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Abstract This paper presents a comprehensive mole-
cular dynamics study on the effects of nanocracks
(a row of vacancies) on the fracture strength of graph-
ene sheets at various temperatures. Comparison of the
strength given by molecular dynamics simulations with
Griffith’s criterion and quantized fracture mechanics
theory demonstrates that quantized fracture mechan-
ics is more accurate compared to Griffith’s criterion. A
numerical model based on kinetic analysis and quan-
tized fracture mechanics theory is proposed. The model
is computationally very efficient and it quite accu-
rately predicts the fracture strength of graphene with
defects at various temperatures. Critical stress inten-
sity factors in mode I fracture reduce as temperature
increases. Molecular dynamics simulations are used to
calculate the critical values of J integral (JIC) of arm-
chair graphene at various crack lengths. Results show
that JIC depends on the crack length. This length depen-
dency of JIC can be used to explain the deviation of the
strength from Griffith’s criterion. The paper provides an
in-depth understanding of fracture of graphene, and the
findings are important in the design of graphene based
nanomechanical systems and composite materials
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1 Introduction

Extraordinary mechanical and electrical properties of
graphene make it a candidate for novel applications
ranging from medicine to electronics (Novoselov et al.
2012). Defects are unavoidable during the synthesis
and fabrication of graphene-based devices (Hashimoto
et al. 2004). Defects such as vacancies could cause
stress concentrations and degrade the strength and stiff-
ness. Graphene reinforcements remarkably improve
the fracture toughness and fatigue crack propagation
resistance of composite materials (Rafiee et al. 2010). A
thorough understanding of the mechanical behavior of
graphene is necessary for the design of advanced nano-
electromechanical systems such as graphene based res-
onators (Chen et al. 2009; Eichler et al. 2011). Frac-
ture properties are one of the most important mechan-
ical properties of graphene, which set a limit on the
novel applications such as reinforcement in compos-
ite materials (Rafiee et al. 2010). It is very difficult to
determine the fracture properties of graphene experi-
mentally due to practical problems in designing exper-
iments at the nanoscale (Kim et al. 2012). Therefore
atomistic methods such as quantum mechanical (QM)
models and molecular dynamics (MD) simulations play
a key role in the investigation of fracture properties of
graphene.
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200 M. A. N. Dewapriya et al.

MD simulations have a profound advantage over
QM models when considering the computational cost.
Potential fields of MD simulations incorporate empiri-
cal data to evaluate the parameters of the potential field
(Stuart et al. 2000; Brenner et al. 2002). Therefore the
MD simulations are able to simulate the behaviour of
atomic systems much closer to the physical behaviour
compared to QM models, which are mostly theoretical
compared to the empirical nature of MD simulations.
MD ignores the electrons and assumes atoms as point
particles whereas QM treats each electron of an atom
separately. Therefore it is not possible in MD simu-
lations to obtain the strain energy distribution between
atoms and also at the crack tip, which may be important
in the studies on crack propagation.

Omeltchenko et al. (1997) used MD simulations
with reactive empirical bond order (REBO) poten-
tial to investigate the fracture of armchair graphene.
They estimated the critical stress intensity factor in
mode I fracture (KIC) using Griffith’s criterion and
local stress distributions, and the corresponding values
are 4.7 and 6 MPa m1/2, respectively. Recently, some
researchers have questioned the accuracy of these quan-
titative results due to the influence of the default cut-off
function in REBO potential (Khare et al. 2007; Zhang
et al. 2012a). However, the predicted values of KIC by
Omeltchenko et al. (1997) are within the same range as
those reported in the recent literature (Xu et al. 2012;
Zhang et al. 2012a).

Khare et al. (2007) studied the effects of large
defects and cracks on the mechanical properties arm-
chair graphene using a coupled quantum mechan-
ical/molecular mechanical model. They found that
the cross section of defects, perpendicular to load-
ing direction, has a greater effect on the tensile
strength of graphene compared to the shape of defects.
Ansari et al. (2012), using MD simulations with REBO
potential, showed that the presence of vacancy defects
significantly reduces the ultimate strength of graphene,
while it has a minor effect on the Young’s modulus.
They also showed that defects have a higher effect on
the strength along zigzag direction compared to that of
armchair direction.

