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Abstract Configurational forces invariably appear
at the external boundaries of cracked bodies (includ-
ing the crack faces), but it is unclear whether they
influence crack growth. Also, it is unclear how such
boundary configurational forces are related to the
J -integrals calculated in the body. In this brief note,
we (i) derive expressions for the surface configura-
tional forces and determine their values on regions of
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the external boundaries with prescribed tractions or dis-
placements, (ii) determine the relation between the far-
field J -integral and the surface configurational forces,
and (iii) show that surface configurational forces on the
crack faces do not alter the relation between the near-tip
and far-field J -integrals.

Keywords Configurational forces · External
boundaries · Role of crack faces · J -integral vector ·
Analytical solutions · Finite element modeling

1 Introduction

Configurational stresses and forces are now well-estab-
lished quantities in fracture mechanics, see e.g. the
books and articles by Maugin (1993, 1995, 2010),
Gurtin (2000) and Kienzler and Herrmann (2000). In
particular, configurational forces provide a convenient
framework for studying shielding (or anti-shielding)
of cracks due to material inhomogeneities, eigenstrain
fields, plasticity, etc., see e.g. Simha et al. (2003, 2005,
2008), Kolednik et al. (2010) and references therein.

It is well known that configurational forces invari-
ably appear at the external boundaries of any loaded
body, see the example presented in Fig. 1, a linear-
elastic plate containing a hole subjected to uniform,
uniaxial tension. Such surface configurational forces
can be viewed as driving forces for phenomena that
can cause the external boundary to move in the refer-
ence configuration resulting in changes of the shape of
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62 F. D. Fischer et al.

Fig. 1 Homogeneous linear-elastic plate containing a hole, sub-
jected to uniform tension in the vertical direction. Configura-
tional surface forces fs appear at all the external boundaries. The
far-field J -integral vector Jfar is zero here, since the integral
of fs over the entire external boundary vanishes, see Eq. (22).
The deformed configuration is shown, and configurational body
forces appear at internal nodes, because the numerical imple-
mentation satisfies ∇ · S = 0 in the interior, but not ∇ · C = 0

the body by diffusion, or either loss of material or accu-
mulation of new material by electrochemical processes,
such as corrosion. It is clear that such processes may
also influence the propagation of cracks in materials,
but the subject of the current paper is a different prob-
lem: In elastic-plastic fracture mechanics, the near-tip
J -integral is most often applied for characterizing the
crack driving force or the intensity of the stress and
strain field at the crack tip. It has been demonstrated
that the J -integral is path independent for a homoge-
neous body with a stationary crack and traction-free
crack faces, Rice (1968). This path dependence is very
important for the application of the J -integral, since the
evaluation of the J -integral directly at the crack tip is in
most cases not possible. The magnitude of the J -inte-
gral, evaluated along a certain contour around the crack
tip, and its path dependence are intimately related to the
distribution of configurational forces in the body, see
e.g. Simha et al. (2005, 2008). So it is not clear a priori
whether surface configurational forces can be ignored
in all fracture mechanics calculations. In particular, it is
unclear whether the surface configurational forces on
the crack faces influence the path dependence of the

J -integral. Such surface configurational forces have
been neglected in almost all applications of configu-
rational forces for fracture mechanics so far.

The goal of this paper is to determine the role of the
surface configurational forces on the external bound-
aries of fracture mechanics specimens. In Sect. 2, we
derive the expressions for the surface configurational
forces. In Sect. 3, we determine the influence of the
surface configurational forces on the J -integrals in a
cracked body. In Sect. 4, we focus on the crack faces and
examine the role of the configurational surface forces
on the crack faces. As we have previously explained
the application of the configurational forces approach
to fracture problems in considerable detail in previous
papers by Simha et al. (2003, 2005, 2008), we merely
summarize the results here.

2 The surface configurational force

As outlined in Fig. 2, we assume a region � that con-
tains a bimaterial body B with a crack. The boundary
of the region � is denoted as ∂�. The external bound-
ary of the body B, including the crack faces, is denoted

Fig. 2 The region � contains a bimaterial body B with a crack.
The boundary of the region � is denoted as ∂�. The external
boundary of the body, including the crack faces, is ∂B. The bi-
material interface is �. The contour �r encloses the crack tip at
the boundary of the crack tip region Br. The parameters n̂ and m̂
are the unit normal vectors to the interface �, or to the contours
and boundaries, respectively. Matter of different type fill the gap
between ∂B and ∂�. The integration contours �u and �l along
the crack faces and along the outer contour �far of the body B
are marked
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On configurational forces at boundaries 63

as ∂ B, which consists of the outer contour �far and the
parts �u and �l of the upper and lower crack faces. The
bimaterial interface is �. The contour �r with the radius
r encloses the crack tip, forming the crack tip region Br.
Note that B\Br tends to B (excluding the crack tip), if
�r shrinks to zero. The unit vector n̂ denotes the normal
to the interface �, while m̂ denotes the outward unit
normal vector to the external boundary ∂B, to the con-
tour �r of Br and to the exterior boundary ∂�. Matter
of different type fills the gap between ∂B and ∂�. No
relevant singularity appears at the crack mouth, since
the corners are considered as rounded.

