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Abstract. In the paper, the elastic-plastic fracture behavior of an interface crack between 
two dissimilar materials is investigated. The mixed-mode Dugdale model is applied to 
examine the plastic zone size and the crack tip opening displacement. In numerical 
examples, the plastic zone size and the crack tip opening displacement of an interface crack 
under uniform loads are studied in detail. Two formulae are proposed to calculate the plastic 
zone size and the crack tip opening displacement of an interface crack under small scale 
yielding conditions.  
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1. Introduction. The elastic problems of cracks were studied first by some pioneer 
researchers (Williams, 1959; Erdogan, 1963; England, 1965; Rice and Sih, 1965.) in the 
1950s and the 1960s. Rice and Sih (1965) and Erdogan and Gupta (1971) defined the 
complex stress intensity factor. For a uniform remote loading, the complex stress intensity 
factor of an interface crack between two dissimilar semi-infinite planes (shown in Fig.1) can 
be written as 

 
Fig 1. Remote tensile and shear loading of an interface crack. 
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Here, L is the half crack length,  yy xyiσ σ∞ ∞+  is the uniform remote stress loads, and 
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where β  is Dundurs’ parameters, 3 4i iκ ν= −  in plane strain and ( ) ( )3 / 1i i iκ ν ν= − +  in 
plane stress, iμ  is the shear modulus of material i and iν  is the Poisson’s ratio of material i.     
    The complex stress intensity factor is often applied to judging the initial of crack advance 
in the interface. Ikeda et al (1998) suggested an ellipse law as the following equation 
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Here, * *
1 2

iK iK Kl ε−+ = , l is a reference length, 1CK  and  2CK   are the critical values in mode 
I and mode II, separately. The difficulty in the criterion is that the reference length l is 
arbitrary, and the complex stress intensity factors, *

1K and *
2K , depend on its value.  

    In our current work, we focus on evaluating the plastic zone size and the crack tip opening 
displacement of an interface crack between two dissimilar semi-finite plates under a normal 
load on the crack surfaces. 

2. Formulation and model. 

2.1. Stress intensity factors. When continuously distributed edge dislocations are used to 
model an interface crack between two semi-infinite bi-material plates under loads, ( )yy xσ  

and ( )xy xσ , on the crack faces (shown in Fig. 2),  

 
Fig 2. An interface crack between two semi-infinite bi-material plates under loads, ( )yy xσ  and ( )xy xσ , on the crackfaces. 

the governing integral equation can be written as (Hills et al. 1996) 
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Here, β is Dundurs’ parameter, ( )B ξ is the dislocation density and can be expressed as  

 ( ) ( ) ( )x yB B iBξ ξ ξ= + .                           (6) 
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Here, α is another Dundurs’ parameter and can expressed as 
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Let Lsξ =  and x Lt= , equation (5) can be re-written as 
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The dislocation density, ( )B s , can be written as 

 ( ) ( ) ( )B s s sω= Φ  .                (11) 
Here,  

 ( ) ( ) ( )1 1a bs s sω = − + ,                                                          (12) 
and 
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The boundary function ( )Φ s  can be expressed by an infinite series of Jacobi Polynomials, 
( ),a b

nP , as the following equation 
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Substituting equation (14) to equation (11), then, substituting equation (11) to equation (10), 
and using the relation (Krenk 1975)  
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equation (10) can be re-expressed as  
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Multiplying both sides of equation (17) by ( ) ( ) ( ),1 a b
kt P tω − −− , where 

( ) ( ) ( )1 1 1a bt t tω − −− = − + , then integrating equation (17) over  [-1 1], one can get 
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Using the orthogonality relation 
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equation (18) can be written as 
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Here, 
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The no-net-dislocation condition leads 
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Noticing ( ) ( ),
0 1a bP s = and the orthogonality relation in equation (19), equation (22) can be 

re-written as 
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or 

 0 0c = .                                (24) 
The crack surface displacements near the right crack tip can be written as (Hills et al. 1996) 
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Here, RK is the stress intensity factor at the right crack tip, and r ( L x= − ) is the distance 
from a point on the crack surfaces to the right crack tip. ( ) ( )( ) ,0 ,0y yg r u r u r+ −= − and 

( ) ( )( ) ,0 ,0x xh r u r u r+ −= − , where yu  and xu  are the normal and the tangential 
components of  the crack surface  displacements.  The dislocation density near the right 
crack tip can be expressed as 
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With the aid of equation (11), the complex conjugate stress intensity factor at the right crack 
tip can be written as 
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Substituting equations (12-14) to equation (27), and let ( )1r L s= − , equation (27) can be 
expressed as 
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Similarly, the complex conjugate stress intensity factor at the left crack tip can be 
obtained according to equations in this section by exchanging material 1 and material 2.  

2.2. The current model with plastic zone correction. The current physical problem (an 
interface crack) is shown in Fig. 3.  

