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Abstract Micro-mechanical 2D cell model studies
have revealed ductile failure during intense shearing
to be governed by the interaction of neighbouring
voids, which collapse to micro-cracks and continu-
ously rotate and elongate until coalescence occurs. For
a three-dimensional void structure, this implies signif-
icant straining of the matrix material located on the
axis of rotation. In particular, the void surface material
is severely deformed during shearing and void surface
contact is established early in the deformation process.
This 3D effect intensifies with decreasing stress triax-
iality and complicates the numerical analysis, which
is also reflected in published literature. Rather than
moving towards very low triaxiality shearing, work has
focused on extracting wide-ranging results for moder-
ate stress triaxiality (T ∼ 1), in order to achieve suffi-
cient understanding of the influence of initial porosity,
void shape, void orientation etc. The objective of this
work is to expand the range of stress triaxiality usu-
ally faced in 3D cell model studies, such that intense
shearing is covered, and to bring forward details on the
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porosity and void shape evolution. The overall material
response is presented for a range of initial material con-
figurations and loading conditions. In addition, a direct
comparison to corresponding 2D cell model predictions
for circular cylindrical voids under plane strain shear-
ing is presented. A quantitatively good agreement of the
two model configurations (2D vs. 3D) is obtained and
similar trends are predicted. However, the additional
layer of matrix material, connecting voids in the trans-
verse direction, is concluded to significantly influence
the void shape evolution and to give rise to higher over-
all ductility. This 3D effect is demonstrated for various
periodic distributions of voids.

Keywords Voids · Low triaxiality · Shear deforma-
tion · Ductile failure · 3D effects

1 Introduction

Ductile failure by void nucleation, growth, and coa-
lescence at high triaxiality stresses has been sub-
ject to extensive studies in the literature (Needle-
man 1972; Tvergaard 1982; Koplik and Needleman
1988; Gologanu et al. 1993, 1994; Benzerga 2002;
Li and Steinmann 2006; Scheyvaerts 2008; Jodlow-
ski 2011). The governing mechanisms are fairly well
understood and their macroscopic effects are captured
well by micro-mechanics based damage/coalescence
models (Gurson 1977; Chu and Needleman 1980;
Tvergaard 1981, 1982; Tvergaard and Needleman
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98 K. L. Nielsen et al.

1984; Thomason 1990; Gologanu et al. 1997; Par-
doen and Hutchinson 2000; Lassance et al. 2007).
In contrast, the mechanisms governing ductile shear
failure, and the inability of the classical Gurson-type
models to predict failure under intensive shearing, has
only recently caught attention in the literature. It has
been recognized that, at zero mean stress, the Gurson
family models fail to predict the loss of load carrying
capacity usually coming from an increased void volume
fraction—thus, failure at zero mean stress cannot read-
ily be predicted. To remedy this, Nahshon and Hutchin-
son (2008) suggested an extension to the Gurson model
that accommodates failure under intense shearing by
letting the damage parameter increase during plastic
loading at zero mean stress. A softening effect from
existing damage is thereby obtained when coalescence
occurs (Tvergaard and Nielsen 2010). However, this
artificial increase of damage in the Nahshon-Hutchin-
son-model is phenomenological, and the damage evo-
lution is no longer tied to the void volume fraction.
In fact, the closure of existing void (decreasing poros-
ity) or delayed growth, predicted by the Gurson fam-
ily models during shearing (Nielsen 2010), is clearly
reflected in cell model studies (Tvergaard 2008, 2009;
Barsoum and Faleskog 2011), and is easily detected as
smeared dimples on fractographs. However, the com-
bined effect of collapsed voids and the loss of load car-
rying capacity at zero mean stress is yet to be unified
in one damage model.

Efforts have gone into the investigation of the gov-
erning factors in the void sheet mechanism and intense
void shearing. E.g. the influence of inclusions, or debris
hereof, on void shearing has been considered in the
numerical investigations by Fleck et al. (1989), Tverg-
aard (1989), McVeigh et al. (2007). From the early stud-
ies it is known that contact araising between the particle
and the void surface during shearing has a significant
influence on the subsequent behaviour. This has also
been recognized in the more recent study by McVeigh
et al. (2007), seeking to encapsulate void nucleation,
growth and coalescence in pure shear loading. For
inclusions located in a periodic array, some signs of
void interaction can be seen from their work, whereas
coalescence was only obtained for clusters of particles.
This is attributed the void growth phase which is cru-
cial to the McVeigh-model, but is severely suppressed
due to intense shearing.

