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Abstract In this paper, three different approaches
used to model strong discontinuities are studied: a
new strong embedded discontinuity technique, des-
ignated as the discrete strong embedded discontinu-
ity approach (DSDA), introduced in Dias-da-Costa
et al. (Eng Fract Mech 76(9):1176–1201, 2009); the
generalized finite element method, (GFEM), devel-
oped by Duarte and Oden (Tech Rep 95-05, 1995)
and Belytschko and Black (Int J Numer Methods
Eng 45(5):601–620, 1999); and the use of interface
elements (Hillerborg et al. in Cem Concr Res 6(6):
773–781, 1976). First, it is shown that all three descrip-
tions are based on the same variational formulation.
However, the main differences between these models
lie in the way the discontinuity is represented in the
finite element mesh, which is explained in the paper.
Main focus is on the differences between the element
enrichment technique, used in the DSDA and the nodal
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enrichment technique adopted in the GFEM. In both
cases, global enhanced degrees of freedom are adopted.
Next, the numerical integration of the discretised equa-
tions in the three methods is addressed and some
important differences are discussed. Two types of
numerical tests are presented: first, simple academic
examples are used to emphasize the differences found
in the formulations and next, some benchmark tests are
computed.
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List of Symbols

a Total displacement vector at the nodes
â Regular displacement vector at the nodes
â2 Regular displacement vector for

the enriched layer at the nodes
ã Enhanced displacement vector at the nodes
ãrb Rigid body motion part of the enhanced

displacement vector at the nodes
b̄ Body forces vector
B Strain-nodal displacement matrix
Bw Enhanced strain-nodal displacement matrix
c Absolute value of the jump
c0 Cohesion
d Scalar damage
D Constitutive matrix
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Ds0 Initial elastic shear stiffness
Dsκ Shear stiffness for an advanced state

of damage
E Young’s modulus
f Loading function
f̂ Regular external vector force at

the regular nodes
f̃ Enhanced external vector force at

the regular nodes
ft Tensile strength
fw External vector force at the additional

nodes
GF Fracture energy
hs Parameter defined by: − ln (Dsκ/Ds0)

H�d Heaviside function
H�d Diagonal matrix containing the Heaviside

function evaluated at each degree
of freedom

I Identity matrix
kn, ks Normal and shear penalty parameters,

respectively
κ Scalar variable depending on the normal

and shear jump components
k0 Parameter denoting the beginning

of the softening
Kaa, Kââ Bulk stiffness matrices for the

DSDA and GFEM
Kaw, Kwa, Kww Enhanced bulk stiffness matrices for the

DSDA
Kâã, Kãâ, Kãã Enhanced bulk stiffness matrices for the

GFEM
Kd Discontinuity stiffness matrix
l Measure of distance around the tip
lch Hillerborg’s characteristic length
ld Discontinuity length
L Differential operator matrix
Lw Matrix used to compute the difference

between top and bottom displacements
for a discrete-interface

m Jump direction vector
Mw Rigid body motion matrix
Mk

w Matrix composed by evaluating the
rigid body motion matrix at each
finite element node

n Number of the finite element nodes
n Unit vector normal to the boundary
n+ Unit vector normal to the discontinuity

surface
nw Number of additional nodes located at

the discontinuity for jump interpolation
Nw Shape function matrix for the jumps
P External load
Ph Horizontal external load
r Distance between the integration point

and the discontinuity tip
s, n Unit vectors tangent and orthogonal

to the discontinuity, respectively
t Traction vector
t̄ Natural forces vector
T Discontinuity constitutive matrix
Tel Elastic discontinuity constitutive matrix
u Total displacement vector
ū Essential boundary conditions vector
û Regular displacement field vector
û2 Regular displacement field vector

for the enriched layer
ũ Enhanced displacement field vector
[[u]] Jump vector
uv Vertical displacement
w Nodal jump vector
wi Weight for the integration point i
x Global coordinates of a material point
x1, x2 Global frame
α Discontinuity angle
β Shear contribution parameter
� Boundary
�d Discontinuity surface
�t Boundary with natural forces
�u Boundary with essential conditions
εεε Total strain tensor
ε̂εε Regular strain tensor
ρ Dead –weight
σσσ Stress tensors
σI First principle stress
ν Poisson ratio
	 Elastic domain
d(·) Incremental variation of (·)
(·)s Symmetric part of (·)
δ(·) Admissible or virtual variation of (·)
δ�d Dirac’s delta–function along the

surface �d

(·)e (·) belonging to the finite element e
(·)+, (·)− (·) at the positive and negative side

of the discontinuity, respectively
(·)n, (·)s Normal and shear component of (·)
⊗ Dyadic product
〈·〉+ McAuley brackets

123



A comparative study on the modelling of discontinuous fracture 99

1 Introduction

Numerical modelling of fracture behaviour of quasi–
brittle materials remains an important topic nowadays.
In these materials, the progressive development of
microcracking, due to increase of damage, leads to a
decrease of the load bearing capacity. The fracture zone
ahead of the crack tip can extend for a length several
times longer than the maximum aggregate size, render-
ing the assumptions of linear elastic fracture mechanics
inadequate.

Nonlinear fracture mechanics in quasi–brittle mate-
rials was introduced by Hillerborg et al. (1976),
following the works from Dugdale (1960) and Baren-
blatt (1962). His fictitious crack model was presented
within the scope of the discrete crack approach. After-
wards, the smeared crack approach was introduced by
Bazant and Oh (1983), in which continuum models
were adopted to describe the fracture behaviour. Both
approaches were considerably developed since then,
the latter giving rise to regularised models, such as non–
local or gradient models, whereas the former evolved
into strong discontinuity formulations.

The development of finite elements with strong
embedded discontinuities became a powerful technique
for the efficient modelling of strain localization (Simo
and Rifai 1990; Dvorkin et al. 1990; Klisinski et al.
1991; Simo et al. 1993; Lofti and Shing 1995; Lars-
son and Runesson 1996; Oliver 1996; Armero and
Garikipati 1996; Wells and Sluys 2000; Oliver et al.
2002; Sancho et al. 2005). The element enrichment is
performed in the displacement field allowing to incor-
porate localized strain modes. These formulations are
local and therefore a static condensation can be per-
formed at element level, thus keeping the number of
degrees of freedom constant. Moreover, use of con-
stant strain triangles with constant jumps across the
discontinuity is made. As a consequence, the patch test
is satisfied and Simo’s orthogonality condition (Simo
and Rifai 1990) is automatically fulfilled. In Bolzon
(2001) and Linder and Armero (2007), linear jump
fields are introduced in the embedded discontinuities;
these formulations do not satisfy the orthogonality
condition and still remain local, with non–continuum
jumps across the element boundaries.

The embedded discontinuity approach adopted
herein, designated the Discrete Strong Discontinuity
Approach, DSDA (Alfaiate et al. 2003; Alfaiate and
Sluys 2005; Dias-da-Costa et al. 2009), is significantly

different from the previous ones. This is due to the
following specific features: i) the DSDA is based on a
discrete approach, ii) a one dimensional interface ele-
ment is explicitly embedded in the parent element to
model the discontinuity, iii) a non-homogeneous jump
displacement field is introduced in each parent ele-
ment, which is approximated by the shape functions
of the interface element, iv) the additional degrees of
freedom are located at the discontinuity, v) these addi-
tional degrees of freedom are global, vi) both contin-
uous jumps and tractions across element boundaries
are obtained and vii) the enhanced displacement field
induced by the jumps consists of a rigid body motion.
For clarity, in the following, the former strong discon-
tinuity approach (Simo and Rifai 1990; Dvorkin et al.
1990; Klisinski et al. 1991) will be designated as the
EAS approach, whereas the present approach will be
referred to as DSDA.

