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Abstract We present a computational model, which
combines interface debonding and frictional contact,
in order to investigate the response of concrete spec-
imens subjected to dynamic tensile and compressive
loading. Concrete is modeled using a meso-mechani-
cal approach in which aggregates and mortar are rep-
resented explicitly, thus allowing all material param-
eters to be physically identified. The material phases
are considered to behave elastically, while initiation,
coalescence and propagation of cracks are modeled by
dynamically inserted cohesive elements. The impene-
trability condition is enforced by a contact algorithm
that resorts to the classical law of Coulomb friction. We
show that the proposed model is able to capture the gen-
eral increase in strength with increasing rate of loading
and the tension/compression asymmetry. Moreover, we
simulate compression with lateral confinement show-
ing that the model reproduces the increase in peak
strength with increasing confinement level. We also
quantify the increase in the ratio between dissipated
frictional energy and dissipated fracture energy as the
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confining pressure is augmented. Our results demon-
strate the fundamental importance of capturing fric-
tional mechanisms, which appear to dissipate a similar
amount of energy when compared to cracking under
compressive loading.
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1 Introduction

Failure of heterogeneous (quasi) brittle materials such
as concrete is a complex and nonlinear phenomenon,
which dissipates energy according to its (meso-struc-
tural) composition, geometry and loading conditions.
Fracture of these materials involves the opening of local
micro-cracks, which may propagate, coalesce and sub-
sequently opposing crack surfaces enter into contact
influencing the nonlinear failure process. Therefore, a
careful treatment of both fracture and frictional mech-
anisms is needed in order to correctly reproduce the
material’s behavior.

The concrete constitutive behavior can be formu-
lated either at the macro-scale or at the meso-scale.
At the macro scale, the ingredients that characterize
concrete’s heterogeneity are not represented and one
considers it as a homogeneous material. Therefore, in
this case, the constitutive models need to have recourse
to (visco)-plasticity coupled with a continuum damage
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180 L. Snozzi et al.

formulation (Ottosen 1979; Dubé et al. 1996; Sercombe
et al. 1998; Bazant et al. 2000; Gatuingt and Pijaudier-
Cabot 2002; Pedersen et al. 2008; Gatuingt et al. 2008;
Desmorat et al. 2010; Pontiroli et al. 2010; Desmorat
et al. 2010). This leads to models with a relatively high
number of parameters, which are difficult to relate to
physical mechanisms that occur during failure. On the
contrary, a meso-scale level of observation (as proposed
in Wittmann 1983) allows an explicit representation of
some concrete constituents, which enables reducing the
number of model parameters and to describe the inter-
actions between matrix and inclusions. In the literature
one can find several meso-scale models for concrete.
They can be divided in two main computational clas-
ses. A first family is represented by lattice models (for
instance Schlangen and van Mier 1992; Bolander and
Saito 1998), where the continuum is replaced by a sys-
tem of discrete particles and the mechanical proper-
ties of the lattice beams aim to represent the concrete
meso-structure (Kozicki and Tejchman 2007; Grassl
and Rempling 2008; Grassl and Jirásek 2010; Cusatis
2011). The second class resorts to the finite-element
approach, in which concrete is usually represented as
a biphasic material, made of a mixture of aggregates
embedded in a matrix phase with an interfacial transi-
tion zone (ITZ) between them (Roelfstra et al. 1985;
Vonk 1993; Cervenka et al. 1998; López 1999; Carol
et al. 2001; Caballero et al. 2006; Snozzi et al. 2011;
Gatuingt et al.).

The aim of this study is to exploit a 2D meso-
mechanical finite-element model for analyzing failure
of concrete specimens in compression. Our intention
is to extend the mesoscopic approach that has been
already applied to tensile loading in Snozzi et al.
(2011), and Gatuingt et al.. To this end, a contact algo-
rithm is included in the formulation to avoid inter-
penetration of the generated crack surfaces and allow
mode II debonding of cohesive surfaces under the pres-
ence of (local) compression. The coupling between
cohesive zone modeling and the impenetrability con-
straint is performed in an explicit dynamics scheme.
This coupling has been already described in a previ-
ous work Snozzi and Molinari (2012), where it has
been tested with a simple shearing problem, while in
this paper it is applied to a more complex problem that
involves a dense network of micro-cracks. The main
characteristics of this model are a continuous transition
from decohesion to pure frictional sliding (note that the
onset of friction starts in conjunction with the onset of

cracking). The debonding is controlled by an initially-
rigid traction separation law (TSL), which enables us
to define two separate values for the dissipated fracture
energy in mode I and II. In this paper we will verify
if the approach is able to reproduce the dissymmetric
tensile/compressive behavior, strain rate strengthening
and confinement effects. Comparison with experimen-
tal results is provided.

The paper is composed as follows. Section 2
describes the chosen finite element framework with
frictional and cohesive capability for representing
crack propagation. In Sect. 3 the meso-scale approach
with its material parameters is presented. Results are
reported in Sect. 4 for uniaxial tension and compres-
sion. While results on biaxial compressive loading are
listed in Sect. 5. Finally, concluding remarks are stated
in Sect. 6.