Wang et al. (2012) studied the effects of vacancy
defects on the fracture strength of graphene sheets
using MD with adaptive intermolecular reactive empir-
ical bond order (AIREBO) potential. They found
that vacancies can cause significant strength loss in
graphene and concluded that temperature and load-

ing directions affect the fracture strength. A recent
work from Xu et al. (2012) revealed that the KIC of
graphene are 4.21 and 3.71 MPa m1/2 for armchair and
zigzag directions, respectively. They used a coupled
quantum mechanical/continuum mechanics model for
the study. Zhang et al. (2012a) calculated KIC of arm-
chair and zigzag graphene using MD simulations with
REBO potential and the corresponding values are 3.38
and 3.05 MPa m1/2, respectively. The values of KIC

by Zhang et al. (2012a) is different from the values
obtained by Xu et al. (2012), which can be attributed
to the two different modeling approaches pursued. It
should also be noted that the simulation temperature in
Zhang et al. (2012a) is 300 K, whereas Xu et al. (2012)
did not include temperature effects in their model (i.e.
0 K). Temperature has a significant effect on the tensile
strength of pristine graphene (Dewapriya et al. 2013).
It is therefore important to understand the temperature
dependent fracture properties of armchair and zigzag
graphene.

In this work, we calculate stress intensity factors of
graphene using proportionality between the strength
and square root of crack length, as opposed to the
K -field displacement used in the literature. Temper-
ature dependence of the stress intensity factors is also
investigated. We show that a recently proposed discrete
fracture theory, called quantized fracture mechanics
(QFM), is more accurate compared to Griffith’s energy
balance criterion in predicting the fracture strength of
graphene. Both QFM and Griffith’s criterion are linear
elastic fracture theories, whereas stress–strain behav-
ior of graphene shows a significant nonlinearity. There-
fore we use J integral, which can be used for nonlinear
material, to model fracture of graphene. We present a
new approach to calculate J integral at the nanoscale
using MD simulations. These calculations revealed, for
the first time, that J integral (and lattice trapping) of
graphene depends on the crack length. This length-
dependence of J integral can be used to explain the
deviation of the strength from Griffith’s criterion. A
novel fracture model, based on QFM, Arrenhnius for-
mula, and Bailey’s principle, is also proposed. This
model can be used to predict the fracture strength of
graphene at various temperatures. The model agrees
quite well with MD simulations and it is computation-
ally very efficient.

The paper is organized as follows. Section 2
describes the MD simulation parameters. Section 3
explains the calculation of KIC. In this section, Grif-
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fith’s criterion, quantized fracture mechanics theory,
and kinetic analysis are used to obtain the ultimate
strength. The calculation of JIC of armchair graphene
is also presented in Sect. 3. Conclusions are drawn in
Sect. 4.

2 Method

Molecular dynamics simulations are performed using
LAMMPS package (Plimpton 1995) with AIREBO
potential (Stuart et al. 2000). AIREBO consists of three
sub-potentials, which are REBO, Lennard-Jones, and
torsional potentials. REBO potential gives the energy
stored in a bond between two atoms. The Lennard-
Jones potential considers the non-bonded interactions
between atoms, and the torsional potential includes the
energy from torsional interactions between atoms.

In REBO potential, the energy stored in a bond
between atoms i and j is given as

EREBO
i j = f

(
ri j

) [
V R

i j + bi j V A
i j

]
(1)

where V R
i j and V A

i j are the repulsive and the attrac-
tive potentials, respectively; bi j is the bond order term,
which modifies the bond strength depending on the
local bonding environment; ri j is the distance between
atoms i and j; f (ri j ) is the cut-off function. The pur-
pose of the cut-off function is to limit the interatomic
interactions to the nearest neighbours (Brenner et al.
2002). The original cut-off function in REBO potential
is given by

f (ri j )=

⎧
⎪⎪⎨

⎪⎪⎩

1, ri j < R(1)

1 + cos

[
π

(
ri j −R(1)

)

(R(2)−R(1))

]
, R(1) <ri j < R(2)

0, R(2) < ri j

(2)

where R(1) and R(2) are cut-off radii, which have the
values of 1.7 and 2 Å, respectively. The values of cut-
off radii are defined based on the first and the second
nearest neighbouring distances of hydrocarbons.

It has been observed that the cut-off function could
cause nonphysical strain hardening in stress–strain
curves of carbon nanostructures (Shenderova et al.
2000). Therefore the researchers have modified the cut-
off radii ranging from 1.9 to 2.2 Å to eliminate this non-
physical strain hardening (Zhao and Aluru 2010; Zhang
et al. (2012a,b); Cao and Qu 2013). In this study, we

used a truncated cut-off function ft (ri j ) given in Eq. (3)
to eliminate the strain hardening ( Dewapriya 2012).

ft (ri j ) =
{

1, ri j < R
0, ri j > R

(3)

where the value of R is 2 Å. Similar cut-off func-
tions have been used by Zhao and Aluru (2010),
Zhang et al. (2012a) and Zhang et al. (2012b), and Cao
and Qu (2013) to simulate the fracture of graphene.