Almost simultaneously, the works presented by
Duarte and Oden (1995) and Melenk and Babuška
(1996), and next by Belytschko and Black (1999) and
Moës et al. (1999), gave rise to the generalized finite
element method (GFEM) (Duarte et al. 2000), also
known as the extended finite element method (XFEM).
With this method, it is possible to include a priori
some knowledge on the local behaviour of the solu-
tion in the finite element space to represent disconti-
nuities. Belytschko and Black (1999) and Moës et al.
(1999; 2000) applied the GFEM to linear elastic frac-
ture mechanics problems, whereas Wells and Sluys
(2001a) extended the method to cohesive cracks and
Areias and Belytschko (2005) to three-dimensional
crack propagation. The GFEM is based on a nodal
enrichment technique, whereas an element enrichment
technique is adopted in the embedded approaches. Con-
sequently, more degrees of freedom are needed to
model the discontinuity with the GFEM than with the
DSDA.

Jirásek and Belytschko (2002), Oliver et al. (2006)
and Borja (2008) performed a comparative analysis
between: i) a local embedded formulation, using static
condensation, based on the enhanced assumed strain
method (EAS) and ii) the GFEM. In Jirásek and Bely-
tschko (2002) both cracks and shear bands are dealt
with, whereas in Borja (2008) only frictional crack
propagation is considered and mode-I fracture is not
covered. In Oliver et al. (2006), a considerable num-
ber of tests is presented and some issues related to the
performance of the numerical analysis are discussed.
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In this paper, three strong discontinuity descriptions
are compared: the discrete-interface approach, the
DSDA and the GFEM. Note that, as mentioned above,
the DSDA cannot be considered a subclass or a variant
of the EAS approach. In fact the DSDA shares many
attributes from the discrete approach with interfaces,
and this is why a comparison between both is presented
herein. Further discussion related to the main differ-
ences between the EAS approach and the DSDA can
be found in Dias-da-Costa et al. (2009). All formula-
tions aim at modelling the same problem consisting of
a continuum crossed by a discontinuity, which can be
interpreted as an internal boundary dividing a domain
into two parts. With the discrete-interface approach,
interface elements located at interelement boundaries
are used to model the discontinuity. With this formu-
lation it is possible to obtain: i) mesh objectivity with
prescribed cracks; and ii) true representation of strong
discontinuities. This is why it is also considered here
as a reference solution in some particular cases. How-
ever, it is well known that with non–prescribed cracks,
either remeshing must be performed (Ingraffea 1989),
or a projection of the true crack has to be made on the
fixed interelement boundaries, giving rise to approxi-
mated crack paths (Alfaiate et al. 1997).

In Sect. 2, it is shown that the variational formu-
lation introduced by Malvern (1969), for a contin-
uum crossed by a discontinuity, applies to all three
descriptions. The main differences among these meth-
ods are related to the discontinuity representation in
the finite element mesh. In Sects. 2.3.1–2.3.3, the finite
element approximation and the discretised equations
are presented. In these Sections, special attention is
given to the implementation of both the DSDA element
enrichment technique and the GFEM nodal enrichment
technique. In particular, the possibility of imposing
boundary conditions at the discontinuity in case of the
DSDA is addressed.

The three descriptions are also investigated with
respect to the numerical integration of the discretised
equations. This issue is addressed in Sects. 4.2 and
5.2.5, in which oscillatory solutions can be found when
some particular integration schemes are adopted. These
problems are well known for some time for interface
elements, for which solutions exist (Kikuchi and Oden
1988), which are applied here to the DSDA and the
GFEM. In Sect. 5.1, some academic examples are com-
puted and in Sect. 5.2 results obtained from some
benchmark tests with all the formulations are also

Fig. 1 Domain 	 crossed by a discontinuity surface �d

compared. Finally, advantages and disadvantages of
using the discrete-interface approach, the DSDA or the
GFEM, in the scope of the strong discontinuity frame-
work are discussed.

2 Problem description

The discrete-interface approach has been widely used
in the past and this is why a brief description is pre-
sented herein. Regarding this topic, the reader may
be referred to the works presented in Malvern (1969),
Goodman et al. (1968), Hillerborg et al. (1976), Her-
rmann (1978), Ingraffea and Saouma (1985), Bocca
et al. (1986), Kikuchi and Oden (1988), Alfaiate et al.
(1992), Carol and Prat (1995), Lourenço and Rots
(1997), Carey and Ma (1999), Tijssens et al. (2000),
Dias-da-Costa et al. (2009). In the following, emphasis
is put on the descriptions of both the DSDA and the
GFEM.

2.1 Kinematics of a strong discontinuity

In this section the kinematics of a strong discontinuity
is addressed. An elastic domain 	, with boundary �,
is crossed by a discontinuity surface �d dividing it into
two subregions, 	+ and 	−, according to Fig. 1.

A quasi–static loading is applied to the body, consist-
ing of body forces, b̄, and natural boundary conditions,
t̄, the latter distributed on the external boundary, �t .
The essential boundary conditions ū are then applied
in the remaining part of the boundary, �u , such that
�t ∪�u = � and �t ∩�u = ∅. The vector n is orthog-
onal to the boundary surface, pointing outwards, while
n+ is orthogonal to the internal discontinuity surface,
pointing inwards 	+.

For each material point in 	, the total displacement
u is evaluated as the sum of two parts: the regular dis-
placement field û; and the enhanced displacement field
ũ, induced by the jumps in the discontinuity �d :
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u(x) = û(x) + H�d ũ(x), (1)

where H�d is a function defining the way the jump
is transmitted by the discontinuity. This transmission
to 	+ and 	− can be done according to a scalar fac-
tor (Klisinski et al. 1991; Lofti and Shing 1995; Ohls-
son and Olofsson 1997; Alfaiate et al. 2003; Remmers
2006) or alternatively by using independent enhanced
displacement fields, ũ+ and ũ− (Bolzon 2001; Alfa-
iate and Sluys 2004). The Heaviside function used to
transmit the total jump is defined as:

H�d =
{

1 if x ∈ 	+
0 otherwise.

(2)

Adopting small displacements, the strain field is
given by:

εεε = ∇∇∇su

= ∇∇∇sû + H�d

(∇∇∇sũ
)

︸ ︷︷ ︸
bounded

+ δ�d ([[u]] ⊗ n)s︸ ︷︷ ︸
unbounded

in 	, (3)

where (·)s refers to the symmetric part of (·) and ⊗
denotes the dyadic product. Both the displacement and
the strain fields are continuous in 	− and 	+, since
the unbounded term in Eq. (3) vanishes in 	\�d =
	− ∪ 	+.

The jump is obtained by evaluating the enhanced
displacement field along the discontinuity according
to:

[[u]] = ũ|�d , (4)

and it is usual to represent the jump [[u]] in the following
form:

[[u]] = cm, (5)

with c and m representing, respectively, the modulus
and direction of the jump. When m is parallel to n+,
the crack opens in pure mode-I; if m is parallel to the
crack, mode-II failure is obtained.

2.2 Variational formulation

The variational formulation presented by Malvern
(1969) is adopted here, since it is valid for all three
discrete descriptions:∫
	\�d

(∇∇∇sδu) : σσσ(εεε)d	 +
∫
�d

δ[[u]] · t+d�

=
∫

	\�d

δu · b̄d	 +
∫
�t

δu · t̄d�, (6)

where δu is the admissible displacement variation, and
δ[[u]] is the admissible jump variation and t+ is the
traction applied at the discontinuity.