 
Fig 3. The current model with plastic zone correction. 

Two long, slim plastic zones are assumed at both crack tips. The crack length is taken as 
2 L RL ρ ρ+ + , where Lρ  and Rρ are the plastic zone lengths at the left and right crack tips, 
respectively. The plane stress condition is considered. The stresses applied in the plastic 
zones include the normal stress, yσ , and the shear stress, xyτ , and they satisfy the Von Mises 
yield criterion having the form as 

 
2 23+ =y xy ysσ τ σ .                                                    (29)  

where ysσ is the lower yielding stress of the two solids.  
The dislocation express for the model (shown in Fig. 3) can be written as  
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The lengths of plastic zones ( Lρ  and Rρ ), the normal stresses ( L
yσ  and 

R
yσ  ) and the shear 

stresses ( L
xyτ  and R

xyτ ) in the plastic zones can be determined when the stress singularity 
vanishes: 
  0L

LK K ρ+ = , 0R
RK K ρ+ = .                                              (31) 

Here, LK  and RK are the stress intensity factors caused by the applied load, yσ , at the left 

and right crack tips, respectively.  LK ρ  and RK ρ  are the stress intensity factors caused by the 
stresses in the plastic zones, at the left and right crack tips, respectively. Specially, in the 
case of homogenous materials and uniform loads, the shear stresses in the plastic zones are 
zero and the current model reduces to the Dugdale model. 
    The crack tip opening displacements, Lδ , and, Rδ , at the left and right crack tips can be 
obtained by 
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3. Numerical examples and discussion. In this section, the plastic zone size and the crack 
tip opening displacement of an interface crack between two dissimilar semi-infinite planes 
under uniform tensile loads on the crack surfaces are discussed in detail. The plane stress 
case is considered. The length of the crack is taken as 2L. The effect of the normalized 
uniform loading, 0 / ysσ σ , and the elastic modulus ratio, E2/ E1, on the normalized plastic 
zone size, / refρ ρ , and the normalized crack tip opening displacement, / refδ δ , is 
investigated. The Poisson’s ratios of the two materials are chosen as 0.3.  Here, 0σ  is the 

uniform applied loading on the crack surfaces, ysσ is the lower yielding stress of the two 
solids, E1 and E2 are the elastic modulus of material 1and material 2, respectively, ρ  is the 
plastic zone size, δ  is the crack tip opening displacement, refρ and refδ are the 
corresponding values of the plastic zone size and the crack tip opening displacement of the 
same size crack in pure homogeneous material ‘1’, and can be expressed as 
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and 
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The numerical results are shown in Fig. 4 and Fig. 5. 

 
Fig 4. The normalized plastic zones size, / refρ ρ Vs the elastic modulus ratio, 2 1/E E . 

 
Fig 5. The normalized crack tip opening displacement, / refδ δ Vs the elastic modulus ratio, 2 1/E E . 

From Fig. 4, one can observe that the plastic zone size reaches the minimum value when the 
crack is embedded in the homogenous materials. When the elastic modulus ratio, E2/ E1, is 
taken as, for example, n and 1/n, the corresponding normalized plastic zone sizes have the 
same value. This can be explained from the physical viewpoint. When the two materials are 
exchanged, the value of elastic modulus ratio, E2/ E1, varies from n to 1/n, but the plastic 
zone size should not have any change. For small plastic deformations (the normalized 
uniform loading is 0.1), the relationship between the normalized plastic zone size and the 
elastic modulus ratio can be expressed as the following fitting formula approximately  
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From Fig. 4, one also observes that the values of the normalized plastic zone size decrease 
with increasing the normalized loading from 0.1 to 0.3. 

From Fig. 5, it is observed that the value of the normalized crack tip opening 
displacement decreases with increasing the value of the elastic modulus ratio, E2/E1. For 
small plastic deformations (the normalized loading is 0.1), the relationship between the 
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normalized crack tip opening displacement and the elastic modulus ratio can be expressed as 
the following fitting formula approximately  
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From Fig. 5, one also finds that the values of the normalized crack tip opening displacement 
are almost invariable with increasing the normalized loading from 0.1 to 0.3. 

4. Conclusions. 
In the present paper, the mixed-mode Dugdale model is applied to investigate the plastic 

zone size and the crack tip opening displacement of an interface crack between two semi-
infinite dissimilar plates under a normal load on the crack surfaces. In the numerical 
example, the effect of the normalized uniform loading and the elastic modulus ratio on the 
normalized plastic zone size and the normalized crack tip opening displacement is studied in 
detail. The numerical results show that the plastic zone size reaches the minimum value 
when the crack is embedded in the homogenous materials. Two empirical functions 
(equations (35-36)) are obtained to calculate the plastic zone size and the crack tip opening 
displacement for small plastic deformations. 
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