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Abstract An orthogonal meshless finite volume met-
hod has been presented to solve some elastodynamic
crack problems. An orthogonal weighted basis function
is used to construct shape function so there is no prob-
lem of singularity in this new form. In this work, for
three-dimensional dynamic fracture problems, a new
displacement function is used at the tip of the crack
to give a new OMFVM. When the new OMFVM is
used, the singularity of the stresses at the tip of the
crack can be shown to be better than that in the primal
OMFVM. High computational efficiency and precision
are other benefits of the method. Solving some sample
crack problems of thin-walled structures show a good
performance of this method.

Keywords Meshless method · Finite volume
method · Orthogonal moving least square ·
Elastodynamics · Crack

1 Introduction

The modeling of dynamic fracture or failure problems
remains one of the most challenging problems in mech-
anics. Dynamic failure modeling is an essential ingre-
dient in the lifetime prediction of critical components
in structures such as aircraft, automobiles and pressure
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vessels. It also plays an important role in the devel-
opment of advanced materials such as composites and
in understanding their durability and integrity. Finite
element methods (FEMs) based on singular elements
as well as enriched elements are reasonably effec-
tive in the analysis of stationary cracks. However, the
modeling of growing cracks presents automatic mesh
generation difficulties and, in certain cases, manual
intervention is required. No general purpose computa-
tional method currently exists which can handle crack
growth in complex 3D bodies for arbitrary constitutive
response without recourse to extensive remeshing.

Since the inception of smoothed particle hydrody-
namics (Monaghan 1982, 1988), a wide variety of
meshless (or meshfree) methods have been proposed,
as outlined in recent surveys. They are believed to be
better suited to solve problems with moving bound-
aries, such as the modeling of crack propagation. The
most widely used meshless method at present, the
element-free Galerkin method (EFGM) (Belytschko
et al. 1994), is developed for crack modelling in a
number of references. The extended finite element
method (XFEM) is probably the premier numerical
technique for crack modelling and requires minimal
or even no remeshing as cracks grow. Much of the
well-developed convergence and error estimation the-
ory developed for the FEM can be applied to the XFEM,
which is not the case at present for most meshless
methods. However, stresses from the XFEM are not
smooth, unlike those from the EFGM, and any meshing
overhead may preclude the efficient use of very large
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models in 3D. Unless explicitly modeling crack faces
as domain boundaries it is necessary in modeling frac-
ture to include a means of introducing the displacement
jump that occurs across the crack. In the XFEM this
jump is introduced by extrinsically enriching the dis-
placement approximation. In meshless methods, such
as the EFGM, intrinsic approaches are most popular
using either the visibility criterion or the diffraction
method. The former is simpler to implement, especially
for 3D problems, but leads to spurious crack extension
(thus impairing accuracy) while the latter is accurate
with no spurious extension problem but high compu-
tational complexity especially in 3D or with multiple
cracks. So, the dilemma is that one would prefer to use
the visibility criterion in 3D for economy but cannot
guarantee accuracy due to spurious extension. On the
other hand, an extrinsic enriched meshless method is
developed for 3D fracture modeling where the crack
tip is closed by modifying the nodal support and is
similar to the idea used in the XFEM. However this
method is not feasible when the crack front is curved
in 3D. Alternatively the use of Lagrange multipliers is
proposed and is later adopted in a number of subse-
quent papers which develop meshless methods for 3D
fracture modeling. However this method involves addi-
tional unknowns which increase with the number of
cracks. Besides which, the solution accuracy using this
method, in terms of fracture parameters, is not clearly
shown.

Crack propagation is an important failure mecha-
nism in structural and mechanical systems. It requires
accurate numerical models to implement essential sim-
ulation supporting failure prediction. The existence
of system uncertainty and risk in loads, material
properties, and crack size requires a reliability-based
fracture-mechanics analysis to be taken into account.
The objective of this work is to develop a new meshless
methodology for predicting characteristics of struc-
tures containing crack-like defects.