2 Numerical approach

The following section summarizes the formulation of
the adopted frictional/cohesive capability for model-
ing crack propagation in FE including the adopted
TSL, the selected contact enforcement algorithm and
the coupling scheme between these two components.
However, a more complete formulation and validation
of the method can be found in Snozzi and Molinari
(2012). The approach has been conceived for sim-
ulations in explicit dynamics (second order explicit
version of the popular Newmark β-method Newmark
1959). This scheme is applied to the discretized equa-
tion of dynamic equilibrium:

Mẍ + Rint = Rext (1)

where M represents the mass matrix, ẍ the nodal accel-
eration vector and Rext and Rint are the external and
internal force vector respectively. The combination of
a lumped mass matrix with the explicit scheme allows
to trivially invert the mass matrix solving explicitly the
scheme. Stability is achieved under the condition that
the time step is below a critical value, which is

Δtcri t = α min
1≤e≤Ne

(
le
c

)
(2)

where c represents the plain strain compression stress
wave speed and le is the size of the element. The sta-
ble time step has to be chosen equal to the smallest
value over all elements (Ne) multiplied by a security
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A meso-mechanical model for concrete under dynamic tensile 181

coefficient α (typically around 0.1). All the simulations
presented thereafter have been conducted in a 2D plane
strain configuration using mesh composed of six-noded
quadratic triangles.

2.1 Cohesive approach

A well-known method to model the onset of fracture
is to have recourse to cohesive zone modeling, which
has been introduced by Dugdale (1960) and Barenblatt
(1962) in the 1960s. This method describes fracture as
a separation process by relating the displacement jump,
which occurs at the crack tip, with tractions.

Within the computational framework this region
(also called fracture process zone) is represented by
interface elements with null thickness. While damage
is concentrated in these elements, we will assume that
the surrounding bulk material behaves linear elasti-
cally. The decohesion process is controlled by a consti-
tutive relationship called traction separation law, which
is usually related to a potential. Depending on the
response of the cohesive surface prior softening behav-
ior it is possible to distinguish between two main clas-
ses of TSL. The interface can exhibit an initial elastic
behavior, intrinsic approach (e.g. Xu and Needleman
1993), or is assumed to be initially rigid, extrinsic
approach (e.g. Camacho and Ortiz 1996). This sec-
ond method implies that cohesive elements have to be
inserted dynamically, avoiding the artificial compliance
of the uncracked body generated by having recourse
to the intrinsic one. One of the most popular TSL for
the extrinsic approach was proposed by Camacho and
Ortiz (1996) in 2D (and Pandolfi and Ortiz 1999 in 3D).
There, the cohesive law is a linear decreasing function
of the effective opening displacement and is derived
from a free potential energy.

In this work we have used a TSL, previously
reported in Snozzi and Molinari (2012), which allows
us to define two separate values for energy dissipa-
tion in mode I and II (Gc, I and Gc, I I ). The cohe-
sive law resorts to the classical model of Camacho and
Ortiz. Nevertheless, conversely to the Camacho Ortiz
TSL, the cohesive tractions are not anymore bounded
by a free potential energy (as previously suggested
in Von den Bosch et al. (2005) for the intrinsic cohe-
sive model of Xu and Needleman 1993). The tractions
are assumed to be a function of an effective scalar dis-
placement, which has the following form:

δ =
√

β2

κ2 Δ2
t + Δ2

n (3)

where Δn and Δt represent the normal and the tangen-
tial separation over the cohesive surface with unit out-
ward normal n and unit tangential vector t respectively.
The parameter β accounts for the coupling between
normal and tangential displacement, whereas κ enables
us to define the ratio between the dissipated fracture
energy in mode II (Gc, I I ) and in mode I (Gc, I )

κ = Gc, I I

Gc, I
(4)

In case of crack opening the traction vector is defined
as follows:

T =
(

β2

κ
Δt t + Δnn

)
σc

δ

(
1 − δ

δc

)
for δ = δmax

(5)

where σc represents the local material strength and
δc denotes the effective relative displacement beyond
which complete decohesion occurs, while δmax stores
the maximal effective opening displacement attained
and enables thus to account for the irreversibility of the
law (similarly to Camacho and Ortiz 1996). Unloading
or reloading occurs if δ < δmax , which results in the
following tractions:

T =
(

β2

κ
Δt t + Δnn

)
σc

δmax

×
(

1 − δmax

δc

)
for δ < δmax (6)

2.2 Contact enforcement

Since the failure process of concrete can involve,
besides cracking, frictional contact between the cracked
rough surfaces, one has to enforce the impenetrability
condition. For this purpose it is possible to simply avoid
contact by adding a penalty term in case of negative nor-
mal opening (Δn < 0 in the TSL). However, because
our goal is to be able to deal with numerous asperities
entering into contact and large displacements, we have
preferred to couple the TSL with a contact algorithm.
Since our numerical setup is implemented in an explicit
dynamic code, we have selected an explicit master-
slave contact algorithm called decomposition contact
response (DCR) developed by Cirak and West (2005).
This method resorts to the conservation of linear and
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Fig. 1 Penetration removed by projecting back penetrating node
on the master surface

1

2
3

Fig. 2 Contacting triplet: node 1 and 2 belong to the target edge,
whereas node 3 is the impacting node

angular momentum, while the impenetrability condi-
tion is enforced directly on the displacements, e.g. by
projecting the impacting slave nodes on the penetrated
master surface (Fig. 1).

