peeling test · Double cantilever beam · Energy balance
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1 Introduction

Crack arrest length prediction is an important issue in
the study of dynamic brittle fracture of industrial struc-
tures. It seems sensible to consolidate a conservative
arrest estimate and to investigate complete crack kine-
matics during dynamic crack propagation. This analy-
sis is made difficult, in particular because of wave
reflections on the body boundaries. This paper attempts
to tackle these difficulties using a dedicated fracture
specimen. A commonly used laboratory test specimen
to investigate dynamic crack arrest is the double can-
tilever beam (DCB) specimen, the geometry of which
can be exploited to produce one-dimensional analysis
models. Furthermore, the narrow width of the speci-
men geometry involves stress waves reflections, which
can enhance the crack arrest length.

We focus here on the bimaterial DCB specimen,
which has a high toughness in the part where the initial
crack is blunted. This part is welded to a low tough-
ness section where the crack enters with a high veloc-
ity, depending on the ratio of the the surface energies.
This duplex specimen has been described by Kanninen
(1985) using a special augmented model (Kanninen
1973), within the framework of a quasi-static analy-
sis. Transient kinetic analyses may also be achieved
with some analytical methods leading to hyperbolic
equations being solved by a finite difference scheme
applied to characteristic lines (Freund 1977; Hellan
1981).

The first quantitative prediction for the kinematics of
a fast propagating crack, using energy balance, is due
to Mott (1948). An original analysis, based on solv-
ing Lagrange’s equation for a DCB specimen motion,
considered as a Bernoulli–Euler beam, has been ini-
tiated by Burns and Webb (1970), assuming that the
kinetic energy would follow the expression of a spe-
cific constant loading rate. Freund (1989) has extended
this approach to all loading conditions, using a Hamil-
tonian approach and introducing a modal decomposi-
tion, but his work is restricted to the mode N = 0,
which is similar to Mott’s work. Wang and Williams
(1996) applied this first mode truncation method to a
tapered DCB and their results are in good accordance
with finite element computations. From our knowledge,
higher modes have only been considered as a small per-
turbation of a quasi-statically growing stable crack in a
DCB, leading to natural frequencies and mode shapes
Jagota et al. (2002). An extension to modal analysis is

suggested here for higher vibration modes to investi-
gate the dynamic crack growth and arrest in a bimaterial
DCB specimen.

This paper is organized as follows. The general
problem is first introduced, with the description of the
crack growth modelling on a DCB specimen which
presents a toughness discontinuity. Section 3 describes
the modal decomposition of the beam deflection and
the corresponding frequency eigenvalues. Then, a vari-
ational principle, using admissible fields expressed on
the modal basis, leads to the local motion equations,
including the crack kinematics governed by the Grif-
fith law.

There are few available analytical solutions to
dynamic crack growth problems in finite solids in liter-
ature. Whereas crack propagation problems with tran-
sient motion are often achieved with Finite Element
Models, some analytical procedures are available for
simple one-dimensional models such as the peeling of
a thin film ( Freund 1989; Charlotte et al. 2008; Laz-
zaroni et al. 2012). In Sect. 5, the variational method
associated to a modal analysis is validated on the peel-
ing problem where an exact solution exists.

Section 6 is devoted to numerical experiments on the
DCB with homogeneous fracture properties. A quasi-
static method to capture the crack arrest length is sug-
gested.

2 DCB motion approximation with a Bernoulli
beam model

2.1 General description

An elastic 2h high DCB specimen, with an initial crack
length �0, is illustrated Fig. 1. The specimen arms are
slowly prescribed to a monotonic opening displace-
ment W 0(t) which triggers a quasi-static mode I crack
growth (marked by the current value �0 ≤ � < �c)

in a first part of the beam, which is made up of a
2�0 fracture energy material. A second material with
a lower toughness, referred to as the test section, is
welded to the first one (the corresponding energy is
2�1 < 2�0). When the crack tip reaches the sec-
tions interface (x = �c) where the toughness jump
occurs, it runs rapidly throughout the test section, from
time t = 0, while the displacement prescribed on the
remote ends of the specimen arms is held fixed during
the whole process (W 0(t) = W c, ∀t, t ≥ 0). The

123



Modal analysis of the dynamic crack growth and arrest 189

Fig. 1 Crack growth and
arrest in a bimaterial DCB
specimen

crack velocity �̇ (and the arrest length �A) in this test
section is governed by the energy ratio of the two sec-
tions (R = �0/�1, R > 1). The aim of this paper
is to investigate the crack kinematics during this stage,
especially the crack arrest �c ≤ x ≤ �A, under the
assumption that the crack path is straight. Branching
or kinking cracks are beyond scope of this paper.

The numerical model represents half of the spec-
imen, and consequently half of the fracture energy
(�0, �1). A Bernoulli–Euler model is used to simu-
late the beam (ratio h/�c is considered small enough
for the classical beam theory to hold). The motion is
thus fully represented by the scalar beam deflection
w(x, t). The general differential motion equation, asso-
ciated with the boundary conditions may be written as
follows, ∀�, �0 ≤ � ≤ �A :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E I
∂4w

∂x4 + ρ A
∂2w

∂t2 = 0, ∀x ∈ [0, �] , ∀t

w(0, t) = W 0(t),
∂2w

∂x2 (0, t) = 0,

w(�, t) = 0,
∂w

∂x
(�, t) = 0,

(1)

where E, I, A, ρ are respectively the elastic modulus,
the area moment of inertia, the area of the cross section,
and the mass density of the material.