Length and width of the graphene sheets, used
for MD simulations, are selected to be equal to 10
times the crack length in order to avoid the finite-
size effects (Mattoni et al. 2005; Dewapriya 2012).
Periodic boundary conditions (PBCs) are used along
the in-plane directions for all the simulations to elimi-
nate the effects of free edges. Strain rate and time step
are 0.001 ps−1 and 0.5 fs, respectively. The sheets are
allowed to relax over a time period of 30 ps before
applying strain. During the relaxation period, the pres-
sure components along in-plane directions are kept at
zero using NPT ensemble implemented in LAMMPS.
The NPT ensemble uses Nośe–Hoover thermostat and
barostat to control temperature and pressure, respec-
tively (Nośe 1984; Hoover 1985). An initial random
out-of-plane displacement perturbation (∼0.05 Å) is
induced to carbon atoms in order to eliminate the non-
physical thermal expansion induced by Nośe–Hoover
thermostat (Dewapriya et al. 2013). Strain is applied by
pulling the graphene sheet in either armchair or zigzag
direction. The pressure component perpendicular to the
strain direction is kept at zero to simulate uniaxial ten-
sile test conditions.

3 Results and discussion

3.1 Calculation of stress

Several studies reported in the literature use Cauchy
stress (Zhao and Aluru 2010; Cao and Qu 2013),
whereas some others use virial stress (Zhang et al.
2012b; Liu et al. 2012). One of the main advantages
of Cauchy stress over virial stress is its computational
efficiency. However, Cauchy stress induces nonphys-
ical initial stress (at zero strain) in higher tempera-
tures, whereas virial stress gives initial stress as zero
(Dewapriya et al. 2013). Therefore we use virial stress
in this work. However, we compare virial stress with
Cauchy stress in this section to examine the influence
of stress measure.
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Virial stress, σi j , is defined as (Clausius 1870; Tsai
1979)

σi j = 1

V

∑

α

⎡

⎣1

2

N∑

β=1

(
Rβ

i − Rα
i

)
Fαβ

j − mαvα
i vα

j

⎤

⎦

(4)

where i and j are the directional indices (x, y, and z);
β is a number assigned to neighbouring atoms which
varies from 1 to N ; Rβ

i is the position of atom β along

direction i; Fαβ
j is the force along direction j on atom

α due to atom β; mα is the mass of atom α; vα is the
velocity and V is the total volume.

Cauchy stress is defined as the gradient of the
potential energy per unit volume versus strain curve.
Figure 1a compares virial stress (σv) and Cauchy stress
(σc) of armchair and zigzag sheets of size 5 nm × 5 nm
with PBCs along in-plane directions. Armchair and
zigzag directions are demonstrated in Fig. 1b. The
stresses are obtained from MD simulations at 1 K,
where the contribution from the kinetic part of virial
stress is negligible. Engineering strain (ε) is used as the
strain measure. The initial volume is used in Cauchy
stress calculation. It should be noted that there is an
ambiguity in the definition of volume in virial stress.
We used instantaneous volume in virial stress, which
is suggested to be more appropriate and it has been
used in previous studies (Khare et al. 2007). Thick-
ness of graphene is taken as 3.4 Å. The two stress mea-
sures are almost equal except near the failure of zigzag
sheets. Figure 2 shows the variations in virial stress and
Cauchy stress at various temperatures. Graphene sheets
at higher temperatures fail at lower strains, due to high
kinetic energy of atoms. It can be seen in Fig. 2 that the
σv −ε curves at higher temperatures are slightly below
the curves at low temperatures, which indicates a soft-
ening of the sheets at higher temperatures. This effect
gradually increases with strain and becomes significant
around the failure strain. This softening of the sheets
occurs due to the expansion of carbon–carbon (C–C)
bond at higher temperatures and the thermal contribu-
tion to virial stress, which is given by the term mαvα

i vα
j

in Eq. 4.
It has been found, using MD simulations with

AIREBO potential, that the coefficient of thermal
expansion of a C–C bond is 7.9×10−6 K−1 (Dewapriya
et al. 2013). This thermal expansion of C–C bonds does
not cause an expansion in the graphene sheet, but it gen-
erates ripples. Amplitude of those ripples depends on