The quantity of motion of the contacting nodes after
collision is governed by the following equations

pt+i − pt−i = λ∇xg(xt+i ) (7)[
pT M−1p

]t+i
t−i

= 0 (8)

where p = Mẋ represents the momentum vector of
slave and master nodes (x position vector), g is the gap
function, λ a scalar parameter and t−i and t+i refer to the
stage before and after projection within the same time
step. The impact between a master surface (edge) and
a slave node is schematically illustrated in Fig. 2. As
illustrated in the figure, the node 3 has been already pro-
jected onto the surface, the gap function is thus equal
to the distance between node 1 and node 3 projected
on the segment direction, which can be expressed as
follows:

g = nT (x3 − x1) (9)

Once the gap function has been determined the post-
impact velocities of the contacting nodes need to be
corrected according to Eqs. 7 and 8.

ẋ+ = ẋ− − ẋ−
n (1 + cres) − ẋ−

f r ic (10)

where cres represents the coefficient of restitution,
which can range between zero (completely inelastic
contact) and one (perfectly elastic contact) and the
superscripts + and − denote quantities before and after
projection respectively. For the remainder of the paper
we will keep cres equal to zero. Two terms need there-
fore to be computed: ẋ f r ic, which accounts for friction,
and ẋn , which represents the normal quantity of motion
exchanged during impact. The latter is defined by

ẋn =
(

(∇g)T ẋ
(∇g)T M−1∇g

)
M−1∇g (11)

In order to account for friction the relative motion
between the contacting triplets (two master nodes and
one slave node) needs to be corrected according to
a simple Coulomb friction law which accounts for
stick/slip. To this end one needs to extract the velocity
leading to relative tangential separation. First the slide
components of the velocity can be computed:

ẋslide = M−1(∇h)T
(

(∇h)ẋ
(∇h)M−1(∇h)T

)
− ẋn (12)

where h stands for the separation vector between
impacting node and target segment. This can be
expressed as

h = x1ξ + x2(1 − ξ) − x3 (13)

where the parameter ξ ∈ [0, 1] stands for the relative
location on the edge at which impact occurs as illus-
trated in Fig. 2. ẋslide represents therefore the velocity
leading to a tangential relative motion between the bod-
ies and corresponds to the maximal impulse which can
be delivered during friction (i.e. stick case). Whereas,
in case of slip, according to Coulomb’s friction law, the
correction depends on the coefficient of friction μ and
on the amount of exchanged motion during impact ẋn .

ẋμ = μ
‖ẋT

n M−1ẋn‖
‖ẋT

slideM−1ẋslide‖
ẋslide (14)

Thus, the delivered frictional impulse will be equal to
the smallest value between the slip (14) and stick (12)
velocity:

ẋ f r ic = min
(
ẋslide, ẋμ

)
(15)
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A meso-mechanical model for concrete under dynamic tensile 183

2.3 Coupling

Mixed mode crack propagation implies that some
micro-cracks might grow and debond without the gen-
erated surfaces entering into contact before the crack is
fully debonded. On the contrary, other interfaces might
already experience contact during this phase. There-
fore, it is important to define how friction and decohe-
sion act on the same surface during this process. In the
proposed approach the TSL and the contact algorithm
are coupled together in parallel.

This implies a simultaneous onset of fracture and
friction if a crack is growing under compression. How-
ever, we consider a progressive rise in the amount of
frictional force during debonding. I.e. when the cohe-
sive zone is activated, friction does not act on the inter-
element boundary, but it increases gradually with pro-
gressive damage of the cohesive zone following the
relation:

1 −
(

1 − δ

δc

)q

(16)

where the exponent q has been set in this work to three.
This results in a continuous progressive transition from
debonding to the pure frictional stage. During this shift
(when Δt reaches κδc/β) a fracture energy correspond-
ing to Gc, I I multiplied by the length of the cohesive
zone will have been dissipated. This approach pro-
duces a strength failure envelope for concrete drawn
in Fig. 3b. The parameters (σc, δc, μ, κ and β) of the
interfacial zone need to be identified according to the
chosen material as reported in Sect. 3.

3 Meso-scale model of concrete

Concrete is a heterogeneous brittle material made of
various components, which are present in different pro-
portions. This produces a quasi-brittle material, whose
mechanical behavior is defined by the wide range of
the ingredients in the mixture. Considering concrete at
a meso-scale level of observation allows to describe it
as a biphasic material: aggregates embedded in a mor-
tar paste matrix. In our model only medium and large
aggregates are represented explicitly. Whereas, small
aggregates and other components are assumed to be
mixed up with the cement paste establishing the matrix
phase. Besides those two components, the interfaces
between the two constituents, called interfacial tran-
sition zone, are represented by dynamically inserted
elements with the presented cohesive-frictional capa-
bility.