To facilitate development of micro-mechanics based
damage models towards accurately covering the full

range of stress triaxiality loadings, a number of com-
bined tension/shearing cell model studies of voided
material, without inclusions, have been presented
(Anderson et al. 1990; Barsoum and Faleskog 2007a,b;
Tvergaard 2008, 2009; Leblond and Mottet 2008; Sche-
yvaerts 2008; Gao and Zhang 2010; Nielsen and Tverg-
aard 2011; Jodlowski 2011; Barsoum and Faleskog
2011; Tekoglu et al. 2012). In a recent series of stud-
ies on shearing of circular cylindrical voids at plane
strain, Tvergaard and co-workers (Tvergaard 2008,
2009; Tvergaard and Nielsen 2010; Nielsen and Tverg-
aard 2011; Dahl et al. 2012), have shown that voids in a
shear field undergo the following sequence of deforma-
tion steps; during shearing the voids are flattened out to
micro-cracks, which continuously rotate and elongate
until interaction with neighbouring micro-cracks gives
coalescence. Consequently, a maximum load carrying
capacity is attained due to interaction of micro-cracks.
The work on void shear coalescence has been extended
into full 3D by Barsoum and Faleskog (2007a), Bar-
soum and Faleskog (2007b), Scheyvaerts (2008), Bar-
soum and Faleskog (2011), Jodlowski (2011). In the
work by Barsoum and Faleskog (2007a), Barsoum and
Faleskog (2007b), Barsoum and Faleskog (2011), coa-
lescence under combined tension and shear loading
has been investigated by employing an experimen-
tal procedure together with 3D cell model calcula-
tions. The main focus of their work is the transition
between rupture by internal necking and internal shear-
ing, respectively, as-well as the influence of the Lode
parameter on ductile failure. To date, it is widely
accepted that besides the stress triaxiality additional
quantities, such as the Lode parameter, is needed
to describe the ductile failure process (Nahshon and
Hutchinson, 2008; Gao and Zhang, 2010; Barsoum
and Faleskog, 2011). In parallel to these, Scheyvaerts
(2008) investigated, in full 3D, the shape evolution and
rotation of voids subject to shear with particular interest
in the first stage of the deformation in order to further
extend the coalescence criterion by Thomason (1990).
Recently, Jodlowski (2011) presented a comprehensive
experimental investigation of void shearing in combi-
nation with full 3D modelling of void growth to coa-
lescence.

Common to the published 3D cell model studies
of pre-voided material is the fact that moderate stress
triaxiality (T ∼ 1) has been applied in terms of
far field loading, while the low triaxiality regime has
proven cumbersome for extensive parametric studies
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Collapse and coalescence 99

due to limited void growth. The objective of the pres-
ent work is to expand the range of stress triaxiality
usually covered by 3D cell model studies, so that shear-
ing under low stress triaxiality (T ∼ 0.1) is covered,
in order to enhance the understanding of the mecha-
nisms governing ductile shear failure. Indications that
the shear coalescence mechanism reported by Tverg-
aard (2008, 2009), may translate into full 3D can be
found in Barsoum and Faleskog (2007a,b), Scheyva-
erts (2008), Barsoum and Faleskog (2011), Jodlowski
(2011), however the present work aims to conclusively
demonstrate this for very low triaxiality. For doing so, a
direct comparison of 2D (circular cylindrical voids) and
3D (spherical voids) cell model predictions is presented
and details on the evolution of the void volume, shape,
and orientation are brought out. In addition, this allows
for a critical assessment, in terms of both quantitative
and qualitative accuracy, of previously published 2D
results on shear coalescence. Moreover, the 3D effects
primarily responsible for the quantitative deviations are
pointed out. For clarity of results, the study is limited
to shearing of existing spherical voids in an isotro-
pic matrix material. Thus, effects of the initial voids
shape/orientation and matrix material an-isotropy are
yet to be studied in details.

The paper is structured as follows. The employed
micro-mechanical model is outlined in Sect. 2, while
the numerical modelling approach and material model
are presented in Sect. 3. Focus is on the developed 3D
cell model, whereas details on the corresponding 2D
model are omitted, with suitable references. Results
are presented in Sect. 4, where the collapse of spheri-
cal voids is illustrated and 3D cell model predictions are
compared to corresponding 2D cell model predictions
for circular cylindrical voids. The concluding remarks
are given in Sect. 5.