This effort is based on a new integrated method
entitled orthogonal meshless finite volume (OMFVM)
(Moosavi et al. 2011a,b, 2008; Cheung et al. 1992;
Daux et al. 2000) for determining crack-tip stress and
strain fields. Such a coupling has the potential to greatly
simplify crack-growth analysis while simultaneously
achieving a substantially improved level of accu-
racy. The proposed research represents an advanced
approach to computational modeling of crack by mesh-
less methods. It will enable us in the development and

improvement of this meshless method in crack prob-
lems and also it increases understanding of the funda-
mental issues of crack propagation in solid mechanics.

The OMFVM is based on local weak forms (LWFs)
of governing equations and employs meshless inter-
polations for both the trial and the test functions. The
trial functions are constructed by using the orthogonal
moving least squares (OMLS) approximation. These
approximations simply rely on the location of points
or nodes in the body, rather than complex meshes.
The key ingredients of the OMFVM may be summa-
rized as: local weak formulation, OMLS interpolation,
Petrov–Galerkin projection, evaluation of domain inte-
grals appearing in the weak formulation, imposition of
essential boundary conditions. The OMFVM has been
successfully applied to several elastodynamic failure
problems.

2 Governing equations

The governing differential equation for a linear elas-
tic body undergoing infinitesimal deformations can be
obtained by the linear momentum balance as

μ(ui, j j + u j,i j ) + λuk,k jδi j + bi = ρüi (1)

with the boundary conditions

ui = ūi on �u (2a)

ti = σi j n j = t̄i =μ(ūi, j + ū j,i )n j + λūk,kn jδi j on �t

(2b)

tc
i = σ+

i j n+
j = μ(u+

i, j + u+
j,i )n

+
j + λu+

k,kn+
j δi j

=σ−
ik n−

k =μ(u−
i,k + u−

k,i )n
−
k +λu−

l,l n
−
k δik on �c

(2c)

where the first two terms in Eq. (1) are equivalence to
the stress tensor σi j , λ and μ are the Lame’s coefficients
and bi is the body force. In Eq. (2), ūi is the prescribed
displacements on the displacement boundary �u, t̄i and
ūi, j are the prescribed tractions and displacement deriv-
atives on the traction boundary �t , respectively, n j is
the unit vector outward normal to the boundary �, and
superscript and subscript c denote a crack.

Using the MLS approximation, the trial function in
a local subdomain �s is

u(x) = pT (x)TT a(x) ∀x ∈ �s (3)

where pT (x) is a monomial basis, T is a transformation
lower triangular matrix which is defined as follows

T = [
ti j

] =
{

0 i < j
1 i = j

(4)
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Orthogonal meshless finite volume method 3

a(x) is a vector containing coefficients which are deter-
mined by minimizing a weighted discrete L2 norm with
respect to nodal points, defined as

J (x) =
n∑

I=1

wI (x)[pT (xI)TT a(x) − u(xI )]2

= [TPa(x) − u]T W[TPa(x) − u] (5)

where wI (x) is the weight function associated with
the node I , with wI (x) > 0 for all x in the support
of wI (x), xI denote the value of x at node I, n is the
number of nodes in �s for which the weight functions
wI (x) > 0. The stationarity of J in Eq. (5) with respect
to a(x) leads to the following linear relation between
a(x) and u(xI ).

TA(x)TT a(x) = TB(x)u (6)

where the matrices A(x) and B(x) are defined by

A(x) = PT WP =
n∑

i=1

wi (x)p(xi )pT (xi ) (7)

B(x) = PT W = [w1(x)p(x1), w2(x)p(x2), . . . ,

wn(x)p(xn)] ∀x ∈ �s (8)

The MLS approximation is well defined only when the
matrix A in Eq. (6) is non-singular. The shape function
may be found as

u(x) = pT (x)TT (TA(x)TT )−1TB(x)u =
�T (x)u ∀x ∈ �s (9)

In this work, weight function is a fourth order spline as
below

wI (x)

=

⎧
⎪⎨

⎪⎩

1−6
(

dI
rI

)2+8
(

dI
rI

)3−3
(

dI
rI

)4
0 ≤ dI ≤ rI

0 dI ≥ rI

(10)

where dI = |x − xI | is the summation of Euclid-
ean distance from node xI to point x; and rI is the
size of the support for the weight function wI , which
determines the support of node xI . The shape function
�(x), Eq. (9), can be calculated directly without any ill-
conditioning or singularity which is the important ben-
efit of the method.