As it is the dynamic stage that is of interest, the
initial conditions are those of the crack running onset
time when �(t = 0) = �c. Thus, the stage where
w(x, t), t < 0 x ∈ [0, �c[, is corresponding to
the quasi-static propagation in the first beam section,
which is not considered here. Nevertheless, this stage is
detailed in the next paragraph, to determine what initial
conditions should be prescribed.

2.2 Initial state of the dynamic process

The point where the crack tip reaches x = �c (cf. Fig. 1)
is the ultimate quasi-static stage where the deflection
is denoted wstat (x, t).

The equilibrium equation is the form of (1):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂4wstat

∂x4 = 0, ∀x ∈ [0, �] , ∀t < 0, �0 ≤ � < �c

wstat (0, t) = W 0(t),
∂2wstat

∂x2 (0, t) = 0,∀t < 0

wstat (�, t) = 0,
∂wstat

∂x
(�, t) = 0, �0 ≤ � < �c.

(2)

The solution of the above system is readily written:

wstat (x, t) = W 0(t)

2

x

�

(
x2

�2 − 3

)

+ W 0(t) (3)

The strain energy (which is also the potential energy
without any prescribed forces along the specimen
boundaries), associated to the above solution is there-
fore:

U = E I

2

�∫

0

(
∂2wstat

∂x2

)2

dx=
3

2
E I

(
W 0(t)

)2

�3 (4)

The energy release rate is then:

G(�(t)) = −∂U (�)

∂�
= 9

2
E I

(
W 0(t)

)2

�4 ,

�0 ≤ � < �c (5)

Assuming that the crack onset obeys the Griffith crite-
rion:

G(�(t)) ≤ �0 (6)
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The critical length �c is connected to the critical pre-
scribed displacement and the surface energy through
the relationship:

� =
c

4

√

9

2
E I

(wc)2

�0
(7)

It may be noted that up to � = �c, the relation
G(�) = �0 > �1 holds true, because during this stage
the crack propagation is stable. On the other hand, the
Griffith criterion is violated when the crack tip reaches
the interface bonding the starting and the test sections.
Hence, the relation (7) is no longer relevant for � ≥ �c.
From now on, we will focus on the dynamic stage for
� ≥ �c (disregarding the static stage �0 ≤ � < �c).

3 Approximate equation of the DCB motion by
modal decomposition

3.1 Natural frequencies and eigenmodes for a
pinned-clamped beam

Considering a beam in free vibration, a separated solu-
tion of the deflection, in time and space, is assumed:

w(x, t) = wstat (x) + φ(x) f (t) (8)

where the static part wstat fulfils the system (2).
The motion equation (1) may be written as:

E I

ρ A

φ′′′′(x)

φ(x)
= − f ′′(t)

f (t)
= ω2 (9)

where ω is the angular frequency, and which produces
two differential equations:

f ′′(t) + ω2 f (t) = 0, and φ′′′′(t) − μ4φ(t) = 0 (10)

with μ4 = ρ Aω2

E I
(11)

We only focus on the second equation, which provides
the eigenmodes and the eigenvalues.

The general solution of this equation is:

φ(x) = A cos(μx) + B sin(μx)

+ Cch(μx) + Dsh(μx) (12)

with the boundary following conditions:

φ (0) = 0 → A + C = 0
φ′′ (0) = 0 → −A + C = 0
φ (�) = 0 → B sin (μ�) + Dsh (μ�) = 0
φ′ (�) = 0 → B cos (μ�) + Dch (μ�) = 0

⎫
⎪⎪⎬

⎪⎪⎭

(13)

These conditions induce the following equation for the
eigenvalue solution:

tg(μ�) = th(μ�) (14)

This equation has an infinite number of solutions
μi , i ∈ N, which can be calculated numerically, or
approximated for high frequencies (by noticing that for
μi� >> 0, th(μi�) → 1) by:

μi� = (4i + 1)π

4
, i ∈ N (15)

The eigenmodes take the following form:

φi (x) = B

[

sin (μi x) − cos (μi�)

ch (μi�)
sh (μi x)

]

(16)

where the coefficient B is determined by the mode nor-
mality ‖φi‖ = 1

3.2 Approximate equation of motion

We focus now on the beam with the moving crack. The
moving domain {x, x ∈ [0, �(t)]} will be normalized,
with the variable change X = x/�, X ∈ [0, 1], so
that all expressions will be integrated over a stationary
domain.