2 Micro-mechanical model

Continuing along the work on shear coalescence initi-
ated by Tvergaard (2008, 2009), the current 3D cell
model study and the numerical studies by Barsoum
and Faleskog (2007a,b), Scheyvaerts (2008), Jodlow-
ski (2011) rest on common ground. A periodic array
of voids located in the x1x3-plane of a bulk mate-
rial, subject to intense shearing in the x1x2-plane
(see Fig. 1), is considered in order to analyze the
void coalescence mechanism in details. Throughout,

the onset of void coalescence is associtated with the
loss of material load carrying capacity. Thus, coales-
cence is defined as where the peak load is attained.
The discretely modelled voids are initially spherical
with radius R0, and with void spacing 2A0 in the
x1-direction, 2B0 in the x2-direction and 2C0 in the
x3-direction (B0/A0 = 4 for all results presented).
According to the 2D cross-section highligted in Fig. 1a,
periodic boundary conditions are applied along the left
(x1 = −A0) and the right (x1 = A0) plane of the
cell so that ui (−A0, x2, x3) = ui (A0, x2, x3), with
i = 1, 2, 3. The periodic arrangement of voids in the
x3-direction are imposed by symmetry conditions so
that u3(x1, x2, 0) = u3(x1, x2,−C0) = 0. All periodic
boundary conditions are enforced through the displace-
ment field, whereby the tractions naturally fall out of
the finite element formulation.

Here, the top/bottom of the domain remains plane
and in their original orientation, thus interaction
between rows of micro-voids is neglected. This is an
approximation and the effect of B0/A0 on the over-
all shear angle; tan(ψ) = UI /(B0 + UI I ), is thereby
neglected. Another approach would be to employ a
periodically repeated unit cell in the x2-direction, and
thereby account for interaction in that direction. In a
recent study, Tvergaard (2012) compares these two
model settings and shows that the effect on the peak
load is negligible for B0/A0 > 2, whereas only the
post-localization behavior displays noticeable differ-
ences.

An incremental load is applied along the top (x2 =
B0) and the bottom (x2 = −B0) planes of the volume,
so that

u̇1 = U̇I , u̇2 = U̇I I for x2 = B0 (1)

u̇1 = −U̇I , u̇2 = −U̇I I for x2 = −B0. (2)

Here U̇I is the prescribed deformation rate in the
x1-direction, while U̇I I is continuously corrected so
that an average stress ratio κ = ∑

22 /
∑

21 for the far
field loading is maintained throughout the calculation.
The average stress at the top and bottom surface are
calculated as

∑

22

= 1

2A0C0

0∫

−C0

A0∫

−A0

T2dx1dx3, (3)

∑

21

= 1

2A0C0

0∫

−C0

A0∫

−A0

T1dx1dx3, (4)
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100 K. L. Nielsen et al.

Fig. 1 Periodic array of
spherical voids with radius
R0 and void spacing
2A0, 2B0 and 2C0 in the
x1−, x2−, and
x3−direction, respectively,
showing a the array of voids
and applied shear stress
ratio (κ = ∑

22 /
∑

21) in
the x1x2-plane, and b a
representative mesh used in
modelling shear
coalescence (B0/A0 = 4 for
all results presented)

for x2 = ±B0, with Ti being the nominal surface trac-
tions. In the present study, a far field stress ratio as low
as κ = 0.25 (thus T ≈ 0.089) has been made possible
in the 3D model by taking into account void surface
contact. However, values lower than κ = 0.25 have
given rise to numerical difficulties and termination of
the calculations, in particular for small void sizes.

3 Model: constitutive relation and numerical
procedure

The boundary value problem posed in Sect. 2 is solved
using the finite element code ABAQUS/explicit (2010).
The following Sects. 3.1–3.2 present the applied consti-
tutive material model and the numerical model set-up.
Where clarity of the paper is not sacrificed, previously
published details of the constitutive model and the finite
strain elastic-plastic formulation will be omitted, with
suitable references.

3.1 Constitutive model

The finite strain formulation for the applied J2-flow the-
ory material with the Mises yield surface, employs the
incremental stress-strain relationship; σ̇i j = Li jkl ε̇kl ,
where; σi j is the Cauchy stress, εi j = (ui, j + u j,i )/2
is the total strain, and Li jkl are the instantaneous mod-
uli (ABAQUS 2010). Here, the total strain increment
is taken to be the sum of an elastic and a plastic parts;
ε̇i j = ε̇E

i j + ε̇
p
i j . According to the updated Lagrang-

ian formulation all integrations are carried out in the
deformed configuration. The true stress-logarithmic
strain curve in uni-axial tension of the matrix material
is taken as

ε =
{
σ/E, for σ < σY

σY /E (σ/σY )
1/N , for σ ≥ σY

(5)

where E is Young’s modulus, σY is the initial yield
stress and N is the power hardening exponent, while σ
is identified as the von Mises stress,σe = (3/2si j si j )

1/2,
for the multi-axial stress state, and si j is the Cauchy
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Collapse and coalescence 101

Table 1 Mechanical properties

Parameter Significance Value

E Young’s modulus 200 GPa

ν Poisson’s ratio 0.3

ρ Mass density 7,800 kg/m3

σY Initial yield stress 400 MPa

N Strain hardening exponent 0.1–0.2

stress deviator. The material is taken to be isotropic
hardening. The simple power hardening law in Eq. (5)
is chosen to limit the number of model parameters, but
more realistic hardening laws (e.g the Voce law typ-
ically used for aluminum, Simar et al. 2010) could
equally well be used for the analyses. All material
parameter values are given in Table 1.