A crack can be modeled as follows

u(x) = �T (x)u + uc(x) = �T (x)u + �T (x)H(x)α

+�T (x)B(x)β (11)

where uc is crack displacement, H(x) the Heaviside
step function, α and β are additional unknowns, and
B(x) is the Westergaard expansion as

B(x)

=
{√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}

(12)

where r and θ are the local polar coordinate system
at the crack tip. The first term on the right hand side
is referring to a node in support of x, the second term
refers the set of nodes having its support completely
cut by a crack, and the last term refers all the nodes
each having a crack tip inside its support.

The finite volume (FV) discretization is based on the
integral form of the equation over the control volume or
sub-domain �s . In other words, the FV discretization
uses the integral form of Eq. (1) over the sub-domain
�s around node I as
∫

�s

[μ(ui, j j + u j,i j ) + λuk,k jδi j + bi − ρüi ]d� = 0

(13)

Applying the divergence theorem to the first integral
term gives

∫

∂�s

[μ(ui, j + u j,i )n j + λuk,kn jδi j ]d�

+
∫

�s

bi d� +
∫

�s

ρüi d� = 0 (14)

where n j is the outward normal to the local boundary
∂�s . At this point, the conservative nature of the FVM
is established as the flux, stress σi j , is integrated over
the local boundary ∂�s .

By considering the traction boundary conditions
from Eq. (2) and imposing it in Eq. (14) leads to
∫

Ls

[μ(ui, j + u j,i )n j + λuk,kn jδi j ]d�

+
∫

�su

[μ(ui, j + u j,i )n j + λuk,kn jδi j ]d�

+
∫

�st

[μ(ui, j + u j,i )n j + λuk,kn jδi j ]d�

+
∫

�s

bi d� +
∫

�s

ρüi d� = 0 (15)
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The Eq. (15) represents a physical meaning in the bal-
ance law of the local sub-domain �s as conventional
FVM with the traction boundary conditions being enfo-
rced. Hence it is called orthogonal meshless finite vol-
ume (OMFV) formulation of the equilibrium equation.
The displacement can be interpolated with the shape
function as in Eq. (11)

ui (x)=
n∑

J=1


(J )(x)u(J )
i +

nc∑

K=1


(K )(x)H(K )(x)α
(K )
i

+
nt∑

L=1


(L)(x)B(L)(x)β
(L)
i (16)

where nc is the set of nodes having its support com-
pletely cut by a crack, and nt is the set of nodes each
having a crack tip inside its support.

At now, Eq. (15) is discretized by substituting Eq.
(16)

n∑

J=1

⎡

⎢
⎣

∫

�s

ρ
(J )d�

⎤

⎥
⎦ ü(J )

i +
nc∑

K=1

⎡

⎢
⎣

∫

�s

ρ
(K )H(K )d�

⎤

⎥
⎦ α̈

(K )
i

+
nt∑

L=1

⎡

⎢
⎣

∫

�s

ρ
(L)B(L)d�

⎤

⎥
⎦ β̈

(L)
i

−
n∑

J=1

⎡

⎢
⎣

∫

Ls

μ

(J )
, j (x)n j d� +

∫

�su

μ

(J )
, j (x)n j d�

⎤

⎥
⎦ u(J )