Fig. 1 a Comparison of virial stress (σv) and Cauchy stress (σc)
of armchair (ac) and zigzag (zz) sheets at 1 K. b Armchair and
zigzag edges of a graphene sheet. Arrows indicate the armchair
and zigzag directions

the temperature. When strain is applied, those ripples
are flattened out before graphene sheet experiences the
applied strain. However, this thermal expansion of C–C
bonds causes stress at zero strain, which is given by the
first term in Eq. 4. This initial stress is canceled out by
the stress given by the thermal contribution to the vir-
ial stress. The stress induced by thermal expansion of
C–C bonds become negligible as the strain increases,
where as the thermal contribution to the stress remain
constant. This causes a slight softening in the σv − ε

curves at higher temperatures. The σc −ε curves do not
show noticeable changes in the shape as the tempera-
ture increases apart from giving non-zero initial stress
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Fig. 2 Comparison of virial stress (σv) and Cauchy stress (σc)
of a zigzag sheet at various temperatures

at higher temperatures (∼4 GPa at 700 K). This initial
stress is due to neglecting the thermal contribution to
the Cauchy stress.

3.2 Variation of strength with crack length and
temperature

Molecular dynamics simulations are performed at 1 and
300 K for armchair and zigzag sheets with crack lengths
ranging from 4 to 36 Å to investigate the effects of crack
length and temperature on the ultimate tensile strength
(σult ). The crack length (2a) in armchair and zigzag
sheets are defined as shown in Fig. 3. The sheets are
allowed to relax over a time period of 30 ps before
applying the strain. It is noticed that the crack tips
come out of the plane of sheet during relaxation. The
crack tips are free edges. Deformation of free edges
of graphene arises from the difference of the energy
stored in edge atoms and interior atoms (Lu and Huang
2010). As shown in Fig. 4, the out-of-plane deformation
of a crack tip at equilibrium configuration is localized
around the tip. However, when the strain increases up
to 0.018, the deformed shape of the crack tip changes
to a localized ripple. As strain further increases up to
0.0235, this localized ripple spreads throughout the
sheet. This behaviour prevails both at 1 and 300 K.
Therefore temperature is not a significant factor in the
observed rippling behaviour.

Fig. 3 Definition of the geometric parameters of a armchair and
b zigzag cracks. The parameters ρ and a0 is defined in Sect. 3.3.2

Figure 5a compares the stress–strain curves of arm-
chair sheets with various crack lengths. It shows a
significant reduction in the ultimate stress as crack
length increases. Figure 5b shows the stress–strain
curves of zigzag sheets, which also indicate a signif-
icant reduction in the strength even at smaller crack
lengths (∼1.2 nm). It can be seen in Fig. 5 that the length
of crack has not affected the stiffness of the sheets even
at larger crack lengths (∼3.5 nm). Ansari et al. (2012)
observed a similar behavior in the stiffness at lower
crack lengths (∼0.7 nm).

Figure 6a compares σult of graphene sheets at 1 and
300 K. Zigzag sheets indicate a slightly higher drop
in σult compared to the armchair sheets. σult at 300 K
shows more fluctuations due to higher kinetic energy of
atoms compared to the values at 1 K. Figure 6b presents
a plot of 1/

√
2a versus σult at 1 K, and it clearly shows

proportionality. This indicates a formal similarity with
continuum fracture mechanics, which predicts a sin-
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Fig. 4 Ripples in a
garphene sheet at various
strain levels. Size of the
sheet is 27 nm × 27 nm.
Strain is applied along
y-direction. Colours of the
atoms indicate the out of
plane (z) coordinate

gular stress field. The critical stress intensity factor of
graphene (K g

IC) can therefore be approximated as

K g
IC = (

σ f − c
)√

2πa (5)

where c is a constant (c is zero for a continuum) and
2a is the crack length.

The values of K g
IC and c are given in Table 1. K g

IC
decreases as temperature increases from 1 to 300 K,
which reflects the reduction of σult at 300 K as shown
in Fig. 6a. The reduction of K g

IC in zigzag sheets is
greater than that of armchair. The calculated values of
K g

IC are in good agreement with values reported in the
literature as given in Table 1. It should be noted that (Xu

et al. 2012) and (Zhang et al. 2012a) used the K -field
displacements of a single crack to obtain K g

IC. Consid-
ering the profound length- (size-) dependency at the
nanoscale, it is necessary to investigate the influence
of crack length on the value of K g

IC. The value of c is
around 7.5 GPa at 1 K. We use a range of crack lengths
from 4 to 36 Å to calculate K g

IC. Therefore the values
reported in this work take into account the effects of
crack length on K g

IC. The positive value of c indicates
that fracture toughness of graphene (i.e. K g

IC) is less
than that predicted by continuum fracture mechanics
model as indicated by Eq. 5. This could be due to dis-
crete nature of graphene.