The balance of deformational forces for a region �

that contains a cracked body B without body forces
(Fig. 2) requires∫

∂�

Sm̂ dl = 0, (1)

where S denotes the first Piola-Kirchhoff stress ten-
sor. We ignore heat conduction and inertia for simplic-
ity. A modified version of the divergence theorem that
accounts for possible discontinuities at bimaterial inter-
faces, external boundaries and singular stress fields at
the crack tip yields∫

∂�

Sm̂ dl =
∫

�

∇ · S d A +
∫

�

[[S]] n̂ dl

+
∫

∂B

[[S]] m̂dl + lim
r→0

∫

�r

Sm̂ dl, (2)

where ∇ is the Lagrangian gradient operator with
respect to the coordinate vector X in the reference sys-
tem and [[S]] denotes the jump in S either at the bima-
terial interface � or at the external boundary ∂B, see
the Appendices in Simha et al. (2003, 2005). Follow-
ing the usual method for obtaining local relations in
continuum mechanics, Eqs. (1) and (2) give

∇ · S = 0 at each point in B or �, (3)

[[S]] n̂ = 0 at each point in �, (4)

[[S]] m̂ = 0 at each point in ∂B, (5)

lim
r→0

∫

�r

Sm̂ dl = 0 at the crack tip. (6)

Equation (3) is the standard equilibrium equation of
continuum mechanics; traction continuity on the inter-
face � is ensured by Eq. (4) and on the external bound-
ary ∂B by Eqs. (5), and (6) imposes restrictions on the
nature of the singular stress field at the crack tip.

The total configurational force on a region � that
contains a body B with a crack (Fig. 2) is∫

�

f d A +
∫

�

f�dl +
∫

∂B

fSdl + fT +
∫

∂�

Cm̂ dl = 0,

(7)

where the configurational stress C acts only at bulk
points in �, but configurational forces are presumed to
act at points in the bulk (f), at the interface (f�), the
external surface including the crack flanks (fS) and at
the crack tip (fT). The bulk configurational stress C is
nothing but the Eshelby- or energy-momentum tensor
(see e.g. the derivation in Simha et al. 2003),

C = φI − FTS, (8)

where φ is the Helmholtz potential or the stored energy
density, I is the identity tensor and F denotes the defor-
mation gradient tensor (FT is the transposed of F).

Applying the modified version of the divergence the-
orem, Eq. (2) results with ∇|expl being the divergence
operator with respect to an explicit dependence on X
(i.e. keeping the fields F and S fixed, see e.g. Maugin
2010) in the following:

∇|expl · C + f = 0 at each point in B or �, (9)

[[C]] n̂ + f� = 0 at each point on �, (10)

[[C]] m̂ + fS = 0 at each point in ∂B, (11)

lim
r→0

∫

�r

Cm̂ dl + fT = 0 at the crack tip. (12)

Equations (9), (10) and (12) agree with our previous
derivations in Simha et al. (2003, 2005, 2008) and
with other derivations in the literature, see Maugin
(1993, 1995, 2010), Gurtin and Podio-Guidugli (1996),
Gurtin (2000), Kienzler and Herrmann (2000), Stein-
mann (2000). In previous papers we did not focus on
the entire external boundary of the cracked body, but
examined only smooth crack faces with both faces con-
sidered as a single interface in the body. Also, we did
not consider surface configurational forces along the
crack faces explicitly as in Eq. (11) and instead assumed
[[C]] m̂ = 0 at the interface between the regions below
and above the crack. As we will see below, for most sit-
uations the surface configurational force fS = 0, if the
crack faces are smooth; then [[C]] m̂ = 0 is consistent
with Eq. (11). However, this needs not to be so nec-
essarily. Therefore, in the current paper we explicitly
consider surface configurational forces for the entire
external boundary.
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64 F. D. Fischer et al.

Typically the matter in the region outside the body
(i.e. in �\B) will consist of one or more of the follow-
ing: air or vacuum, rigid body, incompressible fluid,
or compressible fluid. We now examine the configura-
tional stress C and configurational body force f in the
region outside the body (i.e. in �\B) for the different
cases:

(a) Vacuum or air: Ignoring the negligible ambient
pressure in air, we have φ = 0 and S = 0, hence
we obtain C ≡ 0 and consequently f = 0.

(b) Rigid body: This would correspond to the grips
of a loading device that impose displacement
controlled boundary conditions. Here the stored
energy density φ = 0 and deformation gradient F
= I, but the stress S �= 0; however, the stress is not
related to the stored energy density and is instead
determined from the solution of the equilibrium
problem. We obtain C ≡ −S and consequently
f = 0.

(c) Incompressible fluid: An example would be
hydraulic fracturing. This is identical to the rigid
body case.