It is assumed that the deflection of the beam is given
by the following approximation:

w (X, t) = wstat (X) + ŵ (X, t) (17)

where ŵ (X, t)is the perturbation around the equilib-
rium solution wstat ,corresponding to the expression
(3). This perturbation can be decomposed for its eigen-
modes, which provide an orthonormal basis:

ŵ (X, t) = ai (t)φi (X) , i = 1, N (18)

where the Einstein summation convention is adopted.
φi is the ith normal mode shape for free vibration of the
beam, and ai the unknown deflection amplitude asso-
ciated to φi (which depends on the initial conditions).

The complete solution of the dynamic crack growth
problem in the DCB is now restricted to the determi-
nation of the time dependent variables ai (t), �(t)

4 General evolution of the system and local
equations

The purpose of this section is to produce local equations
of the general motion ai (t), �(t) for the case of the
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Modal analysis of the dynamic crack growth and arrest 191

DCB with a running crack, starting from a variational
principle and the modal decomposition.

Let us consider the evolution of the total energy of
the beam H(t) (the surface energy could be considered
here as space dependent but for simplicity it is assumed
that the fracture properties remain constant):

H(t) = U (t) + K (t) + �1(�(t) − �c) (19)

Between two mechanical states at time t = 0 (crack
onset) and any time t1 > 0, the energy balance states
that H(t) keeps this initial value U0 at any time:

H(t1) = U (t1) + K (t1) + �1(�(t1) − �c) = U0 (20)

The energy components may be written on the station-
ary spatial domain {X = x/�, X ∈ [0, 1]}, with:

K (�(t), t) = ρ A

2

�(t)∫

0

(
∂w(x, t)

∂t

)2

dx = ρ A�

2

1∫

0

(
dw̃(X, t)

dt

)2

d X

U (�(t), t) = E I

2

�∫

0

(
∂2w(x, t)

∂x2

)2

dx = E I

2�3

1∫

0

(
∂2w̃(X, t)

∂ X2

)2

d X

Using the deflection modal decomposition on the
eigenmodal basis {φi }, the previous expressions are
rewritten as:

K (�(t), t)

= ρ A�̇2

2�

1∫

0

(
Xwstat ′ (X) + Xai (t) φ′

i (X)

−�

�̇
ȧi (t) φi (X)

)2

d X i = 1, . . . N (21)

U = E I

2�3

1∫

0

(
wstat ′′ (X) + ai (t) φ′′

i (X)
)2

d X (22)

Let (qi ) denote the parameters of the energy terms
(qi = ai , i = 1, N , qN+1 = �). The total energy is
then a functional H(qi , q̇i ) depending on the parame-
ters and their time derivatives. Therefore, the following
relation holds:

d H

dt
= ∂ H

∂qi
q̇i + ∂ H

∂ q̇i
q̈i = 0 (23)

With a simple mathematical calculation, invoking the
particular form of the kinetic energy (see “Appendix”),
the N + 1 local motion equations hold:

⎧
⎪⎪⎨

⎪⎪⎩

∂(K − U )

∂qi
− d

dt

∂(K − U )

∂ q̇i
= 0, i = 1, N

∂(K − U )

∂�
− d

dt

∂(K − U )

∂�̇
= �1

(24)

To complete the problem statement, the constraints
w ≥ 0, �̇ ≥ 0, which describe respectively the crack
lips non overlapping and the crack growth irreversibil-
ity, should be coupled to Eq. (24). These aspects will
be henceforth disregarded, because the lips contact can-
not be separately treated on each mode, and the irre-
versibility treatment, although it may be feasible, would
increase the computation cost. These shortcomings do
not greatly impact the final outcome.

That leads to the following second order differential
equations governing the beam vibration coupled to the
crack kinematics (see the details in “Appendix”):

äi = �̈

�

(
Ci

3 + a j C
i j
4

)
+ 2�̇

�
ȧ j C

i j
4

+ �̇2

�2

(
Ci

2 + a j C
i j
1

)

− 1

�4

E I

ρ A
aiμ

4
i , i = 1, N (25)

�̈ = �̇2

2�
+ �̇

	

(
−2ȧi C

i
2 − 2ȧ j ai C

i j
1

)

+ 3E I

2�3	ρ A

(
3(wc)2 + a2

i μ4
i

)

+ �

	

(

äi C
i
3 + äi a j C

i j
4 − �1

ρ A

)

(26)

where the coefficients
(

Ci j
1 , Ci

2, Ci
3, Ci j

4

)
only depend

on the mode shape of the beam (see “Appendix”), and

	 = 6(wc)2

35 + ai a j C
i j
1 + 2ai Ci

2
These two coupled systems are solved using a back-

ward differentiation formula method, used for implicit
equations. Once again, the above coupled system does
not ensure the irreversibility of the crack growth (�̇ ≥
0), neither does it prevent the crack lips from interpene-
trating (w (x, t) ≥ 0 should always be true). This does
not affect the results but could be amended in future
work, using corresponding constraints.
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Fig. 2 The peeling test with two surface energies

5 A one-dimension model for the peeling film
process

Before solving the above equations, let us focus on a
problem close to the running crack in the DCB, but
more simple and having an exact solution.