The general agreement of MD simulation results
with the continuum fracture mechanics concepts, as
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Fig. 5 Stress–strain curves of a armchair and b zigzag sheets at
1 K with various crack lengths (2a)

shown in Fig. 6b, motivates further investigation on
the applicability of continuum fracture mechanics con-
cepts to graphene. The ensuing sections explore the
applicability of Griffith’s energy balance, quantized
fracture mechanics concept, and J integral to model
the fracture of graphene.

3.3 Fracture mechanics models for graphene

3.3.1 Griffith’s energy balance

Griffith’s energy balance is a fundamental criterion for
brittle fracture, which indicates that fracture occurs

Fig. 6 The ultimate tensile strength (σult ) of graphene with a
crack length and b inverse of square root of crack length at 1 K

when the energy stored in a structure is sufficient to
overcome the surface energy of the material (Grif-
fith 1921). Failure stress of Griffith’s model can be
expressed as

σ f =
√

2E f γs

πa
(6)

where E f is the tangent modulus at failure; γs is the
surface energy and a is the one-half crack length.

It should be noted that the original Griffith’s model
in Eq. 6 is for linear elastic material and the value of E f
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Table 1 Variation of K g
IC and c of armchair (ac) and zigzag (zz)

sheets with temperature.

Temp (K) K g
IC(MPa m1/2) c(GPa)

ac

1 4.00(3.71a) 7.3

300 3.87 (3.38b) 5.6

zz

1 4.57(4.21a) 7.7

300 3.30 (3.05b) 16.1

The values reported in literature are given in brackets
a (Xu et al. 2012)
b (Zhang et al. 2012a)

is a constant. In this work, we use the tangent modulus
at failure to reflect the nonlinear stress–strain behavior
of graphene as observed in Fig. 1a.

The value of γs can be calculated by dividing the
difference in the energy of a graphene sheet before and
after fracture by the area of newly created surface. The
calculated value of γs is 5.02 J/m2 for both armchair and
zigzag graphene since the distance between two bro-
ken C–C bonds is similar in both sheets. The tangent
modulus at failure is obtained from the stress–strain
curves of pristine graphene sheets at relevant temper-
ature. The values at 1 K can be expressed as E(ε) =
−5.89ε+1.08 TPa and E(ε) = −3.50ε+0.89 TPa for
armchair and zigzag sheets, respectively. The value of
E f is given by E(ε f ), where ε f is the failure strain of a
sheet with a particular crack length. The value of ε f can
be obtained from MD simulations. However, the vari-
ation in the tangent modulus with temperature is neg-
ligible, whereas fracture strength significantly reduces
with increasing temperature as shown in Fig. 2. There-
fore the proposed tangent modulus approach does not
capture the temperature dependent fracture of graphene
as the originally proposed Griffith’s criteria.

3.3.2 Quantized fracture mechanics

A new energy based discrete fracture concept called
quantized fracture mechanics has recently been devel-
oped (Pugno and Ruoff 2004). This novel concept can
be used to model the fracture of graphene considering
the discrete nature of the atomic structures.

Quantized fracture mechanics substitutes the differ-
entials in Griffith’s criterion with corresponding finite
differences (Pugno and Ruoff 2004). Considering the

finite size of the sheets, fracture strength of a plate with
width w, crack length 2a, and crack tip radius ρ can be
written as

σ f (2a) = σp

√
1 + ρ/2a0

1 + 2a/a0

[
2w

πa
tan

(πa

2w

)]1/2

(7)

where σp is the failure stress of a pristine structure;
a0 is the fracture quantum, which is the extension of a
crack by breaking one interatomic bond along the crack
direction. Figure 3 demonstrates 2a, a0, and ρ for a
typical armchair and zigzag cracks.

Figure 7 compares the ultimate tensile strength given
by MD, Griffith, and QFM. In general, QFM predicts
the ultimate strength more accurately compared to Grif-
fith’s criterion. The ultimate strength of armchair sheets
given by Griffith’s criterion is significantly higher than
the MD values at larger crack lengths. This could arise
from a high stress concentration at the tip of armchair
crack compared to zigzag crack due to configuration
of C–C bonds. As shown in Fig. 3a, there is a C–C
bond perpendicular to the crack orientation in arm-
chair crack. This bond at crack tip experiences higher
stresses, which could initiate the failure at a much lower
strain. This stress concentration could increase with the
crack length so the failure occurs at much lower stresses
compared to that predicted by Griffith’s criterion. Such
a stress concentration does not prevail in zigzag sheets.
Another important factor is the nonlinear stress–strain
relation of graphene. The use of tangent modulus at
failure to reflect the nonlinear stress–strain behavior
of graphene significantly improves the results. But this
modification of a linear elastic fracture theory may not
be adequate to model fracture of graphene quite accu-
rately. Therefore we use J integral, which can be used
for nonlinear material, in Sect. 3.5 to model fracture of
graphene.