(d) Compressible fluid: Here C would primarily be a
function of density. If the fluid is homogeneous,
then f = 0. However, one has to be careful, if
the fluid is inhomogeneous, since the configu-
rational body force would not vanish identically
then.

Consequently, for almost all situations that are
encountered in structural fracture mechanics (mean-
ing excluding the compressible fluid case), both the
bulk configurational stress and the bulk configurational
force in the material outside the fracture specimen
vanish,

C = 0 and f = 0 in �\B. (13)

Next we examine the surface configurational force
fS on the external boundaries of the body ∂B, which
includes the crack faces. Eq. (11) can be re-written as

fS = − [[C]] m̂ = −
(

Cout − Cin
)

m̂

=
(

Cin − Cout
)

m̂. (14)

Cin is the limiting value of C, when ∂B is approached
from inside the body B. Cout is the limiting value of
the bulk configurational stress C, when the external
boundary ∂B is approached from outside the body (i.e.
�\B). For regions of the boundary ∂B, where tractions

are prescribed, they are induced by air or an incom-
pressible fluid. Where displacements are specified, they
are assumed to be transferred by a rigid body. Conse-
quently Cout ≡ 0, and Eq. (14) follows

fS = Cinm̂ = φinm̂ −
(

Fin
)T

Sm̂

= φinm̂ −
(

Fin
)T

t. (15)

The (stress- or) traction vector t = Sm̂ is the applied
traction on parts of ∂B where traction is prescribed, or
has to be determined from the solution of the equilib-
rium problem for regions where displacement is pre-
scribed.

3 The surface configurational forces
and J-integrals

We now determine the relation between the surface con-
figurational forces on the external boundary ∂B and the
J -integrals used in fracture mechanics. Consider the
gray region D in Fig. 3, which contains the entire exter-
nal boundary of the body, including the crack faces, but
not the crack-tip region. The balance of configurational
forces for the gray region D requires

Fig. 3 The gray region D contains the entire external bound-
ary of the body, including the crack faces, but not the crack-tip
region. This region is used for relating the J -integral vector in
the far-field and the surface configurational forces, Eq. (22)
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∫

D∩(�\B)

f d A +
∫

D∩B

f d A +
∫

∂B

fSdl

+
∫

∂D

Cm̂ dl = 0, (16)

where the part of the gray region outside the fracture
specimen is D ∩ (�\B), the part inside is D ∩ B, and
the traction due to the bulk configurational force acts on
the boundary ∂D of the gray region. Next suppose that
we collapse the gray region D in Fig. 3 to the external
boundary ∂B. Then the first two integrals in Eq. (16)
vanish, and the last integral can be written as∫

∂D

Cm̂ dl =
∫

∂D+
Coutm̂ dl +

∫

∂D−
Cinm̂ dl

=
∫

∂B

Coutm̂ dl −
∫

∂B

Cinm̂ dl, (17)

where the boundary ∂D = ∂D+ ∪ ∂D−; the external
normal to ∂D− is opposite to the external normal on
∂B, hence the− sign appears in front of the contour
integral of Cinm̂ on ∂B. Now Eq. (17) reduces to

Jfar − Jout =
∫

∂B

fSdl, (18)

where we have used the following formal definitions
of the J -integral vectors

Jfar =
∫

∂B

Cinm̂ dl, (19)

Jout =
∫

∂B

Coutm̂ dl. (20)

If the region outside the body contains either vac-
uum, air, rigid material, or incompressible fluid, then
Eq. (13) says that the bulk configurational force van-
ishes

(
Cout = 0

) ; the only situation where this would
not be true is the case, when the external region contains
an inhomogeneous compressible fluid. Consequently
for almost all cases encountered in structural applica-
tions, the J -integral vector in the external region van-
ishes identically,

Jout = 0, (21)

and we obtain the following relation between the J -
integral vector in the far-field and the surface configu-
rational forces

Jfar =
∫

∂B

fSdl. (22)

This means that the far-field J -integral vector can
be obtained by integrating the surface configurational
force over the entire external boundary of the body,
which includes the crack faces, ∂B = �far + �u + �l,
but excludes the crack tip. We can readily recover the
usual expression for the J -integral vector using Eq. (15)
as

Jfar =
∫

∂B

Cinm̂ dl =
∫

∂B

[
φinI −

(
Fin

)T
S
]

m̂ dl

=
∫

∂B

[
φinm̂ −

(
Fin

)T
t
]

dl. (23)

The open literature and established software, such as
ABAQUS (http://www.simulia.com/products/abaqus_
fea.html), offer standard methods to evaluate the far-
field J -integral as a scalar quantity, i.e. as projection
of the J -integral vector Jfar into the direction of crack
propagation, Jfar = Jfar·e, where e denotes the unit vec-
tor in crack growth direction, see below. Note that when
computing the far-field J -integral with ABAQUS, not
the outer contour ∂B is taken for the evaluation, but a
contour �far along the inward nodes of the elements
situated along the outer boundary of the body. More-
over, Eq. (23) is not directly used; the J -integral values
are calculated using the virtual crack extension method
where the contour integral is transformed into an area
integral (Parks 1977). Equation (22) provides a differ-
ent, independent way of evaluating the far-field J -inte-
gral, if the surface configurational forces are provided
by a postprocessor, e.g. Mueller et al. (2002, 2004),
Shan (2008).