Let’s consider the peeling experiment of a thin film,
inextensible and perfectly flexible, from a rigid surface.
A vertical displacement W 0(t) is slowly prescribed at
the origin x = 0, while the film is stretched by an
axial force N and debonded from the surface, activat-
ing a surface energy �0 (cf. Fig. 2), for �0 ≤ x < �c

where �0 ≥ 0 is the initial length of the film. From
x = �c, the bonding surface becomes weaker, having a
lower surface energy �1 with R = �0/�1 > 1. When
�(tc) = �c, the loading is frozen (W 0(tc) = W 0) and
the peeling length is quickly increasing, up to the arrest
length �(tA) = �A. The aim is to determine the arrest
length, and more generally the complete film kinemat-
ics during the dynamic stage, disregarding the trivial
quasi-static peeling phase (t < 0). This problem has
been investigated by Freund (1989) and revisited by
Marigo et. al. for a slightly different loading, Charlotte
et al. (2008) and for heterogeneous debonding prop-
erties Lazzaroni et al. (2012). This problem, provid-
ing an exact solution, shares some similarities with the
DCB problem and is a mockup for testing the approach
defined above.

5.1 Statement of the peeling test

Only the main outcome is presented here, the detailed
analysis is presented in Freund (1989) and Charlotte
et al. (2008), Lazzaroni et al. (2012). A specific prop-
erty of this problem is that the peeling point carries a

discontinuity of strain (w,x ) and velocity (w,t ), which
propagates along the film at the wave speed c = √

N/ρ

where ρ is the wave celerity of the film. The motion
and the peeling process involve the following energies
(respectively kinetic, potential and dissipative part of
the total energy):

K (�(t), t) = ρ

2

�(t)∫

0

(
∂w

∂t

)2

dx (27)

U (�(t), t) = N

2

�(t)∫

0

(
∂w

∂x

)2

dx (28)

D(�(t)) = �1(�(t) − �c) (29)

The boundary conditions are:

w(0, tc) = W 0(tc) = wc, w(�(t), t) = 0, ∀t, t ≥ tc

while the initial conditions are: w(x, 0) = wstat (x, 0)

= wc(1 − x/�c).
Furthermore, the velocities and strains jumps are

expressed on the singular characteristic curves C j ={
(x j , t j )

}
in the space-time plane, as:

nx

∣
∣
∣
∣

[
∂w(x j , t j )

∂t

]∣
∣
∣
∣ = nt

∣
∣
∣
∣

[
∂w(x j , t j )

∂x

]∣
∣
∣
∣

where n is the unit normal of the characteristic curve.
The variational approach applied to this problem

leads to the local equations:

N
∂2w

∂x2 − ρ
∂2w

∂t2 = 0, on [0, �(T )] X [0, T ] /C j

(30)

Nnt

∣
∣
∣
∣

[
∂w(x j , t j )

∂t

]∣
∣
∣
∣ = ρnx

∣
∣
∣
∣

[
∂w(x j , t j )

∂x

]∣
∣
∣
∣ on C j

(31)

These equations describe the film motion. Furthermore,
the peeling point kinematics is depicted by a special
characteristic curve and is expressed by the Griffith
law:

1

2

(

N

[
∂w(�(t), t)

∂x

]2

− ρ

[
∂w(�(t), t)

∂x

]2
)

= �1

(32)

These equations may be solved by the characteristics
method and lead to the exact solutions of the film deflec-
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tion and kinematics. The main results may be summa-
rized as follows:

w(x, t) = wc
(

1 − x

�c

)

for x ≤ �(t) − ct

(33)

w(x, t) = wc
(

1 − x

�c(1 + �̇/c)

)

for x > �(t) − ct

(34)

and �̇(t)/c = R − 1

R + 1
for 0 < t ≤ tA

(35)

�A = �(tA) = R�c

K (�(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

U (�c)
R−1
2R ( �

�c
− 1), 0 ≤ t < �c/c

U (�c)
(R−1)2

2R2 − (R−1)

2R2 ( �
�c

− 1),

�c/t ≤ t < (�c + �A)/c

(36)

It is worth noting that the kinetic energy is time depen-
dent only through the peeling length, and obtains a zero
value after the arrest point, making a substantial differ-
ence with the DCB test, as is discussed in Sect. 6.

5.2 Approximation of the peeling problem by a modal
analysis

This problem may be also solved, by using a modal
analysis and in disregarding the strain and velocity
jumps, contrary to the characteristics method. There-
fore, it provides only approximate results, although a
reasonably accurate estimate can be obtained with a
limited number of modes. As already stated for the
beam, the film deflection can be expressed on the eigen-
modal basis:

w (X, t) = wstat (X) + ŵ (X, t)

= wstat (X) + ai (t)φi (X) , i = 1, N

where wstat (X) = W 0 [1 − X ]
Unlike the DCB specimen, the eigenmodes and the

angular frequencies are very simple and calculated
crudely by hand. The local motion equation (30), asso-
ciated to the boundary conditions leads to the following
normalized eigenmode vector:

φi (X) = √
2 sin(iπ X),

μi = iπ, i = 1, N , X ∈ [0, 1] ,

and the angular frequency: ω2
i = μ2

i c2

�2 = μ2
i N

ρ�2 .