This weak formulation is usually adopted for the
discrete-interface approach, but it is also the basis for
both DSDA and the GFEM descriptions. The virtual
displacements δu are decomposed into the regular and
enhanced parts, according to Eq. (1):

δu = δû + H�d δũ. (7)

Substituting this Eq. (7) in Eq. (6) and by taking suc-
cessively: i) δû = 0 and ii) δũ = 0, with δũ|�d = δ[[u]],
the following Eqs. are obtained:∫
	\�d

(∇∇∇sδû) : σσσ(εεε)d	

=
∫

	\�d

δû · b̄d	 +
∫
�t

δû · t̄d�, (8a)

∫
	+

(∇∇∇sδũ) : σσσ(εεε)d	 +
∫
�d

δ[[u]] · t+d�

=
∫

	+
δũ · b̄d	 +

∫
�t+

δũ · t̄d�. (8b)

Eqs. (8a) and (8b) lead to a consistent weak formulation
as well as to symmetry, if the adopted constitutive laws
are also symmetric. This is usually the case when trac-
tion continuity is enforced in a weak sense by Eq. (8b).

2.3 Numerical implementation

Although both the DSDA and the GFEM share a com-
mon variational framework, represented in Eqs. (8a)
and (8b), the DSDA remains an element enrichment
technique, whereas in the GFEM nodal enrichment is
adopted. Therefore, different discretised equations are
obtained, which are derived separately in the following.

2.3.1 Discretisation in the DSDA

In the DSDA, the enhanced displacement field is a rigid
body motion. As a consequence, the gradient of both the
enhanced trial displacement field and the infinitesimal
admissible displacement field are null: ∇∇∇sũ = ∇∇∇sδũ =
0. Equations (8a) and (8b) take into account the contri-
bution of the bulk and of the discontinuity, respectively.
Similar to the discrete-interface approach, these equa-
tions become independent. As a consequence, Simo’s
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orthogonality condition (Simo and Rifai 1990) is ful-
filled exactly and the enhanced stress field is eliminated
from the equations.

In order to clearly establish the similitude between
the DSDA and the discrete-interface approach, the dis-
cretised equations were derived independently for the
bulk and for the discontinuity in Dias-da-Costa et al.
(2009). However, in this article, the final coupled sys-
tem of equations is derived directly from the variational
statement, enabling a straight comparison with both the
GFEM and previous embedded discontinuity formula-
tions.

The displacement field in each element is given by:

ue = Ne(x)
(
âe + H�d ãe) if x ∈ 	e\�d , (9a)

[[u]]e = Ne
w [s(x)] we at �e

d , (9b)

where Ne contains the usual element shape functions,
âe are the nodal degrees of freedom associated with
ûe, Ne

w are the shape functions used to approximate
the jumps [[u]]e which, in turn, are approximated by
the degrees of freedom we, measured at the nw addi-
tional nodes. Ne

w is a (2 × nw) matrix. For linear jump
interpolation, nw = 2, and Ne

w contains linear shape
functions.

The displacement jumps, measured at the disconti-
nuity, must be transfered to the element nodes, giving
rise to the enhanced nodal displacements ãe. For this
purpose, the following kinematical relation is adopted:

ãe = Mek
w we. (10)

In Eq. (10), matrix Mek
w is formed by stacking in

rows the rigid body motion matrix Me
w, evaluated at

each of the n nodes of the element (k = 1, n), and
defined according to:

MeT
w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − ((x2−xi
2) sin α)

ld

(x1−xi
1) sin α

ld

(x2−xi
2) cos α

ld
1 − (x1−xi

1) cos α

ld

(x2−xi
2) sin α

ld
− (x1−xi

1) sin α

ld

− (x2−xi
2) cos α

ld

(x1−xi
1) cos α

ld

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where α is represented in Fig. 2, and ld is the length of
the discontinuity �e

d measured along the local frame s.
Let the unknowns be ae and we, where ae are the

total displacements obtained at the regular nodes k. The
incremental stress field is:

dσσσ e = DeBe(dae − He
�d

Mek
w dwe), (12)

n

s

d
e+e

e−

Fig. 2 Domain 	e crossed by a discontinuity surface �e
d

in which De is the constitutive matrix, Be is the strain-
nodal displacement matrix and He

�d
is a (2n×2n) diag-

onal matrix composed by successively evaluating the
Heaviside function at each of the 2n degrees of freedom
of the finite element.

At the discontinuity, and similarly to the discrete-
interface approach, the tractions are obtained from the
traction-jump law. In incremental format this reads:

dte = Ted[[u]]e = TeNe
wdwe at �e

d , (13)

where Te is the discontinuity constitutive matrix.
The approximation of the trial displacement field,

expressed by Eq. (9a), can be written using the
unknowns ae and we:

ue = Ne(x)
(

ae +
(
H�d Mek

w − He
�d

Mek
w

)
we

)
if x ∈ 	e\�d . (14)

By using Eqs. (10) and (12)–(14), Eq. (6) is discretised
taking successively, i) δdwe = 0 and ii) δdae = 0, into
the following system of Eqs.:

Ke
aadae − Ke

awdwe = d f̂e, (15a)

−Ke
wadae + (

Ke
ww + Ke

d

)
dwe = dfe

w

−(He
�d

Mek
w )T d f̂e, (15b)

where:

Ke
aa =

∫
	e\�e

d

BeT DeBed	, (16)

Ke
aw =

∫
	e\�e

d

BeT DeBe
wd	e, (17)

Ke
wa = KeT

aw, (18)

Ke
ww =

∫
	e\�e

d

BeT
w DeBe

wd	e, (19)
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Ke
d =

∫
�e

d

Ne
w

T TeNe
wd�, (20)

with:

Be
w = BeHe

�d
Mek

w , (21)

and the external forces are:

d f̂e =
∫

	e\�e
d

NeT db̄ed	 +
∫
�e

t

NeT d t̄ed�, (22a)

dfe
w =

∫
	e+

(
Mek

w

)T
NeT

db̄ed	

+
∫

�e+
t

(
Mek

w

)T
NeT

d t̄ed�. (22b)

If the body forces are neglected and the external
forces are applied at the nodes, then
dfe

w − (He
�d

Mek
w )T d f̂e = 0, and only the regular nodal

forces d f̂e need to be computed. In fact, (He
�d

Mek
w )T

acts as a means for transferring the nodal forces act-
ing at the external element boundaries to the internal
boundary �d

e (Dias-da-Costa et al. 2009).
The enforcement of the rigid body motion can be

made either by using a penalty approach or an Aug-
mented Lagrange Multiplier method. Both methods are
taken into account in the work presented in Dias-da-
Costa et al. (2009), and lead to the same results. In Dias-
da-Costa et al. (2009) it was also found that enforce-
ment of this constraint lacks importance under mesh
refinement.

2.3.2 Discretisation in the GFEM

In the GFEM, the total displacement field ue is the sum
of two continuous displacement fields, ûe and ũe. These
displacement fields will be associated with two layers
of degrees of freedom. The total displacement field is
given by:

ue = ûe + H�d ũe, (23)

and the corresponding finite element approximation is
given by:

ue = Ne(x)
(
âe + H�d ãe) if x ∈ 	e\�d , (24a)

[[u]]e = Ne(x)ãe at �e
d . (24b)

In Eq. (24b), Ne(x) are the element shape functions
evaluated at �d . Note that this equation is different from
Eq. (9b) used in the DSDA, in which the jump displace-
ment field is approximated by one-dimensional shape
functions defined along the discontinuity.