Lastly, we consider the region B\Br , assume a con-
tour �r at distance r from the crack tip, and form the
limit r → 0; this means finally the total region B
excluding the crack tip. Now the balance of config-
urational forces reads∫

B\Br

f d A +
∫

�

f�dl +
∫

∂B

Cm̂ dl

+
∫

�r

C
(−m̂

)
dl = 0. (24)

The near-tip J -integral vector is written as

Jtip = lim
r→0

∫

�r

Cm̂ dl = −fT, (25)

where fT denotes the configurational force at the crack
tip, Eq. (12). Then Eqs. (23)–(25) provide the relation
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between the far-field and near-tip J -integral vectors for
r → 0 in the form

Jtip − Jfar =
∫

B

fd A +
∫

�

f�dl. (26)

Since the crack faces are included in the far-field J -
integral vector, the surface configurational forces on the
crack faces do not appear explicitly in Eq. (26). Con-
sequently, we get the important result that the surface
configurational forces on crack faces are irrelevant to
the difference between the near-tip and far-field J -inte-
gral vectors. However, in the formulation of Eq. (22)
and, consequently, Eq. (26), the surface ∂B includes
the crack surfaces but excludes the crack tip.

Finally, it is recalled from Simha et al. (2003, 2005,
2008) that the product Jtip · vtip is the dissipation due
to the crack tip moving with a velocity vtip. The crack
driving force is the projection of the vector Jtip into the
direction of vtip, i.e. the scalar quantity Jtip = Jtip · e,
where the unit vector e = vtip/|vtip| lies along the direc-
tion of crack growth.

4 Surface configurational forces on crack faces

4.1 General relations for the far-field J -integral vector

Intuitively, we expect the far-field J -integral vector Jfar

to be related to the applied loads in the far-field. Since
loads can also be applied to the crack faces as in hydrau-
lic fracturing or by wedge-loading at the crack mouth,
the far-field contour would have to be the entire external
boundary of a body. In particular, the far-field contour
should include the crack faces as defined in Eqs. (20),
(22) and (26). In contrast, typically the crack faces are
not included in the far-field contours �far for the evalu-
ation of the far-field J -integral vector Jfar or the scalar
far-field J -integral Jfar. To clarify this we rewrite Eq.
(22) as

Jfar =
∫

∂B

fSdl =
∫

�far

fSdl +
∫

�u

fSdl +
∫

�l

fSdl. (27)

Only if the integrals along the upper and lower crack
faces �u and �l vanished, then it would be sufficient
to use a contour like �far that excludes the crack faces.
Consequently, we now examine the value of the surface
configurational forces on the crack faces for several
scenarios below.

Fig. 4 Various crack configurations discussed in Sect. 4 for the
examination of the surface configurational forces on the crack
faces

4.2 Smooth and traction-free crack faces

Figure 4 shows a compilation of several representative
crack configurations. Typically, the external unit nor-
mal vector to the upper crack face m̂u is opposite to the
unit normal vector to the lower face m̂l, which means
m̂l = −m̂u for a pair of opposing points that have the
same arc-length from the crack tip, see Fig 4a. On a free
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crack surface there is also no traction (either applied or
reactions) present on the two crack faces

(
tu = tl = 0

)
.

Under these circumstances, the surface configurational
forces, Eq. (15), simplify to

fS = φum̂u on �u and fS = φlm̂l on �l. (28)

In the context of linear elastic materials and for straight
cracks (straight at least near the crack tip with the local
coordinates (1, 2) in Fig. 4a), all components of the
singular crack-tip stress vanish, σ11 = σ12 = σ22 =
0, on both the upper and lower crack faces for Mode
I cracks, see e.g. Gross and Seelig (2006), Anderson
(2004). Consequently, also the strain energy densities
on the upper and lower crack faces vanish, i.e. φu =
φl = 0 in the near-tip region for Mode I cracks. For
Mode II cracks σ11 is equal and opposite for opposing
points on the upper and lower crack faces (the stress
components σ12 = σ22 = 0), but the strain energy den-
sities are equal, i.e. φu = φl �= 0. Similarly, for Mode
III cracks, the out-of-plane shear stresses are equal and
opposite on opposing points on the upper and lower
crack faces, but the strain energy densities will be equal.

As a conclusion, for cracks with traction-free crack
faces in elastic materials we obtain the following results
for the surface configurational force fS:

• For Mode I cracks, fS = 0 identically everywhere
on the upper and lower crack faces both in the
near-tip region and in the far-field, so the con-
tribution from each of the crack faces vanishes,
i.e.