3.1 Mesh generation and aggregate distribution

The specimen geometry has been obtained using a
pseudo-random generator of irregular polygons. The
polygons, which represent aggregates, are created
according to a chosen specific distribution. According
to this, the approximate total number of inclusions can
be first determine before the geometry is generated. The
boundaries of each aggregate are then created by gen-
erating its faces; a random length is assigned to every
edge (as well as an arbitrary angle with the previous
edge). However, these values have to lie between given
threshold values. Consequently, small inclusions are
more likely to get fewer edges, while bigger ones show

Fig. 3 a Shear
stress-tangential opening
displacement relationship
for a growing crack in mode
II and b strength failure
envelope: maximal strength
of inter-element faces
(continuous red line) and
residual strength after
complete debonding (gray
dotted line)

ΔΔ t

τ

Δ t

τ
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τ

σ
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Fig. 4 a Computed
cumulated aggregates size
distribution of the concrete
meso-structure (b)

Distribution specimen
Distribution Eq. 14
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more faces. Finally, the polygons can be placed ran-
domly into the sample starting from the biggest ones
and avoiding possible intersections with the already
existent inclusions by changing location and rotating
them. Although, in order to have a regular distribu-
tion of the phases near the boundaries, the aggregates
have been placed in a larger area, from which the spec-
imen has been cut out. Inclusions with the smallest
diameter ranging from 1.5 to 20 mm have been con-
sidered in this work. The distribution has been cho-
sen according to the Fuller and Fuller and Thompson
(1907) curve with a value for the exponent q equal to
0.7.

A(d) =
(

d

dmax

)q

(17)

Where A(d) represents the percent by weight (cumu-
lated mass under a given diameter d) and dmax

the largest aggregate in the mixture. This idealized
curve is plotted in Fig. 4a together with the recorded
distribution within the sample having the generated
meso-structure of Figure 4b. The obtained distribution
differs from the reference one of Eq. 17 in its start-
ing value (since inclusions smaller than 1.5 mm have
been not represented explicitly) and in the discontin-
uous shape (small specimen size and discrete inclu-
sions).

The resulting ratio of aggregate area is around
31 % of the specimen area, which is a square with
an edge size equal to 100 mm. For the remainder of
the paper we have kept the same geometry for every
simulation. Indeed, a different meso-structure with a
similar distribution would not affect significantly the
results as reported in Gatuingt et al. for tensile loading

(since the specimen dimension can be considered large
enough). From this geometry one can obtain meshes
with different element sizes. Since a convergence study
on mesh sensitivity has already been performed in
previous work (Snozzi et al. 2011; Gatuingt et al.),
we have set directly the value of the average ele-
ment size to 0.5 mm (which gives a mesh with roughly
120,000 nodes).

3.2 Material parameters

The meso-mechanical approach requires defining the
material properties for every component. In Table 1 the
material properties for the inclusions and matrix paste
are summarized. Those values are generic and suitable
for a usual concrete and reflect the values used (by the
authors) in previous work Snozzi et al. (2011).

The values for the three different interfaces are
reported in Table 2. These material properties can be
determined experimentally (for instance Rosselló et al.
2006). For this work we have chosen values of the cohe-
sive properties (Gc and σc) similar to the ones reported
in Gatuingt et al. while the remaining pair (β, κ) had
to be identified through a parametric study as reported
in Sect. 4.

Table 1 Material properties of the concrete’s components

Material Density—ρ

[kg/m3]
Young’s
modulus—E
[GPa]

Poisson’s
ratio—ν [−]

Aggregate2, 700 75 0.2

Cement
paste 2, 200 30 0.2
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A meso-mechanical model for concrete under dynamic tensile 185

Table 2 Cohesive properties and selected parameters for the
interfaces

Interface Fracture
energy
Gc—
[J/m2]

Tensile
strength
σc—
[MPa]

β κ Friction
coefficient
μ—[−]

Aggregate 60 16 3.5 10 0.7

Mortar paste 50 4.7 3.5 10 0.7

ITZ 30 2.7 3.5 10 0.7

4 Uniaxial tensile/compressive loading

In this section we analyze the dynamic tensile and com-
pressive response of the concrete model.

4.1 Initial and boundary conditions

The samples are loaded under displacement control
with an imposed strain rate ε̇. For tension all the
nodes of the finite element mesh which are located on
the upper (respectively lower) boundary are forced to
move at a constant velocity V0y = V0 (respectively
V0y = −V0) as illustrated in Fig. 5a):

V0 = ε̇
h

2
(18)

where h is the height of the studied specimen. To avoid
important stress wave propagation and an early fracture
near the boundaries Miller et al. (1999), all nodes of the
finite-element mesh are prescribed an initial velocity as
illustrated in Fig. 5a:

Vy(y) = 2V0

h
y (19)

Note that, even if the linear gradient is not exact in
case of a heterogeneous material, the selected initial
condition does not lead to oscillations at early stage of
loading. In case of compression (Fig. 5b) nodes located
at the upper edge of the finite element mesh are forced
to move at a certain constant velocity V0:

V0 = −ε̇h (20)

whereas, the lower boundary is supported in y-direc-
tion and therefore the motion of the nodes belonging to
this edge is blocked in the vertical direction (while the
horizontal displacement of the nodes is unconstrained).
If lateral confinement (px ) is applied (Sect. 5), the sam-
ple is first loaded statically with a hydrostatic pressure

vyv0-v0

y

x

y

vv0

v0

(a)

hpx px

v0

(b)

Fig. 5 Boundary and initial conditions for specimen loaded in
a tension and b compression

corresponding to px . After this step, the dynamic load-
ing is applied until the end of the simulation.