The nodal displacements are:

ae = âe + H�d ãe, (25)

and the strain field is:

εεεe = LNe(x)ae = Be(x)
(
âe + H�d ãe) , (26)

with the incremental stress field being:

dσσσ e = DeBe (
dâe + H�d dãe) . (27)

Incrementally, the tractions are computed by:

dte = Ted[[u]]e = TeNedãe at �e
d . (28)

Equations (8a) and (8b) can now be discretised:

Ke
ââdâe + Ke

âãdãe = d f̂e, (29a)

Ke
ãâdâe + (

Ke
ãã + Ke

d

)
dãe = d f̃e, (29b)

where

Ke
ââ =

∫
	e\�e

d

BeT DeBed	, (30)

Ke
âã =

∫
	e+

BeT DeBed	e, (31)

Ke
ãã = Ke

ãâ = KeT
âã , (32)

Ke
d =

∫
�e

d

NeT TeNed�, (33)

and the force vectors are

d f̂e =
∫
	e

NeT db̄ed	 +
∫
�e

t

NeT d t̄ed�, (34a)

d f̃e =
∫

	e+
NeT db̄ed	 +

∫

�e+
t

NeT d t̄ed�. (34b)

2.3.3 Discretisation in the discrete-interface approach

In this approach zero thickness interface elements are
used. In two dimensions, the interface element is com-
posed by n pairs of nodes as depicted in Fig. 3.

The incremental jump d[[u]]e is interpolated accord-
ing to:

d[[u]]e = Ne
w [s(x)] dwe, (35)

where Ne
w contains the interpolation functions, Nei

w , for
each pair of nodes i :

Ne
w =

[
Ne1

w 0 · · · Nen

w 0

0 Ne1

w · · · 0 Nen

w

]
, (36)
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104 D. Dias-da-Costa et al.

Fig. 3 Interface with n pairs of nodes. Local frame and global
frame

The incremental jumps we are computed by taking
the difference between top and bottom incremental dis-
placements, for each pair i of nodes:

dwe = Lwdae, (37)

where Lw is a (2n × 4n) matrix, given by:

Lw =

⎡
⎢⎢⎢⎢⎢⎣

1 0 −1 0 · · · 0 0 0 0
0 1 0 −1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 −1 0
0 0 0 0 · · · 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎦

, (38)

and daeT is the vector containing the incremental dis-
placements at the nodes:

daeT = [
dae

1+ dae
1− · · · dae

n+ dae
n−

]
. (39)

Replacing Eq. (37) in Eq. (35) the following relation
is derived:

d[[u]]e = Ne
wLw︸ ︷︷ ︸
Be

dae. (40)

The tractions are obtained from the traction-jump
law at the discontinuity (see Sect. 3). In incremental
format this gives:

dte+ = Ted[[u]]e = TeNe
wdwe at �e

d , (41)

where Te is the discontinuity linearised constitutive
relation.

Equation (6) is discretised by means of the field
approximations given by Eqs. (40) and (41) leading
to:

Ke
aadae = dfe, (42)

with

Ke
aa =

∫
�d

BeT TeBed� , (43)

where Ke
aa is the tangential stiffness matrix of the

interface element. Prior to opening, integration of the
stiffness matrix and the choice of the penalty weights
contained in Te are of fundamental importance. A high
initial penalty stiffness is usually introduced to enforce
practically zero jumps and must, simultaneously, guar-
antee that the traction profile is obtained with the nec-
essary accuracy along and through the discontinuity.
Spurious oscillations in the traction profile are avoided
adopting Newton-Cotes integration rules with integra-
tion points coincident with the nodal positions (Kikuchi
and Oden 1988).

3 Material models

The constitutive law for the bulk is linear elastic,
whereas the constitutive relations for the discontinu-
ity are detailed in Alfaiate et al. (2002, 2005). For this
reason only a brief review is made herein.

3.1 Isotropic damage law

The constitutive relation for the isotropic damage law
is given by:

t = (1 − d)Tel [[u]], (44)

where Tel is the elastic matrix, [[u]] is the jump vector
and d is a scalar damage variable, d ∈ [0, 1], defined
by:

d = d(κ) = 1 − κ0

κ
exp

(
− ft

GF
(κ − κ0)

)
. (45)

In Eq. (45), ft is the tensile strength, GF is the frac-
ture energy, k0 is an initial parameter that denotes the
beginning of the softening (κ = κ0 for d = 0) and κ

is a scalar variable which is a function of both the nor-
mal and the shear jump components, [[u]]n and [[u]]s ,
respectively:

κ = κ([[u]]) = max 〈[[u]]n〉+ + β max |[[u]]s |, (46)

where the factor β defines the contribution of the shear
jump component to the equivalent jump parameter
(Alfaiate et al. 2002).

3.2 Non-isotropic damage law, with shear damage

In this section, a 2-D version of the model introduced
in Wells and Sluys (2001b) is reviewed.
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The loading function is defined as:

f ([[u]]n, κ) = [[u]]n − κ, (47)

where the internal variable κ is taken as the maximum
positive normal relative displacement attained (κ =
max 〈[[u]]n〉+), (κ̇ ≥ 0).

An exponential softening law is adopted for the con-
stitutive relation between the normal traction compo-
nent and the normal jump:

tn = exp

(
− ft

GF
[[u]]n

)
. (48)

The shear traction component ts is related to the shear
jump [[u]]s according to:

ts = Ds0 exp (hsκ) [[u]]s, (49)

where Ds0 is the initial elastic shear stiffness, at crack
initiation, and hs is:

hs = − ln (Dsκ/Ds0) , (50)

where Dsκ is the shear stiffness which is adopted for
an advanced state of damage (κ 	 0).

3.3 Discontinuity propagation technique in DSDA
and GFEM

It is assumed that the discontinuity is straight and
crosses an entire parent element; therefore, the crack
tip is always located at the element edge. The direction
of the new crack is defined according to the stress state
at the tip neighbourhood. In the criterion adopted here,
for both the DSDA and the GFEM, the stress at the tip
is evaluated with an averaged tensor, using a Gauss-
ian weight function that smooths out the stresses at the
discontinuity tip (Wells and Sluys 2001a):

wi = 1

(2π)3/2l3 exp

(
− r2

2l2

)
. (51)

In Eq. (51), wi is the weight for the respective inte-
gration, r is the distance between the integration point
and the discontinuity tip, and l is a measure of signifi-
cant distance around the tip. Wells and Sluys (2001a)
suggests a value of three times the typical element size,
whereas Simone et al. (2003) takes a value equal to four
times the length scale of a gradient-enhanced damage
model. Here, l is also defined as a length scale param-
eter: a value of circa 1% of Hillerborg’s characteristic
length (Hillerborg et al. 1976) is adopted:

lch = GF E

f 2
t

, (52)

in which GF is the fracture energy, ft is the tensile
strength and E is the Young’s modulus.

(a) (b)

Fig. 4 DSDA: a mode-I b mode-II discontinuity

(a) (b)

Fig. 5 GFEM: a mode-I b mode-II discontinuity

4 Comparative analysis

4.1 Kinematics and variational formulation

In this Section, the three approaches are compared from
the discretisation point of view.