∫
�u fSdl = ∫

�l fSdl = 0. If the non-singu-
lar stresses have some non-zero components (e.g.
if non-zero T -stresses occur in bend-type fracture
mechanics specimens with small crack lengths or
center cracked tension specimens, (Williams 1957;
Anderson 2004), then fS is equal and opposite in
sign at opposing points on the upper and lower crack
faces, yielding∫

�u

fSdl = −
∫

�l

fSdl �= 0. (29)

• For Mode II and Mode III cracks, fS is equal and
opposite in sign at opposing points on the upper
and lower crack faces in the near-tip region and
decays to a zero vector in the far-field. In any case,
the contribution from each of the faces is equal and
opposite in sign, so again Eq. (29) will be valid.

Consequently, the net contribution of the surface
configurational forces from both crack faces vanishes
in linear elastic materials for all three modes, since

∫

�u+�l

fSdl =
∫

�u

fSdl +
∫

�l

fSdl = 0. (30)

In elastic-plastic materials, both the slip line solu-
tion and the Hutchinson-Rice-Rosengren (HRR) stress
field near the crack tip have a non-zero stress σ11 on
the crack faces for Mode I cracks, see e.g. Hutchin-
son (1968), Rice and Rosengren (1968) and Gross
and Seelig (2006), Sect. 5.3 there. However, the strain
energy density is the same at opposing points on the
upper and lower crack faces. Consequently, Eqs. (29)
and (30) will be valid also for Mode I cracks in elas-
tic-plastic materials. Similar investigations can be per-
formed for Mode II in elastic-plastic materials, but
need a further investigation, being not the topic of this
paper.

4.3 Smooth but non-zero traction crack faces

The traction vectors could either be applied traction
vectors like in hydraulic fracturing (Fig. 4b), or reac-
tion forces due to local contact of the crack faces, such
as crack closure during cyclic loading, or due to crack-
bridging fibers in composites (Fig. 4c). For many such
cases, the traction will be equal but opposite in sign at
opposing points on the upper and lower crack faces,
i.e. tu = −tl. For symmetric or antimetric loading
and a symmetric geometry with respect to the crack
(i.e. crack lies in X -direction, normals to crack faces in
Y -direction, Z -direction in out-of-plane direction;
corresponding unit vectors eX , eY , eZ ; corresponding
displacement vector u = ueX +veY +weZ ), the resul-
tant configurational force in two opposing points of
the crack faces acts for Mode I and II in the crack-
direction and for Mode III in the out-of-plane direction
as

Mode I tu = teY : fu
S + f l

S = −2t
∂vu

∂ X
eX , (31.1)

Mode II tu = teX : fu
S + f l

S = −2t
∂uu

∂ X
eX , (31.2)

Mode III tu = teZ : fu
S + f l

S = −2t
∂wu

∂ Z
eZ . (31.3)

The parameter t in Eq. (31) denotes the magnitude of
the traction per length unit of the crack faces and unit
thickness. These relations are also valid for cracks in
elastic-plastic materials.
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4.4 Non-smooth and non-zero traction crack faces

There are a few situations where Eq. (30) may not hold,
as in the following:

• Traction-free crack faces but with kinks on the crack
faces close to the crack tip (Fig. 4d). There can be
an additional singularity at some of these kinks, see
e.g. in P2, Fig. 4d for a material angle > π , and
Simha and Bhattacharya (1998), which would then
appear as a non-zero surface configurational force.
In general, fS will have different values at kinks on
the upper and lower faces and, hence, Eq. (30) may
not be valid. The singular stress field at such a kink
will likely influence the near-tip stress fields as well.
However, if the kinks are in the far-field, the surface
configurational force will likely be negligibly small
(Fig. 4e).

• Applied tractions on crack faces plus kinks on crack
faces (Fig. 4f). The stress field at some of these
kinks could be singular, resulting in unequal, non-
zero surface configurational forces on the upper and
lower crack faces. Notice that any singularity at the
crack mouth (like in the case of loading by a wedge
at the crack mouth) would also fall under this case.

• Asymmetrical cracks plus applied tractions on
crack faces (Fig. 4g): By asymmetry, we mainly
mean that the consequence will be Fu �= Fl. This
could be the case, if there is a mixed-mode loading
on the crack face; for a specific treatment, see e.g.
Sect. 4.3 of the current paper and Kienzler et al.
(2009).

However, for all these cases Eq. (30) may hold approx-
imately, in the sense that the integrals in Eq. (30) may
be vanishingly small in comparison to the magnitude
of Jfar for instance; this will be verified in future com-
putational studies.

Some final remarks shall be made at the end of this
section. For every case when Eq. (30) is valid, Eq. (27)
reduces to

Jfar =
∫

∂B

fSdl =
∫

�far

fSdl. (32)

Consequently, the current consensus practice of calcu-
lating the far-field J -integral on the contour �far is valid
for the vast majority of applications.