The potential and kinetic energy expressions, asso-
ciated to N modes are:

U (w, t) = N
2�(t) (W 02 + ai a j (iπ)2δi j ), where δi j is

the Kronecker symbol.

K = ρ�̇2

2�2

1∫

0

(W 0 X + �

�̇
ȧi (t)φi (X)

− Xai (t)φ
′
i (X))2d X

In the same way as for the DCB test, assuming the
stationarity of H(t) = U (t) + K (t) + �1(�(t) − �c),
the following equations hold:

äi = �̈

�

⎛

⎝−
1∫

0

X W 0φi d X + a j

1∫

0

Xφ′
j φi d X

⎞

⎠

+2�̇

�
ȧ j

1∫

0

Xφiφ
′
j d X

− �̇2

�2

1∫

0

(W 0 − a j φ
′
j )X2φ′

i d X

− 1

�2

N

ρ
aiμ

2
i , i = 1, N

(37)

�̈ = �̇2

2�
+ �̇ȧi

	

⎛

⎝

1∫

0

2X2(W 0φ′
i − a j φ

′
iφ

′
j )d X

⎞

⎠

+ N

2ρ�	

(
(W 0)2 + ai a j δi j μ

2
i

)

+ �

	

⎛

⎝−äi

1∫

0

X W 0φi d X + äi a j

1∫

0

Xφ′
j φi d X − �1

ρ

⎞

⎠

(38)

with : 	 = (W 0)2/3 + ai a j
∫ 1

0 X2φ′
jφ

′
i d X − 2ai W 0

∫ 1
0 X2φ′

i d X
It can be seen that the above equations are very sim-

ilar to those governing the DCB test (25,26).

5.3 Numerical application of the modal analysis

Selecting the following characteristics: c = 5,000 m/s,
ρ = 7,800 kg/m3 corresponding to steel properties,
and a debonding energy ratio R = �0/�1 = 2, and
with the initial length �c = 0.1 m, the modal analy-
sis is performed with a wide range of modes, and the
results compared to the exact solution provided by the
characteristics method. The peeling length versus the

123



194 R. Abdelmoula, G. Debruyne

time process provided for different number of modes
and compared to the exact solution is illustrated on the
Fig. 3. For the basic mode (N = 0), the kinematics
are roughly designed but the arrest point is perfectly
predicted because the energy balance is perfectly valid
between the starting and the ending point. For N = 2,
the kinematics is much better, oscillating around the
analytical solution. Beyond N = 10, the results fit
with the true solution (except some tiny oscillations
which are invisible on the figure). Note that the arrest
is established here when the peeling length decreases,
which although not physically acceptable, is numeri-
cally possible because of the irreversibility not being
taken in account.

The peeling point velocity is sketched in Fig. 4. The
small oscillations noticed above for �(t) are increased
for the velocity, but the magnitude oscillates around the
exact value �̇(t) = R−1

R+1 c = c
3 , with a quasi jump for

the debonding start and arrest.
The kinetic energy (Fig. 5) increases up to the time

t = �c/c when the shock wave is reflected on the fixed
point where the displacement wc is prescribed. The
energy then decreases and cancels at the time arrest.
This process is correctly described with a sufficient
number of modes but small perturbations remain (the
solution is approximated by steps). Due to the lack of
constraints concerning the peeling irreversibility, the
numerical values increase again, after the definitive

Fig. 3 Peeling length
evolution

Peeling point kinematics
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Fig. 4 Peeling velocity
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Fig. 5 Kinetic energy
evolution

Reflected wave time Lc/c 

Kinetic energy evolution during the peeling process
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Fig. 6 Crack kinematics
for a modal decomposition
up to 5 modes (R = 2)

Crack growth for a ratio R=2 : modal analysis versus CZM
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arrest (the film is “rebonding” as we can see on Fig. 3).
The arrest is assumed at this point which fits with the
theoretical one, corresponding to the round trip time
delay for the wave ((�c + �A)/c).

6 Application to the DCB test

The previous modal analysis is now applied to the
DCB test, selecting the following characteristics: E =
21011Pa, ρ = 7800 kg/m3 corresponding to steel
properties, and with the initial length �c = 0.1 m to be
as close as possible to the previous test. The height of
the beam is h = 0.006 m so that the initial slenderness
ratio λ = �c/h ≈ 17 is sufficiently large to make the
Bernoulli model relevant, and a rectangular section is
assumed with a unit width.