3.2 Numerical procedure

A numerical solution is obtained by the commercial
FE-code ABAQUS/explicit (2010), using an explicit
dynamic model formulation in an updated Lagrangian
framework. To avoid effects of material inertia, due to
a sudden prescribed displacement, the deformation rate
U̇I is ramped up, while the deformation rate U̇I I is con-
tinuously adjusted so that the average stress ratio, κ , is
maintained. This is obtained through a standard pro-
portional regulation algorithm, which offers sufficient
accuracy for the purpose of the current analysis.

The domain governed by the field equations is dis-
cretized by 8 node isoparametric 3D solid elements,
using reduced Gauss quadrature for the spatial inte-
gration. Here, a standard forward Euler procedure is
employed for the time integration, with a lumped mass
matrix to decouple the system of equations and lower
the calculation time in each increment. A convergence
study shows that this dynamic approach gives a very
good approximation to the static solution under slow
loading.

3.2.1 Adaptive meshing

In ABAQUS, the dynamic approach has the advan-
tage over a static analysis that the Arbitrary Lagrang-
ian-Eulerian (ALE) method, that adjusts the mesh
according to the deformation of the underlying mate-
rial, is more robust. This is important when accounting

for the severe material flow around the crack tip of
a completely flattened void. The ALE mesh adaptive
method is used to avoid excessive distortion of elements
which leads to inaccuracy of the results and often to ter-
mination of the analysis. In particular, this is important
to accurately account for the material flow that occurs
in the vicinity of the crack tips. In all of the analyses
presented, three ALE mesh sweeps per time increment
are performed to limit distortion of the mesh. All other
ALE options are the ABAQUS (2010) default. How-
ever, to facilitate enforcement of the periodic boundary
conditions the ALE mesh smoothing is made in-active
at the cell boundaries (see e.g. Dahl et al. 2012, for
further details).

3.2.2 Contact procedure

To account for contact between the void surfaces, the
ABAQUS general contact formulation is employed.
Using a standard penalty based contact formula-
tion (see e.g. Belytschko et al. 2000), penetration of
one surface into another can be avoided by using a
master-slave setup. The ABAQUS general contact for-
mulation first treats one of the surfaces as the master and
the other surface as the slave. Adequate penalty forces
are thereby calculated to avoid penetration, whereaf-
ter the master/slave roles are interchanged and a new
set of penalty forces are calculated. The actual penalty
forces used in the next time increment are a weighted
average of the two. Thus, the contact algorithm does
not avoid penetration of the surfaces, but for the analy-
ses conducted the observed penetrations are negligible.
Throughout, only frictionless contact is considered (see
Dahl et al. 2012, for further details on the effects of fric-
tion).

4 Results

4.1 Material response and load carrying capacity
of a 3D void structure

The overall response of a bulk material containing a
periodic array of spherical voids is presented in Figs. 2a
and 3a for various void sizes, R0/A0, and void spac-
ings, C0/A0, respectively, and the corresponding criti-
cal shear angles,ψC , for which the peak load is attained,
are presented in Figs. 2b and 3b. Clearly, the response
of the current full 3D cell model resembles that of
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(a)

(b)

Fig. 2 Overall material response of bulk material containing a
periodic array of spherical voids, showing a average shear stress
versus average shear angle for various void sizes, R0/A0 =
[0.3, 0.4, 0.5], subject to shearing, κ = [1.25, 0.25], and b cor-
responding critical average shear angle, ψC , at the onset of coa-
lescence (peak load) versus applied stress ratio, κ , for R0/A0 =
[0.3, 0.5] (N = [0.1, 0.2], C0/A0 = 1, σy/E = 0.002 and
ν = 0.3)

the 2D model proposed by Tvergaard (2008, 2009),
and the aim to further quantify this will be pursued in
Sect. 4.3. Similar to published 2D model predictions,
the overall material ductility is found to increase with
decreasing void size, R0/A0 (decreasing initial poros-
ity), and to increase with strain hardening, N . Thus,
the current 3D cell model predictions follow the rec-