We consider it as important to note that the current
derivation does not include any constitutive relation.

5 Numerical studies

Computational studies are conducted in order to evalu-
ate (i) the relation between the far-field J -integral vec-
tor and the surface configurational forces, Eq. (22), and
(ii) the influence of tractions on crack faces on the path
dependence of the J -integral vector.

The modeling and computation of stresses, strains
and energy densities are performed with ABAQUS
(http://www.simulia.com/products/abaqus_fea.html).
The configurational forces are calculated by a spe-
cial post-processing procedure, see Simha et al. (2005,
2008), Kolednik et al. (2010), Shan (2008), Mueller
et al. (2002, 2004).

5.1 Conventional fracture mechanics specimen,
elastic-plastic material

As first example we investigate a homogeneous Com-
pact Tension specimen with crack length a = 27 mm,
width W = 50 mm, height 2H = 60 mm, compare Fig. 5.
The material is a homogeneous elastic-plastic material
with Young’s modulus E = 200 GPa, Poisson’s ratio
ν = 0.3, yield strength σy = 270 MPa, ultimate tensile
strength σu = 426 MPa, and strain hardening exponent
n = 0.2, similar to a mild steel with German desig-
nation St37. Plane strain conditions are assumed for
the computation. The finite element mesh consists of
two-dimensional 4-node isoparametric elements. The
elastic-plastic material behavior is modeled using the
incremental plasticity model provided by ABAQUS.
The specimen is loaded in Mode I by prescribing
the displacement vL L at the load application points
(marked as LP in Fig. 5a) at the left boundary; no other
traction forces exist. The material near the load appli-
cation points is modeled as linear-elastic in order to
avoid large artificial strains. Note that the specimen
behaves as a homogeneous body as long as the plasti-
cally deformed zone does not touch this elastic region.
The configurational forces are evaluated as outlined in
Simha et al. (2008), Schöngrundner et al. (2010).

The distribution of the configurational forces for
vL L = 0.25 mm is depicted in Fig. 5. Note that some-
what modified configurational forces f̃s are depicted.
The reason is that considerable numerical errors may
appear when calculating the configurational forces
f = − ∇|expl · C = − ∇|expl · (

φI − FTS
)
, Eq. (9),

from the deformation gradient F = I + ∇u for small
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Fig. 5 Distribution of
surface configurational
forces f̃s at the boundaries
(red arrows) and
configurational body forces
in the interior (red lines) of a
Compact Tension specimen.
A large configurational
force appears also at the
crack tip T. a Overview of
whole specimen; note the
large horizontal
configurational force at the
load application point LP. b
Detail near the crack tip

deformations. To avoid this, modified configurational
forces are evaluated in the form f̃ = − ∇|expl · C̃ =
− ∇|expl ·

(
φI − ∇uTS

)
yielding ∇|expl ·C̃ = ∇|expl ·C

everywhere in the body. The only difference appears
regarding the surface configurational forces at the load
application points where large traction vectors t appear.
Then f̃s = fs + t, and so the large vertical (and oppo-
site) traction vectors in the load application points are
omitted when plotting f̃s instead of fs in Fig. 5.

Bulk configurational forces appear due to the gra-
dient of plastic strain within the plastic zone near
the crack tip and near the back face of the specimen
(Simha et al. 2008). Additional bulk configurational
forces are visible near the load application points, but
these are caused by numerical inaccuracies due to high
local strains. Note that within a homogeneous elastic

material no configurational body forces are expected.
Surface configurational forces are present on the upper,
right, lower and left parts of the external boundary, as
well as on the crack faces. The surface configurational
forces on the upper and lower boundaries and on the
crack faces are small; they have no components in the
horizontal 1-direction. In particular, notice that the val-
ues on the upper and lower crack faces are equal and
opposite on a pair of opposing points on the two crack
faces with the same distance from the crack tip.

Large surface configurational forces appear on the
left boundary near the load application points and on
the right boundary; in both cases, the components in the
horizontal (1-) direction are considerably larger than
those in the vertical (2-) direction. Together they deliver
the main contribution to the total far-field J -integral
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vector, which has a non-zero component in the hori-
zontal direction. The vertical components of the sur-
face configurational forces sum up to zero; hence the
far-field J -integral vector has a zero vertical compo-
nent.