In the DSDA, the discontinuity is inserted as if it
is an interface element. In Fig. 4 an element crossed
by a horizontal discontinuity is represented, in which
the black nodes are the regular nodes and the white
nodes are the additional nodes. For clarity, a rigid bulk
is considered. In Fig. 4a, a split jump is shown and, in
Fig. 4b, a shear band is depicted. In the GFEM, the num-
ber of degrees of freedom of the parent element sup-
porting a discontinuity is doubled, and the enrichment
is provided by a second layer of degrees of freedom
(see Fig. 5). For comparative purposes, it is possible to
define the degrees of freedom in the second layer as the
sum of a regular part to a rigid body part. Let:

ãe = âe
2 + ãe

rb, (53)

where âe
2 is the regular part and ãe

rb is the rigid body
part. The regular deformation is now obtained as:

ûe + ûe
2 = Ne(âe + H�d âe

2). (54)

Thus, in relation to Eq. (9b), it is possible to write:

ue = Ne [
âe + H�d ãe]

= Ne [
âe + H�d (â

e
2 + ãe

rb)
]

in 	\�d . (55)
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At this stage, three main conclusions can be drawn:

1. the difference between the discretised set of equa-
tions derived for DSDA and GFEM lies in the bulk;

2. the gradient of the additional displacements âe
2 in

	+ is non–zero, which is the only reason why sep-
arate integration on 	+ is necessary;

3. from the kinematics point of view, the DSDA may
be considered as a particular case of the GFEM,
in which âe

2 drops, leading to a rigid second layer:
ãe = ãe

rb.

In the DSDA, the additional nodes are located at the
discontinuity, where the quantities of interest are to be
measured; therefore, a straight physical interpretation
of the additional degrees of freedom is made possible.
This formulation is particularly suited for problems in
which boundary conditions must be introduced at �d ,
such as moisture (Alfaiate et al. 2007a,b), temperature
or the injection of epoxy resin for crack repairing.

In the GFEM, further enrichment is provided from
the greater number of degrees of freedom. When com-
pared to the DSDA, this leads to an improved capability
of evaluating the bulk deformation, but not necessarily
to a significantly better description of the kinematics of
the discontinuity. In order to emphasize the differences
of the discrete-interface approach, the DSDA and the
GFEM, two extreme situations can be defined: i) either
the discontinuity is much softer than the bulk – the
usual situation modelled with a splitting crack and a
shear band; or ii) the discontinuity is much stiffer than
the bulk, as for instance, in the case of a stiff inclu-
sion. In Sect. 5.1, simple examples at element level are
presented for these two limit situations.

4.2 Numerical implementation

Each time a discontinuity is inserted, additional degrees
of freedom are added both in the DSDA and the GFEM.
Here, in both the DSDA and the GFEM, only one
discontinuity is allowed in each parent finite element;
however, both formulations can be extended to include
multiple discontinuities (Dias-da-Costa et al. 2009;
Daux et al. 2000; Simone et al. 2006).

In order to solve for the equilibrium equations of the
body, presented in Sects. 2.3.1 and 2.3.2, it is necessary
to compute several numerical integrations, described
below. This will be discussed for the external forces,
the bulk and the discontinuity, respectively.

Exernal forces As already discussed in Sect. 2.3.1, if
the body forces are neglected and all remaining forces
are applied at the nodes, dfe

w is null in Eq. (22b). There-
fore, for the DSDA, the evaluation of the integral∫
�e+

t
MekT

w NeT d t̄ed� must only be performed when

a partially distributed load is applied on �e+
t . For the

GFEM the vector d f̃e in Eq. (34b) must always be eval-
uated, irrespective of the type of force applied at �e+

t .

Bulk For the DSDA, the bulk integrals of Eqs. (17)
and (18) do not require special consideration since they
are extended to the complete domain 	e\�e

d . For the
GFEM, the integral in Eqs. (31) and (32) is extended to
the subregion 	e+. For this purpose, the subregion 	e+
is subdivided into triangles, although other approaches
have been followed too (Ventura 2006).

Discontinuity The integration of the discontinuity stiff-
ness for the DSDA [see Eq. (20)] was already discussed
in Dias-da-Costa et al. (2009).

The discontinuity is explicitly inserted into the finite
element as if it is an interface element. The stiffness
must be numerically integrated in the same way as
for the interface elements. The use of the Newton–
Cotes/Lobatto scheme is made using two points, which
gives the best solutions, in particular if a penalty
approach is adopted (Kikuchi and Oden 1988).

In the GFEM, the discontinuity is implicitly sim-
ulated using the element own shape functions and
not the interface element shape functions, according
to equations Eqs. (9b) and (24b). This leads to the
following: upon mapping into the master element,
an initially straight discontinuity may become curved
(Ventura 2006); being the opposite also true. Note that
this misalignment of the crack path does not occur in
the DSDA since a one dimensional interface element is
explicitly inserted in the parent element to model the
discontinuity. Moreover, special attention must also be
paid to the integration scheme adopted, which may give
rise to oscillatory solutions if high values of the discon-
tinuity stiffness are used. In order to investigate this
issue, a numerical example is presented in Sect. 5.2.5,
in which several integration rules are adopted for a high
stiffness discontinuity example.

5 Numerical examples

Several examples are computed in order to compare
the performance of the three approaches studied. First,
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one element examples are presented, in which two dif-
ferent situations are considered: i) the discontinuity is
significantly softer than the bulk; and ii) vice versa.
Next, mode-I and mode-II examples are presented, in
which the integration of the discontinuity stiffness in
the GFEM is addressed. In all studied examples plane
stress state is assumed. The results obtained with the
discrete-interface approach are represented by DI while
for the remaining formulations the same notation from
Sect. 4.2 is adopted.

Hereafter, results in all examples figures are identi-
fied in the following manner, concerning the integra-
tion scheme: GFEM-NC(or G)-n, where ‘NC’ stands
for Newton–Cotes/ Lobatto; ‘G’ for Gaussian rule; and
‘n’ is the number of integration points is adopted. For
both the discrete-interface approach and the DSDA, the
Newton–Cotes/Lobatto rule with 2 integration points
is adopted, also known as the trapezoidal scheme.

5.1 One element examples

5.1.1 Soft discontinuity with rigid bulk versus rigid
discontinuity with soft bulk

A horizontal discontinuity is located at half of the
height of the parent element (1×1×1 mm3), whereas in
the interface model, two finite elements are connected
by a zero–thickness interface element. A unit load is
applied at the top left node vertically and horizontally,
in order to induce mode-I and mode-II crack openings,
respectively.

Two situations are simulated: i) a soft discontinu-
ity (kn = 1 N/mm3 and ks = 105 N/mm3, for mode-I,
kn = 105 N/mm3 and ks = 1 N/mm3, for mode-II)
with a stiffer bulk (Young’s modulus, E = 105 MPa;
Poisson ratio, ν = 0); and ii) a stiffer discontinuity
(kn = 103 N/mm3 and ks = 105 N/mm3, for mode–I,
kn = 105 N/mm3 and ks = 103 N/mm3, for mode–
I) with a softer bulk (Young’s modulus, E = 1 MPa;
Poisson ratio, ν = 0).

The deformed meshes are shown in Figs. 6, 7a and
7b. The same result is obtained with all formulations
in the first case (soft discontinuity), whereas the DSDA
leads to less bulk deformation in the second case.

If the discontinuity is moved closer to the edge, the
corresponding deformed mesh is represented in Fig. 7c.
Since the domain 	+ becomes smaller, the role of
the corresponding subintegrals in Eqs. (29a) and (29b)

(a) (b)

Fig. 6 Mode-I: deformed mesh (reduced 10 times) for the DSDA
(continuous), DI and GFEM (dashed): a soft discontinuity; b soft
bulk

(a) (b)

(c)

Fig. 7 Mode-II: deformed mesh (reduced 10 times) for the
DSDA (continuous), DI and GFEM (dashed): a soft disconti-
nuity; b soft bulk; c soft discontinuity closer to edge

loses importance, and the DSDA and the GFEM lead to
closer results.