In view of the good agreement between MD and
QFM results, it is required to estimate the ultimate ten-
sile strength of pristine structure at different tempera-
tures in order to apply QFM at various temperatures. By
combining QFM with Arrhenius formula and Bailey’s
principle, it is possible to estimate the fracture strength
of graphene at various temperatures using only a stress–
strain relationship at a certain temperature as explained
in the ensuing section.
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Fig. 7 Comparison of the ultimate strength of a armchair and b
zigzag sheets given by MD, Griffith, and QFM

3.4 Kinetic model for temperature and crack length
dependent fracture strength

Arrhenius formula and Bailey’s principle have been
previously used to obtain the ultimate strength of pris-
tine armchair and zigzag graphene at various tempera-
tures and strain rates (Zhao and Aluru 2010; Dewapriya
et al. 2013). However, these models cannot be used to
predict the strength of defective graphene. In this work,
we combine Arrhenius formula and Bailey’s principle
with QFM concept, which can be used to predict the

strength of graphene with a nanocrack (a row of vacan-
cies) at various temperatures and strain rates.

The Arrhenius formula (Arrhenius 1889) express the
lifetime τ as a function of tensile stress σ(t) and tem-
perature (T ) by equation

τ (T, t) = τ0

ns
exp

(
U0 − γ σ (t)

kT

)
, (8)

where τ0 is the vibration period of atoms in solid; ns
is the number of sites (bonds) available for state tran-
sition; k is Boltzmann constant; U0 is the interatomic
bond dissociation energy which is 4.95 eV for a C–C
bond; σ(t) is the stress at time t; γ = αqv where
q and v are the directional constant and activation vol-
ume, respectively. We define α as the coefficient of over
stress, which is given as the reciprocal of the strength
reduction factor in QFM (Eq. 7), where

α = 1/

{√
1 + ρ/2a0

1 + 2a/a0

[
2w

πa
tan

(πa

2w

)]1/2
}

. (9)

It should be noted that the pre-exponential term in
Arrenhnius formula (i.e. τ0/ns) can be considered as
temperature independent (Kuo et al. 2010).

Since the tensile stress, σ(t), in MD simulations
is time dependent, the rule of partial lifetime summa-
tion leads to Bailey’s principle (Zhao and Aluru 2010),
which states that fracture initiates when

t f∫

0

dt

τ (T, t)
= 1, (10)

where t f is the time taken to fracture.
The stress σ(t) can take any arbitrary form as long as

it fits the stress–strain data at a particular temperature.
The stress of a graphene sheet can be expressed in terms
of strain rate ε̇ and t as

σ (t) = b ln
[
c (ε̇t) + d (ε̇t)2 + 1

]
, (11)

where b, c, and d are constants, which can be calcu-
lated from stress–strain data.

The constant b is 1012 Pa for both armchair and
zigzag graphene. The values of c and d are 1.132,
−3.139 for armchair sheet; the corresponding values
for the zigzag sheet are 0.934 and −1.861, respectively.
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Fig. 8 Comparison of the ultimate strength given by MD and
the kinetic analysis for armchair (ac) and zigzag (zz) sheets. MD
simulations are performed at 300 K

The constants b, c, and d are obtained from a regres-
sion analysis of the stress–strain curves given by MD
simulation at 300 K. Temperature dependency of the
constants in Eq. 11 is negligible as seen in the stress–
strain curves of Fig. 2.

We assumed q (directional constant) as 1 for arm-
chair sheets and 89.6/105.4 for zigzag sheets, where
89.6 and 105.4 are the ultimate tensile strengths (in
GPa) of armchair and zigzag sheets at 300 K, respec-
tively. The constant q can also be viewed as a stress
concentration factor, which depends on the direction
of stress (i.e. armchair and zigzag). The source of
stress concentration is the orientation of C–C bonds
as explained in Sect. 3.3.2. v is used as 8.25 Å3, which
is close to the representative volume of a carbon atom
in graphene (8.6 Å3); τ0 is taken as 5 fs.

We obtain the life time of a graphene sheet with
a nanocrack at various temperatures by substituting
Eq. 11 into Eq. 8. Then the failure time t f is calcu-
lated by solving Eq. 10 numerically. The failure stress
is the stress at t = t f .

Figure 8 shows that the numerical model, outlined
in Eq. 8 to Eq. 11, quite accurately predicts the ultimate
tensile strength of graphene with various crack lengths.
It can be seen in Fig. 8 that the model predicts the σult

of zigzag sheets more accurately compared to armchair
sheets. This is due to the ability of QFM to predict the
σult of zigzag sheets accurately as observed in Fig. 7b.