These findings can be also deduced from Fig. 6,
which presents the various contributions to the far-
field J -integral vector J∂B. Figure 6a collects the con-
tributions with respect to the horizontal (1-) direc-
tion, Fig. 6b the contributions to the vertical direction.
Shown are the J -integral components originating from
the boundaries on the left (∂B − 
), right (∂B − r),
upper (∂B − u) and lower (∂B − l) sides of the spec-

Fig. 6 Components of the J -integral vectors in a the horizontal
(1-) direction and b the vertical (2-) direction, plotted against the
load line displacement vLL. The J -integral vectors are evaluated
along the whole boundary ∂B of the body and along parts of the
boundary on the left (∂B − 
), right (∂B − r), upper (∂B − u)

and lower (∂B − l) side, as well as on the upper and lower crack
faces, (CF − u) and (CF − l). The near-tip J -integral vector Jtip
equals the negative configurational force at the crack tip −fT,
Eq. (25). J�3 and Jfar are the values of the conventional, scalar
J -integrals along the paths �3 and �far

imen, as well as the contributions from the upper and
lower crack faces, (CF − u) and (CF − l). Shown are,
in addition, the near-tip J -integral vector Jtip, which
equals the negative configurational force at the crack
tip −fT (Eq. 25), the far-field J -integral vector J∂B

evaluated from the whole boundary ∂B of the body (Eq.
22), as well as the scalar J -integral values J�3 and Jfar,
which are calculated along the path with a distance of 3
elements from the crack tip for �3, i.e. a near-tip path,
and the far-field path �far, i.e. along the inner nodes of
the outer boundary elements.

An important observation in Fig 6a is that the scalar
far-field J -integral, i.e. the projection of J∂B into the
direction of the crack, calculated from the surface con-
figurational forces according to Eq. (22), agrees closely
with the standard contour integral Jfar from ABAQUS.
This provides evidence of the high accuracy of the
numerical computations. The reader is also referred to
the fact that the crack driving force Jtip differs from the
scalar, far-field J -integral Jfar due to plastic straining
and incremental plasticity, which causes the occurrence
of a non-zero plasticity influence term Cp, see Simha
et al. (2008) for details.

5.2 Specimens with different loading cases, linear
elastic material

As second example, we consider again a Compact Ten-
sion specimen (a = 29 mm, W = 50 mm, 2H = 60 mm).
The material behaves as linear elastic with E = 210 MPa
and ν = 0.3. Again plane strain conditions are assumed
for the computations. Three different loading Cases are
studied, namely

(i) Mode II loading by constant pressure p =
100 MPa between the crack faces;

(ii) Mode I loading by variable pressure between
the crack faces, p = pmax (1 − X/a) with
pmax = 200 MPa; X is measured from the crack
mouth towards the crack tip;

(iii) Mode II loading by constant shear stress τ =
100 MPa on the upper and −100 MPa on the
lower crack face.

Since neither a material inhomogeneity nor an elastic-
plastic behavior exists, no configurational body forces
appear and the J -integral vector is path independent,
Jfar = Jtip.
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In the following, analytical expressions of the far-
field J -integral vectors Jfar shall be derived according
to Eq. (23) for the three loading cases, compare also
Eq. (27). No contribution to Jfar arises from the upper
(“u”) and the lower (“l”) boundaries, since no traction
vector is acting there and since, due to symmetry, the
elastic strain energy density φ has identical values, but
opposite normal vectors m̂ at corresponding points on
“u” and “l”. No traction vectors are present also on the
left (“
”) and right (“r”) boundaries of the specimen,
but the values of the elastic strain energy density φ

will be significantly different at corresponding points
on “
” and “r”, with opposite signs of the unit normal
vectors m̂. The contributions of the upper and lower
crack faces to Jfar follow in straightforward way from
Eqs. (31.1) and (31.2). With these considerations, the
far-field J -integral vectors Jfar follow as

Jfar =
⎡
⎣
⎛
⎝

∫

r

φds−
∫




φds

⎞
⎠ − 2

∫

�u

p (X)
dvu

d X
d X

⎤
⎦ eX

(33)

for the Cases (i) and (ii) for constant and variable pres-
sure and Mode I loading, resp., or as

Jfar =
⎡
⎣

⎛
⎝

∫

r

φds −
∫




φds

⎞
⎠ − 2

∫

�u

τ
duu

d X
d X

⎤
⎦ eX

(34)

for the Case (iii) for constant shear and Mode II loading.
Evaluation of the integrals Eqs. (33) and (34) yields

after some analysis the following results for the X - and
Y -components of the far-field J-integral vectors:

(i) constant pressure, Mode I

Jfar,X =
+H∫

−H

(φr − φ
) dY + 2pvmouth,

Jfar,Y = 0; (35)

(ii) variable pressure, Mode I

Jfar,X =
H∫

−H

(φr−φ
) dY + 2pmax (vmouth − v̄) ,

Jfar,Y = 0; (36)

(iii) constant shear, Mode II

Jfar,X =
H∫

−H

(φr − φ
) dY + 2τ umouth,

Jfar,Y = 0. (37)

In the equations above, umouth and vmouth are the dis-
placements of the upper crack face at the mouth of the
crack, i.e., at X = 0, in horizontal (X - or 1-) and verti-
cal (Y - or 2-) direction. The average value of the crack
mouth displacement at the upper crack face in vertical
direction is denoted in Eq. (36) as v.