6.1 Modal analysis for R = 2 and R = 3

The Fig. 6 displays the crack length extension versus
time for the surface energy ratio R = 2, and R = 3,
assuming a zero initial crack velocity. Unlike the pre-
vious test, an analytical solution is no longer available.
To obtain a point of reference, the modal analysis is
compared with a 2D (plane strain) finite element inves-
tigation associated to a cohesive zone model Debruyne
et al. (2012) (the cohesive zone is small enough to fit
with the Griffith criterion). The crack kinematics are
illustrated on Fig. 6 for R = 2 and for a range of mode
from N = 0 to N = 5. By examining the figure, two
initial comments can be made. First of all, the oscil-
lations of the crack growth are more pronounced than
those observed for the peeling test. Secondly, the aver-
age crack velocity is much lower than for the previous

123



196 R. Abdelmoula, G. Debruyne

Fig. 7 Crack kinematics
for a modal decomposition
up to 5 modes (R = 3)

Crack growth for a ratio R=3 : modal analysis versus CZM
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Higher modes (5<N<10) for a ratio R=2
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Fig. 8 Crack kinematics for upper modes (5 ≤ N ≤ 10) for R=2

example, meaning that a number of backward and for-
wards travelling waves are possible. It can be assumed
that these oscillations derive from two sources: the first
is connected to the wave returns marked by transient
short arrest (�̇ = 0), depicted by short flat steps with
the cohesive model, which are degenerated in oscilla-
tions with the modal analysis allowing crack growth
reversibility. The second is most likely due to the mode
shape, described by hyperbolic functions that are more
complex to compute accurately than those related to
the peeling film.

Nevertheless, the crack growth is in good agreement
with the cohesive zone model for a modal analysis with
N ≥ 3. For the basic mode N = 0, the complete kine-
matics is only very roughly approximated, but the crack
arrest prediction is a rounded up value (�A/�c ≈ 1.45).
Once again, this latter is assumed when there is a signif-
icant decrease of the crack length. Figure 7 sketches the

crack kinematics for the ratio R = 3. The same conclu-
sions can be drawn from observing the short transient
arrests, the results fluctuations and the global agree-
ment with the finite element analysis. The assumed
definitive crack arrest is here �A/�c ≈ 1.75 and the
basic modal analysis (N = 0) provides an upper bound
of the solution (�A/�c ≈ 1.85).

6.2 Modal analysis for higher modes and higher ratios

The modal analysis correctly predicts the crack kine-
matics with a moderate number of modes (N ≤ 5)

and takes less than 1 min of computer time. Above
the fifth mode (the analysis has been performed up
to 10 modes), the curves related to each mode coin-
cide almost perfectly, as represented by instance on
Fig. 8, for the case R = 2. Above N = 10, the con-
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Fig. 9 a Beam deflection
versus crack length At the
crack onset,9b. Beam
deflection versus crack
length at the crack arrest

Crack lips overlap

A
c

cw cw
a b

Fig. 10 Kinetic energy
versus time for R = 3

Kinetic energy R=3, Modal method and CZM
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vergence is more difficult and the time significantly
increases.

Below R = 10, no crack overlap has been detected,
so that the lack of consideration of contact does not
involve outliers. Beyond R = 10, a small crack overlap
is observed in the earlier crack growth stage (cf. Fig. 9a)
and the method reaches its limits.

6.3 Some comments about the kinetic energy role on
the crack growth process

The kinetic energy can vary during a possible tran-
sient arrest and even for the definitive arrest, because
some free vibrations remain (K (�(t), t)�̇=0 = ρ A�

2

∫ 1
0 (ȧi (t) φi (X))2d X). Hence, unlike the peeling test

where the kinetic energy only plays a transitory role and
where the arrest is fully predicted by the total quasista-
tic energy balance (Lazzaroni et al. 2012), the kinetic
energy evolution is more complex for the DCB test as
it can been observed on Fig. 10 for R = 3. At the defin-
itive crack arrest time, the kinetic energy does not van-
ish and yields a value slightly higher than its minimum,
occurring during the second bounce corresponding to
the beam vibration at the end of the crack propagation
(cf. Fig. 10).

As depicted on Fig. 11 (comparing kinetic energy
evolution for R = 2 and R = 3), the higher the ratio R,
the greater the importance of the kinetic energy, includ-
ing during the second bouncing stage.
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Fig. 11 Kinetic energy
versus time for R = 2 and
R = 3 (CZM solution)

Kinetic energy evolution for R=2 and R=3
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At certain moments, independent of the ratio, the
energy evolution is disturbed probably by some wave
deflection, long before the intended arrest time.

6.4 Crack arrest prediction with a quasistatic method
and sensitivity of arrest to particular parameters

6.4.1 The approximate solution of Mott applied to the
DCB specimen

Mott (1948) extended Griffith’s theory to dynamic
crack propagation, including a contribution from the
kinetic energy. Mott’s main assumptions are that the
crack growth process is steady state and that in the
energy balance relation (20), the kinetic energy is time
dependent, but only throughout the crack velocity. For
the case of the DCB, assuming that the displacement
keeps its quasi-static shape, as related in (3), these
assumptions lead to:

w(x, t) = wstat (x) (39)

and

K (�(t), �̇(t)) = ρ A

2
�̇2(t)

�(t)∫

0

(
dwstat

d�

)2

dx

= ρ A (wc)2

2
�̇2(t)

�(t)∫

0

9

4

(

− x3

�4(t)
+ x

�2(t)

)2

dx

(40)

which matches the expressions derived from the modal
analysis with N = 0.