It can be concluded that for mode-I and mode-II
crack opening, in which cases the discontinuities are
much softer than the bulk, the results for all formula-
tions are the same. For the soft bulk, both the GFEM
and the DI lead to identical results, whereas less defor-
mation is obtained with the DSDA. This is due to the
fact that, in the GFEM there is an inherent bulk refine-
ment, which can be seen as a sort of remeshing: the
superposition of the two layers in the bulk can repro-
duce the solution obtained with two different elements,
as with the interface approach. Additionally, the differ-
ences tend to vanish with mesh refinement.

5.1.2 Different integration schemes

Parallel and inclined discontinuities with respect to
the element edges are used to study different integra-
tion rules. A bilinear finite element is considered with
100 × 100 × 100 mm3. With the DI approach, two
finite elements (one per side of the discontinuity) are
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(a) (b)

(c)

Fig. 8 Deformed mesh (α = 0◦): a DI, DSDA and GFEM for
Newton-Cotes/Lobatto with two points (continuous); b DI (con-
tinuous), GFEM for Gauss rule with two points and GFEM for
Newton-Cotes/Lobatto with three points (long dashed); and c DI
(continuous) and GFEM without inconsistency (dashed)

connected with a zero-thickness interface element with
four nodes. The loading is applied vertically at the top–
left node.

Elastic analysis
Both constitutive models adopted for the bulk and for
the discontinuity are linear elastic. The Young’s mod-
ulus is 35 GPa and the Poisson ratio is 0.2. Regarding
the discontinuity, a relatively small normal stiffness of
1 N/mm3 is adopted, together with a shear stiffness of
105 N/mm3.

For a discontinuity parallel to an edge (α = 0◦),
the deformed mesh and jump profiles are represented
in Figs. 8 and 9, respectively. A kinematic inconsis-
tency is detected for the GFEM, which is related to the
integration problems reported by Simone (2004). This
kinematic inconsistency vanishes when the Newton-
Cotes/Lobatto with two points is used, because the inte-
gration points are independent of each other. In order to
avoid the negative normal jump at the discontinuity tip,
it is also possible: i) to keep the nodes that support the
tip inactive, or ii) to impose additional boundary condi-
tions. The former approach was implemented by Wells
and Sluys (2001a); since, in this case, the enhanced
degrees of freedom become excessively constrained,
the latter approach is followed here. However, in this
case an increase in the magnitude of the normal jump
is observed. Therefore, the Newton-Cotes/Lobatto with
two points integration rule remains the best option for
the integration of the discontinuity.

Similar conclusions can be obtained when the dis-
continuity is inclined with respect to the element edges.

Fig. 9 Normal jump across the discontinuity (α = 0◦)

(a) (b)

(c)

Fig. 10 Deformed mesh (α = 45◦): a DI, DSDA and
GFEM for Newton-Cotes/Lobatto with two points (continu-
ous); b DI (continuous), GFEM for Gauss rule with two points
and GFEM for Newton-Cotes/Lobatto with three points (long
dashed); and c DI (continuous) and GFEM without inconsistency
(dashed)

In Fig. 10 the deformed mesh is presented for a dis-
continuity running under 45◦. Newton-Cotes/Lobatto
with two points is adequate to perform the numerical
integration of the discontinuity stiffness in the GFEM.
However, when the discontinuity stiffness is made suf-
ficiently high, for instance 105 N/mm3, it becomes evi-
dent that 2 integration points are unable to force a null
jump along the discontinuity (Fig. 11a). This is a direct
consequence of under-integration, which is more pro-
nounced with the Newton-Cotes/Lobatto than with the
Gaussian integration rule, both with two points.

For a soft bulk and a rigid discontinuity, for instance
adopting a Young’s modulus of 35 MPa, the problem
mentioned for the Newton-Cotes/Lobatto integration
rule with two points becomes even more pronounced.
The deformed mesh is represented in Fig. 11b and c.
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(a)

(b) (c)

Fig. 11 α = 45◦: a normal jump across the discontinu-
ity; b deformed mesh DSDA (continuous) and GFEM New-
ton-Cotes/Lobatto with two points (small dashed); c deformed
mesh DSDA (continuous), GFEM for Newton-Cotes/Lobatto
with three points and GFEM for Gauss rule (small dashed)

As shown in Fig. 11c an awkward opening of the dis-
continuity at the center of the element is obtained and
it is not possible to impose null jumps at the disconti-
nuity: N|�d

ã �= 0.
Non-Linear elastic analysis

The example with the discontinuity parallel to the edge
is now analysed under mode-I fracture. The material
properties are: Young’s modulus E = 35 GPa; Poisson
ratio ν = 0.2; tensile strength ft = 3.0 N/mm2; and
fracture energy GF = 0.1 N/mm. The adopted elastic
discontinuity stiffness is 105 N/mm3 for both normal
and shear components and an exponential softening law
is used.

The vertical displacement of the loaded node is rep-
resented in Fig. 12. In all analyses the results obtained
with the DI, the DSDA and the Newton-Cotes/Lobatto
with two points are coincident. Furthermore, when the
kinematic inconsistency is present, different peak loads
are obtained. This is also related to the location of the
integration points. When inconsistency is prevented,

(a)

(b)

Fig. 12 Vertical displacement of the loaded node: a with, and b
without, kinematic inconsistency

all formulations give rise to the same peak load. Never-
theless, increased displacements are found during soft-
ening with the GFEM, except for the Newton-Cotes/
Lobatto with two points.

The question of which integration rule should be
used with GFEM becomes less important with a finer
mesh. The results are depicted in Fig. 13a for a rela-
tively coarse finite element mesh with 15 × 15 bilinear
elements. A similarity is found, independently of the
formulation.

It should be stressed out that, additionally, New-
ton-Cotes /Lobatto is capable of yielding a continuous
traction field across element edges in the GFEM. A
continuous traction field across element edges always
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(a)

(b)

Fig. 13 a Load versus vertical displacement for the loaded node;
b load versus horizontal displacement for the loaded node

occurs with the DSDA, independently of the integration
rule used for the interface. However, with the GFEM,
this is only possible if the integration points lie at the
element edge.

In the work presented in Dias-da-Costa et al. (2009),
it is shown that a rigid body motion jump with the
DSDA leads to constant shear element jumps. In the
following, the mesh from the previous example is used
with horizontal loading. The material properties are:
cohesion c0 = 5.0 N/mm2; Poisson ratio ν = 0.2;
Young’s modulus E = 35 GPa; and fracture energy
GF = 1.0 N/mm. Exponential softening is adopted.

In Fig. 13b, similar results obtained with all formula-
tions are presented. The exception is the DSDA, which
presents an increased peak load due to the constraint
mentioned above: all integration points are enforced to
undergo softening at the same time, as it would hap-
pen in a rigid bulk. If the constraint is dropped in the

Fig. 14 Three point bending beam ( mm)

DSDA, the results become identical to those obtained
with other formulations. As already stated in Dias-da-
Costa et al. (2009), for a sufficiently refined mesh, it is
not necessary to enforce the rigid body motion. In this
case, the transmission of the shear jump between the
two element crack nodes is automatically performed
by the surrounding mesh, except for the last crack node
lying at the external boundary.

5.2 Structural examples

5.2.1 Three point bending beam

The first structural example is a three point bending
beam, with a span equal to 2 m, where a single notch
(10 × 100 mm2) is located at the bottom of the mid–
span cross section (50 × 200 mm2), as represented in
Fig. 14.

The material properties are: Young’s modulus E =
30 GPa; Poisson ratio ν = 0.2; tensile strength ft =
3.33 MPa; fracture energy GF = 0.11 N/mm; and both
the normal and shear stiffness equal to 109 N/mm3.