(a)

(b)

Fig. 3 Overall material response of bulk material containing a
periodic array of spherical voids, showing a average shear stress
versus average shear angle for various void spacings in the x3-
direction, C0/A0 = [0.75, 1, 1.25], subject to shearing, κ =
[1.25, 0.25], and b corresponding critical average shear angle,
ψC , at the onset of coalescence (peak load) versus applied stress
ratio, κ (R0/A0 = 0.5, N = [0.1, 0.2], σy/E = 0.002 and
ν = 0.3)

ognized behaviour of voided material subject to com-
bined tension and shearing. Moreover, the overall mate-
rial ductility is predicted to increase severely for low
triaxiality shearing. In particular, this is evident from
Figs. 2b and 3b, where the critical shear angle, ψC ,
shows a monotonic increase with decreasing far field
stress ratio, κ = ∑

22 /
∑

21. Only a slight deviation
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Collapse and coalescence 103

from this common trend is observed from Fig. 2b for
R0/A0 = 0.3, when κ < 0.5. In a closer examination,
it was found that only this combination of material con-
figuration and loading condition shows a complete clo-
sure of the void mid-section during collapse (see also
Sect. 4.2). It should be noticed that, a few recent exper-
imental studies have shown that the strain-to-failure is
not a monotonic function of stress triaxiality (Bao and
Wierzbicki, 2004; Barsoum and Faleskog, 2007a), as
a peak strain is attained at moderate levels. This effect
has not been captured in the current analysis, and to
the authors knowledge, a conclusive study on this phe-
nomenon is yet to be published.

The effect of the additional matrix material connect-
ing voids in the x3-direction is brought out in Fig. 3. It is
observed that this dense layer of material has a signifi-
cant influence on the overall ductility (see Fig. 3b), and
that the response for various C0/A0-spacings closely
follows one master curve until the onset of coales-
cence (see Fig. 3a). Thus, changes in void size, R0/A0,
and void spacing, C0/A0, share the same effect on the
material response and the onset of coalescence (com-
pare Figs. 2a and 3a). This is attributed to interfer-
ence of stress-strain fields surrounding the individual
voids—or the lack hereof. In the limit C0/A0 → ∞
(or R0/A0 → 0), voids will become isolated and there
will be no failure. Thus, for increasing but still limited
void spacing, C0/A0 (or decreasing R0/A0), a larger
average shear angle, ψ , should be applied in order to
maintain the stress/strain level in the matrix material
located on the cell boundaries—thus, the overall duc-
tility increases.

4.2 Collapse and coalescence of spherical voids

In contrast to tension dominated conditions, where void
growth initially softens the material, it is the void shape
change and the void volume collapse that contributes
to a softening effect during low triaxiality shearing.
Figure 4 demonstrates the sequence of deformation
steps typically observed for spherical voids in a shear
field prior to void coalescence. During very low tri-
axiality shearing, the voids initially take on a prolate
shape (see Fig. 4b), and continuously rotate and elon-
gate, while collapsing into micro-cracks (see Fig. 4c).
During this deformation, large plastic straining occurs
along the rim of the voids. In particular, the void
surface material, located on the axis of rotation, experi-

ences severe straining and void surface contact is estab-
lished early in the shearing process (near x3 = −R0

for the undeformed void, see Fig. 4c). Upon further
shearing, the voids are flattened completely and the
area in contact evolves such that the mid-section of the
voids close-up, leaving only the crack-tips open (see
Fig. 4d). This void collapse is substantially delayed in
the 3D study of Fig. 4, due to the dense layer connect-
ing voids in the x3-direction, and is the primary reason
for deviations between the 2D and 3D model results.
In the final stage of shearing, void coalescence sets
in as interaction between neighbouring micro-cracks
takes place and thinning of the ligaments occurs. As a
consequence, a peak load is attained. This renders the
overall sequence of deformation steps governing the
shear coalescence mechanism for 3D spherical voids
very similar to that reported for 2D circular cylindrical
voids.