The energy balance is then written:

U0 = 3ρ A (wc)2

35�(t)
�̇2(t) + 3

2

E I (wc)2

�3(t)
+ �1(� − �c)

(41)

Considering �̇A = 0 and using the relations (4), (5) and
(6), the following expression holds:

3

2

E I (wc)2

�3
c

= �0

3
�c = �0

3

�4
c

�3
A

+ �1(�A − �c)

which leads to a simple polynomial relation for pre-
dicting crack arrest:

3

(
�A

�c

)4

− (R + 3)

(
�A

�c

)3

+ R = 0 (42)

For the ratios R = 2, R = 3, the relative arrest length
are respectively �A

�c
= 1.45 and �A

�c
= 1.84, which is in

good accordance with our previous investigations. It is
expected that the prediction accuracy will be degraded
for high ratios but will constitute an upper bound.

6.4.2 Sensitivity of arrest to initial crack velocity and
beam slenderness

It is noteworthy that the expression (42) depends only
on the ratio R, and not on any beam geometry para-
meter. The following analysis is attempting to estimate
the arrest length sensitivity to some parameters as the
initial velocity, and the beam geometry.

The crack kinematics is affected by the initial crack
velocity, as illustrated in Fig. 12:
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Fig. 12 Comparative crack
kinematics for two different
initial crack velocities

Crack kinematics for different initial velocities (N=5,R=3)
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Fig. 13 Comparative
kinetic energy for two
different initial crack
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The higher the initial velocity, the higher the aver-
age velocity and the sooner the arrest time. However the
arrest length is not affected by this parameter. Note also
that the kinetic energy behaviour (Fig. 13) is affected
by the initial acceleration and only at the beginning of
the crack growth. With respect to the beam geometry,
the slenderness effect on the crack growth has also been
investigated (see Fig. 14). The crack velocity decreases
when the slenderness λ ≈ �c/h increases, which is as
expected, but the result of great interest is the insensi-
tivity of the crack arrest length to the slenderness. The
more exceptional conclusion of these investigations is
that the relative crack arrest length �A/�c is essentially
governed by the fracture energy ratio.

7 Conclusions and outlines

The problem of an elastic DCB with a bi-toughness
material, subjected to a slowly prescribed opening
displacement has been investigated, focusing on the
dynamic crack stage, which occurs in the test section
with a lower fracture toughness while the prescribed
displacement is suddenly stopped. The decomposition
on the first N eigenmodes of a Bernoulli beam deflec-
tion associated to the total energy balance, leads to
a system of N + 1 coupled differential equations of
second order. The associated solution consists of N
modal deflection amplitudes and to the crack length
evolution.
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The method has been applied to the dynamic peeling
test of a thin film, where exact solutions are available
(the equations derived from the DCB and the film are
of course different but are structured in a similar way).
The numerical prediction for the peeling test is in a very
good accordance with the analytical solution, with only
a few modes and a short computational time (a few sec-
onds). Concerning the crack growth in the DCB speci-
men, the dynamic crack kinematics seem to be correctly
described with a few modes, compared to a 2D finite
element transient dynamic analysis using a cohesive
zone model, but some problems remain. In particular,
the numerical results are disturbed by some oscilla-
tions. These latter may be produced by a complex wave
propagation which leads to transient short crack arrests
(which are not present in the peeling test). But the fail-
ure to account the crack growth irreversibility (�̇ ≥ 0)

in the method may magnify the difficulties. This short-
coming may be circumvented by adding the constraint
inequality �̇ ≥ 0 to the motion equations, but with prob-
ably an increase in computational time (it takes only a
few minutes for a complete analysis with the current
method). If the aim is the prediction of the crack arrest
length—which is of high interest for the engineer—the
trivial mode (N = 0) is sufficient. Furthermore, the
relative arrest length �A/�c is somewhat insensitive to
parameters such as the beam geometry or the initial
crack velocity, and is mainly governed by the ratio of
the energy at the blunted crack onset over the surface
energy of the running crack material. A simple method,
based on an energy balance, has been suggested to pre-
dict the crack arrest length, disregarding the complex
dynamic propagation stage, with a good estimation for
moderate ratios. An extension of this method to a beam
with variable section geometry (for instance tapered
DCB), or a dynamic force loading, is straightforward.
The next anticipated continuation of this work is to
consider a complex toughness distribution, and in par-
ticular a layout of small flaws distributed on special
sections of the beam. On the other hand, developments
concerning the material behaviour such as the viscosity
or plasticity, or the application to bidimensional geome-
tries are possible but more complicated.

8 Appendix: Energy derivation for the DCB test

Local motion equations derived from the enrgy bal-
ance:

d H

dt
= ∂ H

∂qi
q̇i + ∂ H

∂ q̇i
q̈i = 0

d H(qi , q̇i )

dt
= ∂U

∂qi
q̇i + ∂K

∂qi
q̇i

+ ∂K

∂ q̇i
q̈i + �1�̇ = 0 (I )

It is deduced that:

∂K

∂q̇i
q̈i = d

dt

(
∂K

∂q̇i
q̇i

)

− q̇i
d

dt

(
∂K

∂ q̇i

)

and that ∂K
∂q̇i

q̇i = 2K (for the stationary crack the
kinetic energy is a quadratic form, for the growing
crack, this property cancels but the energy keeps the
property ∂K

∂ ȧi
ȧi + ∂K

∂�̇
�̇ = 2K )