The finite element mesh is composed of 270 bilinear
finite elements. A total load of 100 kN is applied in the
upper part of the beam, according to Fig. 14.

According to the procedure introduced in Sect. 3.3, a
new discontinuity is inserted above the notch when the
maximum principal stress component at the tip reaches
0.4 ft . The direction of crack propagation is evaluated
at the tip neighbourhood, using a radius equal to 1% of
the characteristic length.

In Fig. 15, the obtained load–vertical displacement
curves are shown. The results with three integration
points are similar to the ones obtained with two inte-
gration points and therefore they are omitted. The
possibility of using the DSDA with prescribed cracks,
replicating a DI approach, is exploited. In this case,
designated by “prescribed DSDA” in Fig. 15a, the dis-
continuity is inserted a priori in the mesh, along the
symmetry line. Thus, since the crack path is pre-
defined, the evaluation of the stresses in the bulk at
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(a)

(b)

Fig. 15 Three point bending beam: load–vertical displacement
curves at the loaded node for a DSDA, b GFEM-2

Fig. 16 Three point bending beam: deformed mesh (magnified
100 times), during softening, when the vertical displacement of
the loaded node is 0.8 mm

the crack tip is not needed; instead, the tractions are
directly evaluated at the discontinuity, based on which
the mode-I opening criterion is defined.

The most important conclusion is the similarity
between all formulations, in this pure mode-I frac-
ture structural example. Even with a coarse mesh, the
load-displacement curves obtained with the DI and the
DSDA are practically coincident, except for the last part
of the tail. The GFEM results obtained with both two
and three integration points are still very close to the DI
results and all the deformed meshes practically coin-
cide, as shown in Fig. 16.

Fig. 17 Single edge notched beam: coarse mesh ( mm)

5.2.2 Single edge notched beam

In this Section, a single edge notched beam is sim-
ulated (Schlangen 1993). The beam measures 400 ×
100 × 100 mm3, and has a 5 × 20 × 100 mm3 notch
located at the top, as shown in Fig. 17.

The material parameters are: Young’s modulus E =
35 GPa; Poisson ratio ν = 0.15; tensile strength ft =
3.0 MPa; and fracture energy GF = 0.1 N/mm. For
the discontinuity it is considered a non–isotropic con-
stitutive law (Sect. 3.2) where the normal stiffness is
kn = 105 N/mm3, whereas the shear stiffness is ks =
103 N/mm3.

In Fig. 17, the adopted mesh is represented, con-
sisting of 458 bilinear finite elements. The loading is
controlled using the arc length method, in which the
monotonic increase of the relative sliding displacement
of the notch (CMSD) is enforced.

The direction of crack propagation is evaluated at
the tip neighborhood, using a radius equal to 0.5%lch

[Eq. (52)]. A new discontinuity is introduced in each
parent element whenever the maximum stress compo-
nent reaches 0.6 ft at the crack tip.

The obtained crack paths are represented in Fig. 18,
whereas the CMSD versus load curves are represented
in Fig. 19. The deformed mesh is presented in Fig. 20.

The differences found in the obtained crack paths are
near the support. A relatively coarse mesh is adopted
and large values of the stress gradients near the sup-
port are found. Therefore, a less accurate solution is
expected in this particular zone. In Fig. 18, it can be
observed that the numerical crack path bends towards
the support, whereas the experimental path shifts in
the opposite direction. Once again, the results obtained
with both the DSDA and the GFEM are similar.

Finally, only the zone near the support exhibits dif-
ferences regarding deformations. This is why only the
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Fig. 18 Single edge notched beam: crack path during soften-
ing for P = 20 kN, superposed with the experimental envelope
(gray shaded) for the DSDA and GFEM

(a)

(b)

Fig. 19 Single edge notched beam: experimental and DSDA
load–CMSD curves versus a GFEM-2 and b GFEM-3

Fig. 20 Single edge notched beam: deformed coarse mesh (mag-
nified 100 times) during softening P = 20 kN

Fig. 21 Mixed mode fracture test: structural scheme, including
loading, boundary conditions and mesh ( mm)

deformed mesh corresponding to the DSDA is shown
in Fig. 20.

5.2.3 Nooru-mohamed test

In this section, the numerical analysis of a double-
edged-notched specimen submitted to mixed-mode
fracture, experimentally tested by Nooru-Mohamed
(1992), is presented. The specimen dimensions are
200×200×50 mm3, with two 25×5×50 mm3 horizon-
tal notches located at half of the height of the specimen
as shown in Fig. 21.

The loading is applied at the top of a glued
L-shaped steel frame. A horizontal force Ph is then pro-
gressively increased until a value of 10 kN is reached.
Immediately after, an increasing vertical displacement
uv is imposed, keeping the horizontal force constant
(Fig. 21).
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The adopted material parameters are taken from
Nooru-Mohamed (1992): Poisson ratio ν = 0.2;
Young’s modulus E = 30 GPa; tensile strength ft =
3.0 MPa; and fracture energy GF = 0.11 N/mm. The
constitutive law adopted for the discontinuity is the iso-
tropic damage law presented in Sect. 3.1, using a value
of β = 0.6.

The adopted mesh is composed by 435 bilinear finite
elements as represented in Fig. 21.

The principal stress direction rotates during the
increase of the vertical displacement uv . Therefore,
the discontinuity must be introduced just before crack
opening, when the crack orientation is correctly defined.
In this test, the discontinuity is propagated when the
maximum principal stress component reaches 0.8 ft at
the crack tip.

The load–vertical displacement curves are given in
Fig. 23. Explanations for the differences could be the
consideration of incorrect material parameters as well
as spurious bending, leading to different crack paths
at the front and rear faces of the specimen (Cervera
and Chiumenti 2006; Pivonka et al. 2004; Gasser and
Holzapfel 2006). Both the DSDA and the GFEM for-
mulations are close. The numerically obtained crack
paths are practically coincident in all tests performed
(see Fig. 22), whereas the load displacement curves
coincide until the peak value is reached. The DSDA is
slightly more brittle in the post-peak behaviour than the
GFEM.

The deformed meshes are represented in Fig. 24.

5.2.4 Prenotched gravity dam model

An experimental test performed by Barpi and Valente
(2000) of a dam model is numerically simulated in this
Section. The corresponding structural scheme is repre-
sented in Fig. 25.

The adopted material parameters are taken from
Barpi and Valente (2000): dead-weight ρ = 2,400 kg/

m3; Young’s modulus E = 35.7 GPa; Poisson ratio
ν = 0.1; tensile strength ft = 3.6 MPa; and fracture
energy GF = 0.184 N/mm. Additionally, the discon-
tinuity is assumed to open in mode-I, with the shear
stiffness suddenly dropping to zero when softening is
reached.

The mesh is composed of 1848 bilinear finite ele-
ments (see Fig. 25). A refinement is performed near
the notch in order to better evaluate the stress at the
discontinuity.

(a)

(b)

Fig. 22 Crack path, obtained for uv = 0.05 mm, superposed
with experimental results taken from Nooru-Mohamed (1992):
a DSDA, GFEM-2 and b DSDA, GFEM-3

The dead load is first applied; afterwards the water
pressure in front of the dam is gradually increased.
During the loading, the arc length method is used to
enforce an increase of the relative crack mouth open-
ing displacement (CMOD). The crack is inserted when
the averaged stress tensor at the tip reaches 0.7 ft , for a
radius of 1% of the characteristic length lch [Eq. (52)].