To obtain the stress-strain curves presented thereaf-
ter, we define the macroscopic stress (σ ) as the bound-
ary reaction force Fy divided by the initial width, and
the macroscopic strain (ε) as the change in height
divided by the initial height h. In case of compres-
sion, the compressive stress and compressive strain are
identified with σc and εc respectively. Moreover, during
simulation, a slight material damping has been adopted
in order to compensate the slight increase of internal
energy (due to the enforcement of the impenetrability
through projection Cirak and West 2005) and reduce
numerical oscillations.

4.2 Identification of model’s interface parameters
through simulations

In order to identify the two remaining parameters of the
cohesive law, β and κ , we have ran some simulations in
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Fig. 6 a Influence of the β parameter on the compressive stress-
strain behavior of concrete (for κ = 10) and b influence of κ

(with β = 3.5) for ε̇ = 1 s−1

order to extract them indirectly by comparing the mac-
roscopic stress-strain relationship with a semi-empir-
ical model for concrete proposed by Fernández Ruiz
et al. (2007) for the compressive behavior.

Since these two parameters influence mode II crack-
ing, and have therefore little influence on the peak
tensile strength and more generally on the global mac-
roscopic behavior of the specimens subjected to uniax-
ial tension, the fitting has been conducted by examining
the response in unconfined compression for a loading
rate ε̇ = 1 s−1. The influence of β has been investigated
first. Its value affects the shear strength of the inter-
faces, which changes considerably the compressive
peak strength of concrete as depicted in Fig. 6a. With an
increasing value of β, one obtains a higher compressive
strength. Since with the interface properties of Table 2

a tensile strength slightly lower than 4 MPa (precisely
3.67 MPa) is obtained, the authors have decided to set
the value of β equal to 3.5 (a lower value compared
to the one chosen in Ruiz et al. 2000). This leads to a
compressive strength roughly one order of magnitude
higher than the tensile one (see Fig. 7b), which seems
a usual ratio for a conventional concrete. The stress-
strain behavior is also affected by κ , which increases
the dissipated fracture energy and therefore modifies
mostly the post-peak behavior and shifts the transi-
tion to softening towards higher strain values. This
trend is graphically illustrated in Fig. 6b. Therefore,
in order to obtain a concrete with softening starting
around εc = 0.002 (which is a usual value for the peak
strain of conventional unconfined concrete) we decided
to fix the value of κ at 10 (same ratio between frac-
ture energies estimated by Carol et al. 2001). Note that
this relatively high value should take into account fric-
tional effects that might occur for low normal openings
of the surfaces that are not taken into account by the
frictional contact algorithm. This results in a concrete
with a compressive strength of roughly 36.8 MPa at a
compressive peak strain around 0.0019. The obtained
constitutive response is compared in Fig. 7a with the
constitutive model proposed in Fernández Ruiz et al.
(2007). The computed peak strain and stress are in
the same range of the experimental values (εpeak =
0.0018 − 0.0021 and σpeak = 32.8 − 38.8) recorded
by Sfer et al. (2002). Note that we could not compare
directly the curves since the experimental unconfined
response is not drawn in Sfer et al. (2002). Neverthe-
less, we will have recourse again to the data reported
in this reference for the comparison with the confined
response in compression (Sect. 5). The stress-strain
behavior is depicted for tension and compression in
Fig. 7b. It is clear that the tension/compression asym-
metry is well captured.

4.3 Rate effect

In this subsection we analyze the behavior of concrete
subjected to tension and unconfined compression under
different loading rates.

4.3.1 Tensile response

It is well-known that experimental results on dynamic
tension tests show a rate sensitivity of the tensile
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Fig. 7 a comparison with
empirical model
of Fernández Ruiz et al.
(2007) and b asymmetric
tensile/compressive
behavior of concrete
(ε̇ = 1 s−1)

Computed response
Ruiz et al. model
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Fig. 8 Influence of strain rate on the tensile stress-strain curves

strength (Vegt et al. 2006; Erzar and Forquin 2010). In
quasi-statics, the macroscopic tensile strength is mainly
governed in our case by the ITZ strength and tough-
ness (ITZ between the aggregates and the mortar paste)
and not by the meso-structure (Pedersen et al. 2007;
Gatuingt et al.). For low strain rates—ε̇ < 1 /s—the
dynamic resistance increase is mainly due to the pres-
ence of water in the material Rossi et al. (1992) and we
have a slight Dynamic Increase Factor (DIF)—equal to
the ratio of static versus dynamic strengths. For higher
strain rates—ε̇ > 1/s—the usual explanation of a more
important DIF is the transition between single cracking
in quasi-statics to diffuse cracks in dynamics.