It is interesting to consider the contributions of the
crack faces for a concrete numerical example for each
of the three loading cases presented above. To do so,
ABAQUS was used to calculate the deformation and
stress state and the elastic strain energy φ. The integrals
in Eqs. (35), (36) and (37) were then evaluated numer-
ically by a postprocessor. The FE-computations were
performed for both small and large strain setting, with
practically no difference in the results. Therefore, only
the results for small strain setting are used in the follow-
ing. The results are collected in Table 1 under “Semi-
analytical Solutions”; only the J-integral components
in X -direction are listed. The term J∂B−r denotes the
contribution of the right vertical boundary to the far-
field J-integral. (J∂B−l
 + J∂B−u
) is the total contri-
bution of the left boundary; hereby the contributions
of the lower and upper specimen half are given sepa-
rately. The term (J∂B−CF−u + J∂B−CF−l) denotes the
contribution from the upper and lower crack faces.

As second way, the configurational force postpro-
cessor to ABAQUS, Shan (2008), was engaged to cal-
culate the distribution of the configurational forces
along the different parts of the boundary of the spec-
imen and calculate Jfar from Eq. (27). The results are
collected in Table 1 under “Numerical solutions”. In
addition, the standard numerical solutions of the J -
integral J VCE provided by the ABAQUS virtual crack
extension procedure are listed in Table 1. Note that for
elastic homogeneous materials the near-tip J-integral
equals the far-field value, Jtip = Jfar.

Figure 7 shows an overview and some details of the
configurational force distribution for Case 2, i.e. the
loading by variable pressure between the crack faces.
The image in the center gives an overview about the
whole specimen. Above are shown the configurational
forces near the crack tip, below the configurational
forces along the crack faces, and on the right the con-
figurational forces at the right boundary of the speci-
men. Figure 8 presents the contributions to the far-field
J -integral VCE vector from the various parts of the
boundary. Figure 8a shows the components of the J -
integral vectors in horizontal (1-) direction, Fig. 8b
those in the vertical (2-) direction. It might be inter-
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Fig. 7 Overview and some details of the distribution of the con-
figurational forces for Case 2, i.e. loading by a linearly varying
pressure p between the crack faces (pmax = 200 MPa at crack
mouth, decreasing linearly to p = 0 at crack tip)

esting to compare these curves with the results listed
in the second line of Table 1 under “Semi-analytical
Solutions”.

The results listed in Table 1 allow a comparison
between the analytical procedure (columns referring to
“Semi-analytical Solutions”) and the results from the
configurational forces postprocessor (columns refer-
ring to “Numerical solutions”) and can be checked with
the results from the ABAQUS VCE-procedure (last
column). One can conclude as follows:

• All three ways to calculate Jfar lead to similar results
within “usual technical accuracy”.

• The “Semi-analytical solutions” can be considered
as the most accurate values. They use both displace-
ments and elastic strain energy terms “far away”
from the crack tip and, therefore, show the low-
est dependency on mesh size and other numerical
effects.

• The crack faces deliver the largest contribution to
Jfar, the left vertical boundaries the smallest contri-
bution.

• The role of nonlinear geometrical behavior (large
strain setting) can be taken into account, but has
nearly no influence on the results for the actual case.

Finally, the reader is referred to the paper by Fischer
et al. (2007), where (semi-) analytical J -integral solu-
tions were studied, too, for several crack configura-
tions, but without loading along the crack faces.
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Fig. 8 Components of the J -integral vectors in a the horizon-
tal (1-) direction and b the vertical (2-) direction. The J -inte-
gral vectors are evaluated at the crack tip

(
Jtip = Jfar

)
and along

parts of the boundary on the left (∂B − 
), right (∂B − r), upper
(∂B − u) and lower (∂B − l) side as well as on the upper and
lower crack flanks (∂B − CF − u, ∂B − CF − l). The contribu-
tion of the boundary on the left side is split into two components
resulting from the upper and lower specimen part, J∂B−u
 and
J∂B−l
, resp. Note that Jtip is the negative configurational force
at the crack tip. J�1 is the value of the conventional, scalar J -
integral along path �1

6 Summary

The results of this paper can be summarized as follows:

(1) Expressions for the surface configurational forces
have been derived and their values have been
determined on regions of the external boundaries
with prescribed tractions or displacements.

(2) The far-field J -integral vector Jfar can be obtained
by integrating the surface configurational forces
over the entire external boundary of the body,

which includes the crack faces, but excludes the
crack tip.

(3) Only some special cases exist where the surface
configurational forces along the crack faces give a
contribution to the far-field J -integral vector Jfar.
In many cases the contributions of the upper and
lower crack faces are zero or cancel.

(4) The surface configurational forces on the crack
faces do not alter the relation between the near-
tip J -integral vector Jtip and far-field J -integral
vector Jfar, i.e. the J -integral is path independent
for elastic homogeneous materials.

(5) In our numerical examples where the specimens
are loaded along the crack faces, the ABAQUS
VCE-procedure give the correct values of the
scalar far-field J -integral Jfar, however, there
might exist some cases where this is not so.
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