The early flattening of the initial spherical/circu-
lar cylindrical voids allows for the identification of a
major, R1, and a minor, R2, void half axis located in the
symmetry plane (x1, x2), as-well as a third axis, R3,
perpendicular to the x1x2-plane (in 3D). Here, R1 is
determined from the largest distance between nodes
being part of the void surface (based on nodal coordi-
nates), while R2 is perpendicular to R1. By doing so,
the evolution of i) the void volume, V/V0, ii) the void
orientation specified by the angle, θ , between the major
axis and the positive x1-axis, and iii) the void shape in
terms of the elongation/shortening of the void axes,
can be visualized (see Fig. 5). For materials containing
spherical voids, the following general observations are
made for the shape evolution during shearing; as shear-
ing takes place voids initially become prolate, and start
to rotate from an approximately 45◦ angle towards the
x1-axis (this rotation is rather continuous and the sud-
den “jumps” seen from Fig. 5 is an artifact of the pro-
cedure used to extract the major axis, R1). During the
flattening and rotation of voids, the major and third axes
elongate for all loading conditions considered, whereas
the minor axis is shortened. As will be presented, this
agrees well with 2D model predictions (see Sect. 4.3).
In addition, it is observed that the rate of deformation
of the void axes R1 and R3 increase with κ , while
the opposite applies to the minor axis, R2. Thus, the
void rapidly becomes very long for high κ-values, but
maintains low aspect ratios (R1/R2 and R3/R2), due
to void growth, when compared to the case of very low
triaxiality shearing. Moreover, an intriguing observa-
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Fig. 4 Curves of constant effective plastic strain, ε p
e , at aψ = 0,

b ψ = 0.61, c ψ = 0.91, and d ψ = 1 (just before coales-
cence) for κ = 0.25 (R0/A0 = 0.3, C0/A0 = 1, N = 0.2,
σy/E = 0.002 and ν = 0.3)

tion is that the rate of rotation (or ∂θ/∂ψ) increases
with κ , even though the void flattening becomes less
intense (see Fig. 5ii, iii).

For the case of very low triaxiality shearing, κ =
0.25, Fig. 5 clearly shows that the initial void volume
collapses (see Fig. 5i), while the void starts to rotate
towards the x1-axis. During the collapse, the major axis
elongates, while the minor axis is shortened and the
third axis remains nearly unchanged. Thus, the col-
lapsed void forms an elongated penny-shaped micro-
crack (see Fig. 5iii). In contrast to this, a comparably
large amount of void growth is predicted for the case

(a)

(b)

Fig. 5 Evolution of i) the void volume, V/V0, ii) the void orien-
tation specified by the angle, θ , between the major axis and the
positive x1-axis, and iii) the void shape in terms of the tree void
axes, (R1, R2, R3), as function of average shear angle. Here,
showning the influence of loading conditions and initial void
size a R0/A0 = 0.3, and b R0/A0 = 0.5 (C0/A0 = 1, κ =
[0.25, 0.5, 0.75, 1, 1.25, 1.5], N = 0.2, σy/E = 0.002 and ν =
0.3)

of combined tension and shearing with κ = 1.25 (see
Fig. 5i), which is also reflected in the shape evolution
as both the major and transverse axes elongate, while
the minor axis is slightly shortened (see Fig. 5iii).
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4.3 Assessment of published 2D model predictions
by direct comparison

The preceding discussion clearly reveals the coales-
cence mechanism for spherical voids (3D model) to
fall into the sequence of deformation steps first reported
by Tvergaard (2008, 2009) for circular cylindrical voids
under plane strain conditions (2D model). In the fol-
lowing, a further assessment of the predictive capabil-
ities of the 2D model, in terms of material response
and micro-mechanics based parameters (void volume,
shape and orientation), is presented with a direct com-
parison to the current 3D model set-up. For an accurate
comparison, identical numerical procedure and contact
algorithm are employed in both models. Thus, the 2D
model follows the set-up presented in Dahl et al. (2012).

Figure 6 compares the predicted material response
of a bulk material containing a periodic array of spher-
ical voids (3D model), to a similar material with circu-
lar cylindrical voids (2D model). Two different model
set-ups are here considered, for which; 1) the void
size, R0/A0, is kept constant to compare the influ-
ence of model parameters, and 2) the void volume
fraction is kept constant, f 2D

0 = f 3D
0 , to compare

identical material configurations. The porosity asso-
ciated with a row of voids is, however, not uniquely
defined, thus it is approximated by the porosity asso-
ciated with a band of width 2A0 in the x2-direction
(equal to the void spacing in the x1-direction). Hence,
the porosity can be expressed as f 2D

0 = πR2
0/(4A2

0)

and f 3D
0 = πR3

0/(6A2
0C0) in the 2D and 3D models,

respectively.
In the case of constant void size, R0/A0, it is found

that the 2D model severely underestimates both the
overall ductility and the load carrying capacity pre-
dicted by the 3D model. The inconsistency in the pre-
dicted material ductility is brought out in Fig. 7 for
a close examination. Here, the critical average shear
angle, ψC , at the onset of coalescence (peak load) is
shown as function of the applied far field stress ratio,
κ , for the 2D and 3D model, respectively. It is seen
from Fig. 7 that the underestimation by the 2D model is
rather significant and inconsistent with 3D model pre-
dictions. This is attributed an early collapse of 2D circu-
lar cylindrical voids, occurring as plastic flow localizes
in the ligaments between neighbouring voids, whereas
the corresponding localization is delayed by the addi-
tional material in the x3-direction for spherical voids
(see Sect. 4.3 and Fig. 4). Consequently, a substantially