The results of the strain-stress curves obtained for
our numerical simulations in tension for several strain
rates are presented in Fig. 8. As expected, the tran-
sition from a unique crack to diffuse cracking has a
strong influence on the macroscopic behavior of con-
crete. Increasing the strain rate delays (relatively) the
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Fig. 9 Experimental stress-displacement curves for static, SHB
and Modified SHB reported in Weerheijm et al. (2009)

coalescence of the microcracks, which rises the peak
strength. One can notice that oscillations appear in
the response of the sample during the softening stage
when an increasing strain rate is applied. Experimen-
tal recorded curves, as for instance those illustrated
in Fig. 9, show a similar shape. Note that data on
experimental tests of Split Hopkinson Bar (as the one
depicted in Fig. 9) express concrete behavior in terms
of force-displacement relationship (and to convert them
in stress-strain relationship is not an evident task). We
can notice that in our case the dynamic increase factor
is equal to almost 2 for ε̇ = 100/s which underes-
timates a little bit the experimentally reported values
(∼ 3 Weerheijm et al. 2007). This implies that we may
have to take into account rate dependency at the mate-
rial level, for example by linking the cohesive strength
σc to the rate of deformation of the surrounding material
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Fig. 10 Influence of strain
rate on the crack path in
uniaxial tension: a
ε̇ = 1 s−1, b ε̇ = 100 s−1.
Displacement has been
magnified by a factor of 20
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Fig. 11 Influence of strain rate on the dissipated energy for ten-
sile loading

and to the crack opening rate, in order to achieve better
agreement with experimental results. We may nonethe-
less conclude that the dynamic increase factor is mostly
due to a ”structural effect”, with probably a small part
due to a viscous behavior of the matrix paste. Figure 10
shows the final crack patterns for a low and a high strain
rate. For ε̇ = 1/s we have a unique macroscopic crack,
while for ε̇ = 100/s we obtain diffuse cracks. In both
cases, microcracks, for the most part, succeed to find
paths around the aggregates.

Figure 11 depicts the evolution of the dissipated frac-
ture energy as a function of the macroscopic strain
of the specimen for different loading rates. One can
remark from this figure that the dissipated fracture
energy strongly depends on the loading rate even with
a rate independent local fracture energy. Nevertheless

as for the strength, the DIF for the dissipated fracture
energy (WG) in the specimen is slightly lower than the
experimental one Weerheijm et al. (2007). For more
detail on the tensile response of our model, one can
refer to Gatuingt et al.

4.3.2 compressive response

As for tension, experimental results (Bischoff and Perry
1991) show a clear rate sensitivity under compres-
sive loading. Commonly, the stress increase can be
explained with lateral inertial confinement (Poisson’s
effect) and a more diffuse micro-cracking beside even-
tual material rate hardening mechanisms.

Figure 12 shows the computed stress-strain curve
for different loading rates. The results display a strain
rate hardening with a DIF of about 1.9 for a strain
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ε = 100 s-1
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Fig. 12 Stress-strain response for different strain rates under
compressive loading
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Fig. 13 Influence of strain
rate on the crack path in
compression: a ε̇ = 1 s−1, b
ε̇ = 100 s−1. Note that the
displacement field has been
magnified by two different
factors: 4 in (a) and 2 (b)

Fig. 14 a Dissipated
fracture energy and b
dissipated frictional work
for different loading rates
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rate of ε̇ = 100 s−1. In contrast to our computed ten-
sile DIF, this increase factor is consistent with experi-
mental results Bischoff and Perry (1991). This results
highlights the strong effect of lateral inertial confine-
ment alone that can explain the increase in strength
as noticed in Donzé et al. (1999) too. Indeed, in our
simulations, we do not consider any rate effect at the
material level. Figure 13 shows the crack pattern for
ε̇ = 1 s−1 and 100 s−1. Cracks tend to propagate within
the matrix phase bypassing the inclusions except for
few big aggregates that have been crossed. One can
notice that due to the absence of a horizontal constraint
at the upper and lower boundaries of the specimen, the
crack pattern does not show the formation of a charac-
teristic cone, as mostly observed during simple com-
pression experiments. Moreover, the cracks are aligned
parallel to the loading direction, conversely to a per-
pendicular orientation in case of tension as shown in
Fig. 10.

The evolution of the dissipated fracture energy (WG )
and frictional work (Wμ) in the specimen is depicted

in Fig. 14a, b respectively. Both figures show that the
raising number of cracks with increasing strain rate
causes a higher dissipation of energy within the dam-
aged specimen. This mechanism leads to a higher com-
pressive strength and larger area (thus toughness) under
the stress-strain curve. In particular, the post-peak dis-
sipation of energy seems to be affected more by fric-
tion than by dissipation of fracture energy. Therefore,
the gain in strength can be traced back to an inertial
effect alone (as suggested for instance in Cotsovos and
Pavlović 2008).