Figure 9 shows that the proposed kinetic model cap-
tures the temperature dependence of σult of pristine and
defective graphene quite accurately. The crack lengths
of defective armchair and zigzag graphene sheets are
7.3 and 5.6 Å, respectively.

Figures 8 and 9 show that the kinetic model estimates
σult of graphene to a very high degree of accuracy.
Therefore the model can be used to obtain the fracture
strength of pre-cracked graphene at various tempera-
tures, which saves a huge computational cost required
by MD simulations. The proposed approach can be
used to model graphene sheets with various defects
such as random vacancies and Stone–Wales defects by
modifying the parameters in Eqs. 8 and 11 appropri-
ately.

3.5 J integral of armchair graphene sheets

Graphene shows a significant nonlinearity in the stress–
strain relation as shown in Fig. 1a. Therefore J integral
could be a better continuum fracture mechanics theory
to model fracture of graphene than Griffith’s criterion
used in Sect. 3.3. In this section, we present a novel
approach to calculate J integral using MD simulations.

Crack propagation in armchair graphene occur per-
pendicular to loading direction, whereas propagation
in zigzag sheets are at an angle to the loading direc-
tion with many crack branching (Omeltchenko et al.
1997). Therefore most of the crack propagation studies
of graphene focus on armchair sheets due to its simplic-
ity (Omeltchenko et al. 1997; Khare et al. 2007; Zhao
and Aluru 2010; Le and Batra 2013).

Le and Batra (2013) calculated J integral of arm-
chair graphene by fitting a curve between crack length
and potential energy obtained from MD simulations.
However, the size of their graphene sheet is less than
ten times the crack length, and it was as small as three
times the crack length in some cases. This could have
a significant effect on the numerical results (Mattoni
et al. 2005; Dewapriya 2012). Le and Batra (2013)
also defined the failure of graphene when the strain
reaches 100 % (bond length becomes twice the initial
length). Experimental observation (Lee et al. 2008) and
many atomistic simulations (Khare et al. 2007; Zhang
et al. 2012a; Dewapriya et al. 2013) have found that the
failure strain of armchair graphene is around 15–20 %.
Therefore the simulated failure of graphene at 100 %
strain is not physically realistic.
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Fig. 9 Comparison of the ultimate strength given by MD and
the kinetic analysis for a armchair and b zigzag sheets

In this work, we directly calculate J integral using
the data obtained from MD simulations. Size of the
sheet is kept at ten times the crack length for MD sim-
ulations, and it is observed that failure of armchair
graphene occurs around 15 % of strain. The critical
value of J integral (JIC) of armchair graphene is com-
pared with twice the surface energy to evaluate the lat-
tice trapping of graphene.

Figure 10 outlines the calculation procedure of JIC.
Figure 10a shows the changes in potential energy with
time (or applied strain) in an armchair graphene sheet
with a size of 7.6 nm × 7.6 nm. A crack, length of

∼0.7 nm, is placed in the centre of the sheet. PBC are
used along in plane directions. Simulation temperature
is 1 K, and strain rate is 0.001 ps−1. Figure 10b shows
the variation in potential energy during the crack propa-
gation. It can be seen that the potential energy increases
just after the crack starts to propagate (around point d).
This is due to the chemical potential energy release
from C–C bond breaking overcomes the strain energy
release by crack propagation. As more bonds break, the
strain energy release due to crack propagation starts to
govern the total strain energy release. The crack propa-
gation at various stages (marked as d to g in Fig. 10b) is
shown in Fig. 10d–g. The figures show that the crack
propagates symmetrically. The out of plane deforma-
tion of the sheet, explained in Fig. 4, prevails.

The slope of the piece wise continuous curves in
Fig. 10c is proportional to the J integral, which is
defined as (Anderson 1991) J = −dφ/d A;φ is the
potential energy given by φ = U − F , where U and F
are the strain energy stored in sheet and the work done
by external forces, respectively; A is the crack area.

In this work, we calculate the J integral after each
bond breaks. We define the critical value of J integral
after i th bond break (JIC,i ) as

JIC,i = −

{(
P E(2)

i − P E(1)
i

)
+

[
d(P E)

dt

∣∣∣
P E(1)

i

× �t
(

N−i
N

)]}

a0h

(12)

where P E (1)
i and P E (2)

i are the potential energies of
the sheet just after i th bond break and just before
(i +1)th bond break, respectively as shown in Fig. 10c;
d(P E)/dt |

P E (1)
i

is the rate of change of potential

energy during the loading stage (before crack propa-
gation starts) at a potential energy of P E (1)

i ; �t is the
time interval between i th bond break and (i +1)th bond
break as shown in Fig. 10c; a0 is the fracture quantum as
defined in Fig. 3; h is the thickness of graphene, which
is taken as 3.4 Å; N is the total number of bonds that
break during crack propagation. The factor (N − i)/N
takes into account the reduction in rate of change of
potential energy due to bond breaking.