(a)

(b)

Fig. 6 Average shear stress versus average shear angle for
spherical voids (solid line, 3D) and circular cylindrical voids
at plane strain (dashed line, 2D). Here, shown for a constant
void size R0/A0 = 0.5, and b approximate constant initial void
volume fraction, f0 (κ = [0.25, 0.5, 0.75, 1, 1.25, 1.5], N =
0.2, σy/E = 0.002 and ν = 0.3. Moreover, C0/A0 = 1 in 3D)

lower peak load should be expected for the 2D circular
cylindrical voids.

By introducing approximately identical porosities in
the two models, f 2D

0 = f 3D
0 , a much better agreement

is obtained (see Fig. 6b). In fact, the overall material
response nearly follows one master curve, while the
underestimation of the ductility is much reduced. This
is also obvious from Fig. 7, where the 2D and 3D model
predict curves of nearly identical appearance and with
a close to constant offset.

Further details on the micro-mechanics governing
the good agreement for the case of constant f0 is
revealed in Fig. 8. Here, the evolution of i) the void vol-
ume, V/V0, ii) the void orientation, θ , and iii) the void
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Fig. 7 Critical average shear angle at the onset of coalescence
(ψ = ψC ) versus applied stress ratio, κ , comparing predictions
for spherical voids (solid lines, 3D) and circular cylindrical voids
at plane strain (dashed lines, 2D). Curves of constant void spac-
ing (R0/A0 = [0.3, 0.5]) for the 2D and the 3D model are pre-
sented, together with curves of constant approximated porosity,
f0 (R0/A0|3D = 0.5 → R0/A0|2D = 0.29 and R0/A0|3D =
0.3 → R0/A0|2D = 0.134), (N = 0.2, σy/E = 0.002, ν = 0.3.
Moreover, C0/A0 = 1 in 3D)

shape, Ri , is presented for both models. It is seen from
Fig. 8a, that the 2D model predicts the void volume to
collapse at a higher rate under very low triaxiality shear-
ing (κ = 0.25) than the 3D model, whereas the oppo-
site applies when the loading is composed of shearing
and sufficient tension (κ > 0.75). Thus, the void vol-
ume evolution is clearly constrained in 3D. Again, this
can be ascribed to the dense material layer connect-
ing voids in the x3-direction, which forces the void to
remain slightly open at much larger overall shear defor-
mations (see Fig. 4). This constraint is also reflected in
Fig. 8b, as changes in the void axes occur somewhat
more slowly in 3D. However, a rather good agreement
between the 2D and 3D model is found for both the
void orientation and the shape evolution—especially
for the case of very low triaxiality shearing κ = 0.25.

5 Concluding remarks

Coalescence of spherical voids subject to low stress
triaxiality shearing is studied with focus on widen-
ing the interval of triaxialities usually faced in 3D cell
model studies, and adding to the understanding of the
sequence of events leading to loss of load carrying
capacity for ductile materials. Continuing along the
work by Tvergaard (2008, 2009), Dahl et al. (2012),

(a)

(b)

Fig. 8 a Void volume versus average shear angle for various far
field stress ratios, κ , and b evolution of the i) void volume, V/V0,
ii) void orientation specified by the angle, θ , between the major
axis and the positive x1-axis, and iii) void shape in terms R1, R2
and R3 as function of average shear angle for κ = [0.25, 1.25].
Here, comparing predictions for spherical voids (solid line, 3D)
and circular cylindrical voids at plane strain (dashed line, 2D),
with f 2D

0 = f 3D
0 (R0/A0 = 0.5 in 3D and R0/A0 = 0.29 in 2D),

(N = 0.2, σy/E = 0.002 and ν = 0.3. Moreover, C0/A0 = 1
in 3D)

a 3D cell model has been developed and exploited in
this investigation. The key findings of the study are:

– The material response for a bulk material contain-
ing a periodic array of spherical voids is illustrated
for various initial material configurations (R0/A0,
C0/A0, N ), and loading conditions, κ . A signifi-
cant influence of the additional dense material layer
connecting voids in the x3-direction is revealed and
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gives a constraint on the void volume and shape evo-
lution, as-well as toughens the material response in
3D. Thus, changes in the void size, R0/A0, and the
void spacing C0/A0, are shown to share the same
effect on the material response and the onset of coa-
lescence (see Figs. 2, 3).