5 Influence of lateral confinement

We now investigate the behavior of concrete subjected
to moderate lateral confinement under a strain rate ε̇ =
1 s−1. The concrete specimens have been subjected to
four level of transversal confinement pressures (px ):
4.5, 9, 12 and 30 MPa (for comparison with experi-
ments).

123



190 L. Snozzi et al.

Fig. 15 a Influence of
confining pressure on the
stress-strain behavior
(ε̇ = 1 s−1) and b
experimental results of Sfer
et al. (2002)
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Figure 15a shows that the confining stress increases
substantially the compressive strength as well as the
longitudinal compressive peak strain. Moreover, one
can notice that confining concrete results in a decrease
of the slope of the post-peak branch indicating there-
with a moderate rise in the ductility of concrete. Among
the several data that one can find in the experimental
literature of the stress-strain behavior, we have selected
the data on triaxial loading reported in Sfer et al. (2002)
for a direct comparison. As previously commented
the concrete tested in this reference almost matches
in terms of peak strength and peak strain the com-
puted response in the unconfined case. The compari-
son between simulations and the results is illustrated
in Fig. 15. As already noticed, one can remark that the
increase in peak strength with lateral confinement in
the simulations is lower than the one obtained exper-
imentally. Additionally, one can compute the gain in
concrete strength of the confined specimens. Usually,
in concrete research, the Mohr–Coulomb failure crite-
rion can be assumed to describe the sliding failure in a
confined concrete. This can be expressed as follows:

σc = fc + k ∗ px (21)

where fc represents the unconfined compressive
strength of concrete and k is a constant, which is usu-
ally set to four (Richart et al. 1929; Lahlou et al. 1992;
Candappa et al. 2001) for triaxial tests. In our case, we
obtain a k with a value somewhat lower than two for low
confining pressures (and that becomes even smaller if
moderate pressures are considered), while the increase
measured by Sfer et al. (2002) (Fig. 15b) gives a k
of roughly 3.5. Moreover, the values recorded by Sfer
et al. (2002) show a considerable raise in ductility of the
specimen with larger confinement. While simulations
show only a moderate increase. This becomes more
evident for the highest confining pressure (30 MPa)

considered here. At such confining pressures the speci-
men response is probably dominated by physical inter-
actions at the micro-crack level that our model seems
to reproduce less accurately. The failure mechanism
shifts from damage due to strain extension to compac-
tion due to porosity reduction. Some authors (e.g. Cam-
borde et al. 2000) are able to reproduce compaction
with a lattice based discrete element method introduc-
ing a phenomenological model in their beam behavior.
Another reason for the too little hardening could par-
tially reside in an insufficient dissipation of frictional
energy in our simulations, which leads to a larger neg-
ative slope after the peak strength has been reached. A
better modeling could perhaps be obtained by increas-
ing the value of the friction coefficient and acting on
the coupling (apart from changing the value of the pair
β and κ). Indeed, the chosen onset of friction implies
an initiation of cracks that is not influenced by the level
of applied lateral pressure. In addition, it should also be
pointed out that the chosen 2D framework is limited and
cannot capture realistic 3D micro-cracking networks.
Indeed in three dimensions to reach percolation is more
difficult than in 2D, where cracks can coalesce eas-
ily. This implies that in 2D the obtained micro-cracks
density might be underestimated and consequently the
dissipation of energy as well. This work can be consid-
ered as a first attempt to extract concrete behavior from
a new approach and the foreseen improvement clearly
requires an extension to 3D.

The comparison between the dissipated energies is
illustrated in Fig. 16. From Fig. 16a one can remark
that an increase in the lateral confinement will delay
the opening of cracks and thereafter the start of the
dissipation of fracture energy. This phenomenon has
already been observed with a meso-scale modeling of
ceramics (Warner and Molinari 2006; Kraft et al. 2008).
However, the rise in the horizontal pressure ultimately
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Fig. 16 a Dissipated
fracture energy and b
frictional work for
px = 0, 4.5, 9and12 MPa
(ε̇ = 1 s−1)
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Fig. 17 Deformed
specimens for confinement
pressures of a 4,5 Mpa and
b 12 MPa. Displacement has
been magnified by a factor
of 5

increases the amount of dissipated fracture energy. This
is because cracks are more prone to open following a
mode II fashion, which is bounded with a larger value
of stored fracture energy than mode I, and also because
there is a more diffuse fine crack network. Figure 17
shows this crack network. It also illustrates that apply-
ing a confinement pressure forces the cracks to propa-
gate at a faulting angle of roughly 30◦, whereas their
paths were more vertical for unconstrained compres-
sion (Fig. 13a). The increase in the faulting angle ori-
entation, from axial splitting for unconfined concrete to
shear faulting for specimens subjected to lateral con-
finement, appears to be in agreement with analytical
models (see for instance Horii and Nemat-Nasser 1985
for rock mechanics).