That leads to:

∂K

∂q̇i
q̈i = − d

dt
(2U ) − 2�1�̇ − q̇i

d

dt

(
∂K

∂ q̇i

)

= −2
∂U

∂qi
q̇i − 2�1�̇ − q̇i

d

dt

(
∂K

∂ q̇i

)

Inserting this relation in (I), it comes:

∂U

∂qi
q̇i + ∂K

∂qi
q̇i − 2

∂U

∂qi
q̇i − 2�1�̇

−q̇i
d

dt
(
∂K

∂ q̇i
) + 2�1�̇ = 0

That says:

[
∂(K − U )

∂qi
− d

dt
(
∂K

∂q̇i
)

]

q̇i − �1�̇ = 0,

i = 1, N (I I )

Selecting an arbitrary number of modes N , and making
the difference of the relations (II) for N and N +1 q̇i ,
the following relations hold for each occurrence:

[
∂(K − U )

∂ai
− d

dt

(
∂K

∂ ȧi

)]

= 0, ∀i = 1, N

[
∂(K − U )

∂�
− d

dt

(
∂K

∂�̇

)]

− �1�̇ = 0,

Application to the DCB test:
Using the relation (8), the kinetic and elastic energy

relations for N modes are expressed as (with the Ein-
stein summation convention):
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K = ρ A�̇2

2�

1∫

0

(
Xw′

stat (X) + Xai (t) φ′
i (X)

−�

�̇
ȧi (t) φi (X)

)2

d X i = 1, . . . N

U = E I

2�3

1∫

0

(
w′′

stat (X) + ai (t) φ′′
i (X)

)2
d X

The above expression of K (ai , ȧi , �, �̇) is clearly a 2nd

order homogeneous function of (ȧi , �̇).
Deriving K − U with respect to (ȧi , ai ) leads to :

∂(K − U )

∂ai
= ρ A

⎡

⎣
�̇2

�

1∫

0

(X2φ′
iw

′
stat + X2φ′

iφ
′
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−�̇
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0

Xφ′
iφ j ȧ j d X

⎤
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i φ′′

j a j )d X

d

dt
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∂ ȧi
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⎡

⎣�̈

1∫

0

(−Xφi w
′′
stat − Xφiφ

′
j a j )d X

+�̇

1∫
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(−Xφiφ
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j ȧ j + φiφ j ȧ j )d X + �
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∂ ȧi
= ρ A

⎡

⎣�̈

1∫

0

(−Xφiw
′′
stat − Xφi φ

′
j a j )d X

+�̇

1∫

0

(−Xφiφ
′
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Therefore, the Eq. (24) lead to the following differential
system (using the Einstein summation convention on
the index j):

äi = �̈

�

(
Ci

3 + a j C
i j
4

)
+ 2�̇

�
ȧ j C

i j
4

+ �̇2

�2

(
Ci

2 + a j C
i j
1
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− 1

�4

E I

ρ A
aiμ

4
i , ∀i = 1, N

with the following coefficients :

Ci j
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X2weq′φ′
i d X
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Ci j
4 =
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Xφ′
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In the same way, deriving H = K + U + �1(� − �c)

with respect to (�, �̇) leads to :
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The equation relative to the Griffith criterion leads to
the single differential equation:
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−2ȧ j C

j
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+ �
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,
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with 	 = C1 + ai a j C
i j
2 + 2ai Ci

3.
Application to the peeling test:
the kinetic and elastic energy relations for N modes

are expressed as (using the Einstein summation con-
vention) :

K = ρ�̇2

2�2

1∫

0

(
dw

dt
)2d X

= ρ�̇2

2�2

1∫

0

(W 0 X + �

�̇
ȧi (t)φi (X) − Xai (t)φ

′
i (X))2d X

U = N

2�(t)

1∫

0

(
∂w

∂ X

)

d X =
2 N

2�(t)
(W 02 + ai a j (iπ)2δi j )

Applying the same process than for the DCB case, and
deriving K − U − D with respect to (ai , ȧi ) and to
(�, �̇), the following equations hold :

äi = �̈

�

⎛

⎝−
1∫

0

X W 0φi d X + a j

1∫

0

Xφ′
j φi d X

⎞

⎠

+2�̇

�
ȧ j

1∫

0

Xφiφ
′
j d X − �̇2

�2

1∫

0

(W 0 − a j φ
′
j )X2φ′

i d X

− 1

�2

N

ρ
aiμ

2
i , i = 1, N

�̈ = �̇2

2�
+ �̇ȧi

	

⎛

⎝

1∫

0

2X2(W 0φ′
i − a j φ

′
iφ

′
j )d X

⎞

⎠

+ N

2ρ�	

(
(W 0)2 + ai a j δi j μ

2
i

)

+ �

	

⎛

⎝−äi

1∫

0

X W 0φi d X + äi a j

1∫

0

Xφ′
j φi d X − �1

ρ

⎞

⎠

	 = (W 0)2/3 + ai a j

1∫

0

X2φ′
j φ

′
i d X − 2ai W 0

1∫

0

X2φ′
i d X
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