The results are represented in Figs. 26 and 27.
The results obtained with the DSDA and GFEM for-
mulations are similar. Additionally, there is a good
agreement with the experimental crack paths and the
numerical results represented with the thickest lines.
Moreover, when the load versus CMOD curves are
compared, the elastic stage and peak loads are obtained
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(a)

(b)

Fig. 23 Mixed mode fracture test: Load versus vertical displace-
ment superposed with experimental results (Nooru-Mohamed
1992) for the DSDA and: a GFEM-2 and b GFEM-3

with accuracy. However, during softening, it is found
that the model is not able to capture the mixed mode
behaviour and, therefore, numerically the load decays
faster than experimentally. It must also be emphasized
that during softening the numerical results approach
Barpi and Valente’s curve (Barpi and Valente 2000).

The deformed mesh for the DSDA is represented in
Fig. 28, when the CMOD is 0.25 mm.

5.2.5 Simulation of crack repair test

Simone (2004) presented some results concerning dif-
ferent integration schemes for the GFEM, following
Rots (1988) example for interface elements. The same
example was already tackled by Dias-da-Costa et al.
(2009) for the DSDA. Here this example is again
addressed to compare the DSDA to the GFEM; how-
ever, a different interpretation is proposed. Suppose that
the beam was first loaded and a central traction-free

(a) (b)

(c)

Fig. 24 Deformed mesh (magnified 100 times), when uv =
0.05 mm: a DSDA, b GFEM for Newton-Cotes/Lobatto with two
points and c GFEM for Newton-Cotes/Lobatto with three points
and GFEM for Gauss rule

Fig. 25 Prenotched gravity dam model: structural scheme,
including loading, boundary conditions and mesh (cm)

crack developed. After alleviating the load, this crack
was repaired with epoxy and the beam was reloaded. In
the beginning of the test, before other cracks develop,
the results would correspond to the ones presented
below.

In Fig. 29, the structural scheme for the notched
beam studied is presented, with the following bulk
material properties: Young’s modulus E = 20 GPa and
Poisson ratio ν = 0.2. The discontinuity constitutive
relation is linear elastic. In order to simulate the stiff-
ness introduced by the epoxy, different penalty param-
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(a)

(b)

Fig. 26 Crack path, obtained when CMOD is 0.25 mm, super-
posed with experimental and numerical results taken from Barpi
and Valente (2000): a DSDA (thick line), Newton-Cotes/Lobatto
with two points (thick dashed line), GFEM for two points (doted
line); and b DSDA (thick line), Newton-Cotes/Lobatto with three
points (thick dashed line), GFEM for three points (doted line)

eters are adopted for the elastic stiffness, kn = ks :
103,104,105 and 108 MPa/mm. The notch is simulated
with null stiffness.

The beam is subjected to a load of 1 kN. A structured
and an unstructured mesh (see Fig. 29) are studied. In
both cases, bilinear finite elements are used and the
notch depth is equal to 20 mm.

From Fig. 30 it can be concluded that, similarly to
the discrete-interface approach, the use of the Newton–
Cotes/ Lobatto with the DSDA effectively avoids trac-
tion oscillations. For the penalization range tested, the
results are almost independent of the applied penalty
value. In this figure, the differences found in the
smoothness of the traction profiles are due to the dif-
ferent mesh size.

The results obtained with the GFEM are represented
in Figs. 31 and 32. Note that the results for the Gauss
rule are omitted because the conclusions are similar
to the Newton-Cotes/Lobatto rule with 3 integration
points. It is found that Newton-Cotes/Lobatto using two
points is the integration scheme that gives the great-
est stability to results, both for regular and irregular
meshes. In all other cases, it is not possible to use
a penalty parameter of 108 MPa/mm. Therefore, the
GFEM should not be applied with high penalty val-
ues for the discontinuity stiffness. Moreover, as already
stated by Simone (2004), the Newton-Cotes/Lobatto

(a)

(b)

Fig. 27 Prenotched gravity dam model: Load versus CMOD
superposed with experimental results (Barpi and Valente 2000)
for the DSDA and: a GFEM-2 and b GFEM-3

can significantly reduce the level of oscillations which
are obtained with the Gaussian rule in the GFEM.

6 Conclusions

In this paper, three different formulations used to model
strong discontinuities are compared: the DSDA, the
GFEM and the discrete-interface approach. It is shown
that all three approaches present advantages and dis-
advantages, such that their usefulness depend on the
problem at hand.
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Fig. 28 Prenotched gravity dam model: deformed mesh (magni-
fied 1,000 times), during softening, when the CMOD is 0.35 mm

(a)

(b)

Fig. 29 Structural scheme of the notched beam with 100 mm
width (all dimension in mm) and mesh used for the numerical
tests: a structured mesh and b unstructured mesh

The discrete-interface approach is preferred for the
modelling of fixed geometric discontinuities, such as
bond-slip interfaces between concrete and internal
or external reinforcement, old concrete-new concrete
interfaces, mixed structures, masonry joints, etc.. How-

(a)

(b)

Fig. 30 Traction profile in front of the notch of the beam with
the DSDA for: a structured mesh and b unstructured mesh for
different penalty parameters

ever, the use of this approach gives rise to numerical
difficulties in non-prescribed crack problems, namely
remeshing.

Conversely, both the DSDA and the GFEM over-
come this problem since the discontinuity is located in
the parent finite element, independently of mesh ori-
entation. Towards a unified view of the DSDA and the
GFEM, some shared properties can be put forward,
namely:

– both can be built upon the same variational formu-
lation;

– in both cases, the additional degrees of freedom are
global;

– the kinematics of the DSDA can be interpreted as
a particular case of the kinematics of the GFEM in
which a second rigid layer is adopted;

– in quasi–brittle materials, when the discontinuity is
considerably softer than the bulk, both the DSDA
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(a)

(b)

Fig. 31 Traction profile in front of the notch of the beam with
GFEM and Newton-Cotes/Lobatto with two points for: a struc-
tured mesh and b unstructured mesh

and the GFEM give rise to similar results, even if
coarse meshes are used.

However, some important differences were also found,
such as:

– in the DSDA, the discontinuity is explicitly
modelled as an interface element, using the same
one-dimensional shape functions. As a result, inte-
gration along the discontinuity does not pose any
numerical problems; this is why these formula-
tions should be preferred with stiff discontinuities,
namely penalty formulations or cracks repaired
with injection of epoxy resin;

– the additional nodes in the DSDA are located at the
discontinuity, where the quantities of interest are
to be measured, giving rise to a straight physical
interpretation of the additional degrees of freedom;

– as a consequence, continuity of the traction field is
automatically obtained across element boundaries

(a)

(b)

Fig. 32 Traction profile in front of the notch of the beam with
GFEM and Newton-Cotes/Lobatto with three points for: a struc-
tured mesh and b unstructured mesh

and problems in which boundary conditions must
be explicitly introduced at the discontinuity, such
as moisture, temperature or crack repairing with
epoxy, benefit from such implementation;

– the DSDA is simple to implement; in particular, no
integration on 	+ is necessary.

With respect to the GFEM:

– sub-integration on 	+ is necessary, which can be
interpreted as a sort of remeshing, although cer-
tainly more favourable than the usual one since no
additional elements are defined;

– the discontinuity is implicitly described by means
of the shape functions of the finite element. As
a consequence, integration along the discontinu-
ity can lead to numerical problems, namely stress
oscillations and awkward opening modes. In par-
ticular, it is found that the GFEM is not adequate
to be used with stiff discontinuities, due to the lack
of numerical robustness;
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– the GFEM is based on the partition of unity con-
cept: additional degrees of freedom are introduced
at the nodes to reproduce the kinematics of com-
plex continua; as a consequence, the GFEM pro-
vides an inherent better refinement of the bulk.
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