Since we are using an explicit representation of
cracks, it is possible to monitor their time evolution
and to extract relevant information. We have chosen
to follow the formation of the longest crack cluster
(which is a group of fully broken interfaces which are

interconnected to each other), Lc,max , as well as the
total number of crack clusters N Bc (as was done for
ceramics in Warner and Molinari 2006; Kraft et al.
2008). The first variable has been normalized with
the edge size of the specimen. As already observed,
an increase in the level of confinement produces a
delay in the formation of the first cluster. This is
noticeable from both graphs of Fig. 18. Moreover,
from the first graph (Fig. 18a) one can see that the
application of a horizontal pressure causes the lon-
gest crack to be relatively shorter with a length of the
range of 0.2h (unfolded length) until the negative slope
of the softening becomes more pronounced. On the
other hand, the number of clusters is not much affected
by the application of lateral confinement as depicted
in Fig. 18b. The unconfined sample shows initially a
larger number of cracks than the confined ones, which
implies that the lateral pressure delays the onset of
micro-cracks coalescence. This can be confirmed by
looking at the deformed mesh configuration. One can
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Fig. 18 a Maximal cluster
length normalized over
specimen size h and b
number of cracks for
px = 0, 4.5, 9 and 12 MPa.
The length at which
softening starts, represented
by circles on graph (a), does
not depend on the amount of
confinement
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see from Fig. 17 that the application of the confinement
pressure triggers a finer net of smaller cracks, which
exhibit a smaller opening (and are thus not completely
debonded). Finally, by looking at Fig. 18a, it appears
that the softening phase can start, for the three con-
fined cases considered here, when the longest cluster
reaches a length of approximately 0.15–0.2 h (circles
on the strain-Lc,max curve indicate the strain immedi-
ately after peak strength has been reached) and thus
does not depend on the level of applied confinement
(For the unconfined sample the transition is less clear
to identify, since the transition to a macroscopic crack
is more rapid). Note that the total length of a cluster has
been considered here, whereas if one looks at the clus-
ter length projected on a line (similarly to what reported
in Prado and van Mier (2003) for tensile loading), its
maximal value will not increase much after the soften-
ing has started. That is, the maximal projected length
tends to stabilize around 0.2–0.15 h.

6 Discussion and conclusions

In this paper we have presented a 2D dynamical meso-
mechanical model of concrete with cohesive/frictional
capability for transient dynamics. The meso-scale
approach enables us to represent aggregates and mor-
tar explicitly, thus allowing all material parameters
to be physically identified. Both continuum phases
are considered to behave elastically while initiation,
coalescence and propagation of cracks are modeled
by dynamically inserted interface elements with the
proposed cohesive frictional capability. The debond-
ing process is controlled by an extrinsic TSL which

accounts for path dependent behavior and therefore
enables us to define two separate values for energy dis-
sipation in mode I and II. The impenetrability condition
is enforced directly by projecting the impacting nodes
on the penetrated surface.

We have used this model to simulate dynamic con-
crete’s behavior in traction and compression. From the
obtained results we can draw the following conclu-
sions.

Simulations in tension as well as in compression
show that the model gives an increase in peak strength
and strain at failure with increasing rate of loading
although the interfacial constitutive law is rate inde-
pendent. This rise in strength resides in a more diffuse
micro-cracking and is thereby bounded with a higher
dissipation of fracture energy as well as energy dissi-
pated through friction in case of compressive crack-
ing. A comparison between our simulation results and
experimental literature indicates that inertial forces
alone in case of compressive loading are sufficient to
explain the increase in strength with increasing load-
ing rate. On the contrary, if the specimen is subjected
to tensile loading, a small strain-rate dependence at the
material level (material hardening) should be added in
order to achieve a better agreement with experimental
results.

Specimens subjected to lateral confinement in com-
pression exhibit an increase in peak strength and strain
at maximum stress with increasing confining pressure.
However, the rise in strength is lower than experimental
reported values. It has been observed that an increase in
the lateral pressure produces delays in the formation of
the first crack cluster and in micro-cracks coalescence.
Dissipation of energy through fracture and friction is
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also an increasing function of the applied confinement.
The model also shows the importance of capturing fric-
tional mechanisms, which appear to dissipate a rais-
ing amount of frictional energy with increasing strain
and applied pressure (the work done by friction is on
the same range of magnitude as the energy dissipated
trough crack opening under compressive loading).

It is however important to emphasize that our model
needs further improvement to capture experiments
better. In particular, the ductility of the specimen is
less affected by the confining pressure than the one
measured experimentally and the post-peak behavior
remains more brittle. This could perhaps be traced back
to a yet insufficient increase in the amount of dissipated
frictional energy or to the lack of others physical phe-
nomenon in the model (such as compaction). Moreover,
the chosen 2D setting is limiting to capture the com-
plexity of 3D micro-cracking. Indeed, in 2D the density
of the cracks is underestimated since it is easier to reach
percolation than in 3D. Besides this, the influence of
the internal ordering of the meso-structure has not been
investigated in this paper. In the future, we plan to use
our model as a basis to investigate shearing resistance
(including asperities interlocking) of structural compo-
nents.
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