Figure 11 shows the variation of JIC with the prop-
agated crack length (2a p) which has been normalized
with respect to the width of the sheet (w). The value
of 2a p/w is approximately 0.1 when a crack starts to
propagate since w is kept around 10 times the initial
crack length (2a) to avoid the effects of finiteness.
When 2a p/w reaches 1, the periodic cracks start to
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Fig. 10 Calculation of
energy release rate of
graphene. a Variation of
potential energy with time.
b, c Variation of potential
energy during the crack
propagation. d–g The crack
propagation in graphene.
The corresponding positions
of d–g in the potential
energy-time curve are
marked in b

interact with each other. Therefore Fig. 11 shows the
value of JIC up to 0.8 of 2a p/w, where the periodic
cracks do not interact with each other for the smallest
sheet considered (i.e. w = 7.6 nm). Figure 11 indicates
that crack length has a significant influence on the value
of JIC. As the crack length increases, asymptotic value
of JIC decreases towards twice the surface energy (2γs).
The average value of JIC (JIC,avg) could be a reason-
able measure to compare the fracture of graphene with
well-established continuum concepts. Figure 11 shows
that the ratio of JIC,avg to 2γs is ∼1 at small crack
lengths (around 0.73 nm), and it is ∼0.9 at larger crack
lengths. The Griffith’s energy balance criterion holds

when JIC,avg is equal to 2γs and it could over predicts
the strength when JIC,avg is less than 2γs (Thomson et
al. 1971). According to Thomson et al. Fig. 11 indi-
cates that the Griffith’s criterion accurately predicts the
strength of armchair graphene at lower crack length,
whereas it over predicts the strength at larger crack
lengths, which is in fact confirmed by the MD simula-
tions in Fig. 7a.

The fracture strength of graphene deviates from the
Griffith’s criterion due to lattice trapping that is crack
arrest by crystal lattice (Thomson et al. 1971). The
ratio JIC,avg/2γs of 0.9 indicates a moderate amount
of lattice trapping. In the absence of lattice trapping,
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Fig. 11 Variation of JIC of armchair graphene with propagated
crack length (2a p) for various initial crack lengths (2a). The
solid symbols indicate the average value of JIC(JIC,avg) at various
crack lengths. The left most solid symbol is the JIC,avg for 2a =
0.73 nm and other marks are in ascending order of initial crack
lengths. The right most symbol is the JIC,avg for 2a = 3.63 nm

the ratio JIC,avg/2γs is equal to 1 and the Griffith’s
criterion holds. Khare et al. (2007) found the ratio of
critical energy release rate (JIC) to 2γs to be 1.1 using
a coupled quantum mechanical/molecular mechanical
method for an armchair graphene sheet with a fixed
crack length (∼2 nm). It is necessary to investigate the
effects of crack length on the JIC considering the length
dependency at the nanoscale. Our result shows that lat-
tice trapping in graphene increases as the crack length
increases, which is indicated by deviating JIC,avg/2γs

from unity. However, it should be noted that this obser-
vation is based on the average value of JIC. The asymp-
totic value of JIC indicates that lattice trapping disap-
pears as crack length increases.

4 Summary and conclusions

Molecular dynamics simulations show that the strength
of graphene is inversely proportional to the square root
of crack length as seen in continuum fracture theo-
ries. QFM theory is more accurate compared to Grif-
fith’s energy balance criterion in predicting the fail-
ure strength of graphene. The critical stress intensity
factor of armchair and zigzag graphene reduces as the
temperature increases, which reflects the reduction of

the ultimate tensile strength of graphene at higher tem-
peratures due to kinetic energy of atoms. A numerical
model based on Arrhenius formula, Bailey’s principle,
and QFM is proposed. The model can be used to predict
the strength of pre-cracked graphene at various temper-
atures using only stress–strain data of a pristine sheet at
a particular temperature. The model agrees quite well
with MD simulations and it is computationally very
efficient. A new approach is presented to calculate J
integral at the nanoscale using data obtained from MD
simulations. Calculations show that J integral (and lat-
tice trapping) of armchair graphene depends on the
crack length. These findings are critical in designing
graphene based nanoelectromechanical systems and
composite materials.
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