i

−
nc∑

K=1

⎡

⎢
⎣

∫

Lsc

μ

(K )
, j (x)H(K )n j d� +

∫

�suc

μ

(K )
, j (x)H(K )n j d�

⎤

⎥
⎦α

(K )
i

−
nt∑

L=1

⎡

⎢
⎣

∫

Lsc

μ

(L)
, j (x)B(L)n j d� +

∫

�suc

μ

(L)
, j (x)B(L)n j d�

⎤

⎥
⎦β

(L)
i

−
n∑

J=1

⎡

⎢
⎣

∫

Ls

λ

(J )
,k (x)n j δi j d� +

∫

�su

λ

(J )
,k (x)n j δi j d�

⎤

⎥
⎦ u(J )

k

−
nc∑

K=1

⎡

⎢
⎣
∫

Lsc

λ

(K )
,k (x)H(K )n j δi j d�+

∫

�suc

λ

(K )
,k (x)H(K )n j δi j d�

⎤

⎥
⎦α

(K )
k

−
nt∑

L=1

⎡

⎢
⎣
∫

Lsc

λ

(L)
,k (x)B(L)n j δi j d�+

∫

�suc

λ

(L)
,k (x)B(L)n j δi j d�

⎤

⎥
⎦β

(L)
k

=
∫

�st

[μ (
ūi, j + ū j,i

)
n j + λūk,k n j δi j ]d�

+
∫

�stc

[
μ(u+

i, j + u+
j,i )n

+
j + λu+

k,k n+
j δi j

]
d� +

∫

�s

bi d� (17)

The relation between displacement and force is obtai-
ned as

M ü +Ku = f (18)

where

Mi j =
n∑

J=1

⎡

⎢
⎣

∫

�s

ρ
(J )d�

⎤

⎥
⎦ ü(J )

i

+
nc∑

K=1

⎡

⎢
⎣

∫

�s

ρ
(K )H(K )d�

⎤

⎥
⎦ α̈

(K )
i

+
nt∑

L=1

⎡

⎢
⎣

∫

�s

ρ
(L)B(L)d�

⎤

⎥
⎦ β̈

(L)
i (19)

is the mass matrix, ü the acceleration vector,

Ki j = −
n∑

J=1

⎡

⎢
⎣

∫

Ls

μ

(J )
, j (x)n j d� +

∫

�su

μ

(J )
, j (x)n j d�

⎤

⎥
⎦ u(J )

i

−
nc∑

K=1

⎡

⎢
⎣

∫

Lsc

μ

(K )
, j (x)H(K )n j d� +

∫

�suc

μ

(K )
, j (x)H(K )n j d�

⎤

⎥
⎦ α

(K )
i

−
nt∑

L=1

⎡

⎢
⎣

∫

Lsc

μ

(L)
, j (x)B(L)n j d� +

∫

�suc

μ

(L)
, j (x)B(L)n j d�

⎤

⎥
⎦ β

(L)
i

−
n∑

J=1

⎡

⎢
⎣

∫

Ls

λ

(J )
,k (x)n j δi j d� +

∫

�su

λ

(J )
,k (x)n j δi j d�

⎤

⎥
⎦ u(J )

k

−
nc∑

K=1

⎡

⎢
⎣
∫

Lsc

λ

(K )
,k (x)H(K )n j δi j d�+

∫

�suc

λ

(K )
,k (x)H(K )n j δi j d�

⎤

⎥
⎦ α

(K )
k

−
nt∑

L=1

⎡

⎢
⎣
∫

Lsc

λ

(L)
,k (x)B(L)n j δi j d�+

∫

�suc

λ

(L)
,k (x)B(L)n j δi j d�

⎤

⎥
⎦ β

(L)
k

(20)

is the stiffness matrix, u is the displacement vector, and

fi =
∫

�st

[μ(ūi, j + ū j,i )n j + λūk,kn jδi j ]d�

+
∫

�stc

[
μ

(
u+

i, j + u+
j,i

)
n+

j + λu+
k,kn+

j δi j

]
d�

+
∫

�s

bi d� (21)

is the force vector.