– The governing mechanisms for void coalescence
under low triaxiality shearing, first brought out
by Tvergaard (2008, 2009) for circular cylindrical
voids, are demonstrated for spherical voids in full
3D. The primary sequence of deformation steps, in
terms of void collapse, rotation and elongation, is
shown to translate directly to a three-dimensional
voided structure. Compared to the 2D model, the
main difference lies in the shearing of the addi-
tional dense material layer in the transverse direc-
tion. During shearing of initially spherical voids,
significant straining of the material located on the
axis of rotation takes place and void surface contact
is established rather early near x3 = −R0 (accord-
ing to Fig. 1). This constricts the void collapse such
that a complete closure is only obtained under very
low triaxiality shearing. Moreover, the evolution of
the void shape and orientation is brought out in the
presented study (see Fig. 5).

– A comparison between 2D and 3D cell model pre-
dictions shows a good agreement when the void
volume fraction is kept constant ( f 2D

0 = f 3D
0 ). In

fact, the material response nearly follows one mas-
ter curve, while the overall ductility is found to be
underestimated in a consistent manner for a wide
range of loading conditions and material configu-
rations (see Figs. 6, 7). Moreover, a qualitatively
good agreement between the 2D and 3D model
is observed for the evolution of micro-mechan-
ics based parameters such as; void volume, shape
and orientation. Based on these findings, previ-
ously published results from 2D cell models can
be viewed (with caution) as trend lines for corre-
sponding 3D cell model predictions when keeping
the void volume fraction approximately constant
( f 2D

0 = f 3D
0 , see Sect. 4.3).

Acknowledgments KLN is financially support by the Dan-
ish Council for Independent Research under the research career
programme Sapere Aude in the project “Higher Order Theories
in Solid Mechanics”.

References

ABAQUS (2010) ABAQUS Theory Manual, version 6.10, SIM-
ULIA Corp

Anderson P, Fleck N, Johnson K (1990) Localization of plas-
tic deformation in shear due to micro-cracks. J Mech Phys
Solids 38:681–699

Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent
strain and stress triaxiality space. Int J Mech Sci 46:81–98

Barsoum I, Faleskog J (2007a) Rupture mechanisms in com-
bined tension and shear—experiments. Int J Solids Struct
44:1768–1786

Barsoum I, Faleskog J (2007b) Rupture mechanisms in com-
bined tension and shear—micromechanics. Int J Solids
Struct 44:5481–5498

Barsoum I, Faleskog J (2011) Micromechanical analysis on the
influence of the lode parameter on void growth and coales-
cence. Int J Solids Struct 48:925–938

Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements
for continua and structures. Wiley, New York

Benzerga A (2002) Micromechanics of coalescence in ductile
fracture. J Mech Phys Solids 50:1331–1362

Chu A, Needleman A (1980) Void nucleation effects in biaxially
stretched sheets. J Eng Mater Technol 102:249–256

Dahl J, Nielsen K, Tvergaard V (2012) Effect of contact condi-
tions on void coalescence at low stress triaxiality Shearing.
J Appl Mech. doi:10.1115/1.4005565

Fleck N, Hutchinson J, Tvergaard V (1989) Softening by void
nucleation and growth in tension and shear. J Mech Phys
Solids 37:515–540

Gao X, Zhang G (2010) A study on the effect of the stress state
on ductile fracture. Int J Damage Mech 19:75–94

Gologanu M, Leblond J, Devaux J (1993) Approximate mod-
els for ductile metals containing nonspherical voids—case
of axisymmetrical prolate ellipsoidal cavities. J Mech Phys
Solids 41:1723–1754

Gologanu M, Leblond J, Devaux J (1994) Approximate mod-
els for ductile metals containing nonspherical voids—case
of axisymmetrical oblate ellipsoidal cavities. J Eng Mater
Technol 116:290–297

Gologanu M, Leblond J, Perrin G, Devaux J (1997) Recent exten-
sions of Gurson’s model for porous ductile metals. In: Con-
tinuum micromechanics, Springer, Berlin, pp 61–106

Gurson A (1977) Continuum theory of ductile rupture by void
nucleation and growth—part I: yield criteria and flow rules
for porous ductile media. ASME J Eng Mater Technol 99:2–
15

Jodlowski T (2011) Mechanics of growth and coalescence of pre-
existing voids in a ductile matrix. PhD thesis, École poly-
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Koplik J, Needleman A (1988) Void growth and coalescence in
porous plastic solids. Int J Solids Struct 24:835–853
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