3 Numerical examples

This method is evaluated by the following exam-
ples. Those are presented to illustrate the implemen-
tation, accuracy and efficiency of the present OMFVM
approach.
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Orthogonal meshless finite volume method 5

Example 1 Plate with a middle crack subjected to trac-
tion

This first example presents a middle cracked plate,
fixed at the bottom and subjected to a traction load
P = 1 applied on the right, as shown in Fig. 1. The
dimensions of the plate are length l = 0.052 m and
width h = 0.08 m. The a/h ratio is 0.2. The elastic
modulus and Poisson’s ratio are 75.6 GPa and 0.286,
respectively, and ρ = 2,450 kg/m3.

We consider two cases in this problem; in the first
one, the crack remains stationary during simulation and
in the second case, the crack remains stationary until
4.4 µs and then propagates with a constant velocity v =
1,000 m/s along its original direction. The stress inten-
sity histories computed for both cases and are shown
in Fig. 2.

x
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l
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h
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a

Fig. 1 A plate with middle crack under a traction load
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Fig. 2 Time-dependence of the mode I dynamic stress intensity
factors for the plate with a middle crack
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Fig. 3 A cylinder with a crack subjected to impact internal pres-
sure

OMFVM, tip 1
OMFVM, tip 2

Analytical
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Fig. 4 Normalized dynamic stress intensity factors versus nor-
malized time

As indicated in Fig. 2, there is a good agreement
between the results of the OMFVM and the ones of
previous methods like as element free Galerkin (EFG)
method, Aoki et al. (1987), Nishioka and Atluri (1980),
Belytschko et al. (1995).

Example 2 Cylinder with a crack subjected to impact
internal pressure

We examine the case of a cylinder with a crack sub-
jected to impact internal pressure, as shown in Fig. 3.
We assume elastic modulus E = 8×1010 Pa, Poisson’s
ratio ν = 0.29, and ρ = 7,800 Kg/m3. An impact inter-
nal pressure of P is applied. The stress intensity factors
(SIF) K I at tips of crack are computed and compared
in Fig. 4 with the analytical solution. In this figure,
c = √

E/ρ and a is the length of crack. As indicated
in this figure, there is a good agreement between of
the results of OMFVM and the analytical ones, Zahoor
(1991).

Example 3 Plate with a central crack under shear
In third example, a plate with a central crack is con-

sidered, as indicated in Fig. 5. The geometrical dimen-
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xy

z
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P

P

L
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Fig. 5 A plate with a central crack under shear
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Static

Fig. 6 Time variation of normalized dynamic stress intensity
factor mode III for stationary crack

sions of the plate are L1 = 104 and L2 = 40 mm.
The material properties are ρ = 2.45 × 103 kg/m3

and E = 2.94 × 1010 Pa. The applied shear load is
P = 9.8 × 106 Pa. The normalized dynamic stress
intensity factor K I I I /σ

√
πa for mode III deformation

for a stationary crack of the length a = 12 mm are
shown in Fig. 6.

The analytical results for a crack in an infinite plate
by Kostrov (1966) and Ravera and Sih (1970) are also
illustrated in Fig. 6. The present result agrees well with
the analytical ones. Figure 7 demonstrate the time var-
iation of K I I I (t)/σ

√
πa of the crack with the initial

length a = 16 mm which propagates from t = 7 µs
with the constant velocity c = 1, 000 m/s. The result
agrees well with the analytical one by Achenbach
(1970).

OMFVM

OMFVM

Ref [15]

C=1000 m/s

C=0 m/s

0 5 10 15 20

2

1

0

Fig. 7 Time variation of normalized dynamic stress intensity
factor mode III for propagating crack

4 Conclusion

This paper presented the OMFVM applied to elastody-
namic crack problems. The OMFVM unifies the major
advantages of meshless methods and finite volume
method in one single scheme. In the LWF of the govern-
ing differential equation, an OMLS interpolation was
used to form the approximations to the solution known
as trial functions. A new displacement function is used
at the tip of the crack to give a new OMFVM. Because
of applying the orthogonal moving least square approx-
imation instead of the moving least square, this method
does not have any singularity or ill-conditioning in cal-
culation of the shape function. Also the method has a
great computational precision. The OMFVM method
was applied to and passed several test crack problems.
Very good results from the method was obtained.
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