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Abstract Dynamic crack propagation of composites
is investigated in this paper based on the recent
advances and development of orthotropic enrichment
functions within the framework of partition of unity
and the extended finite element method (XFEM). The
method allows for analysis of the whole crack prop-
agation pattern on an unaltered finite element mesh,
defined independent of the existence of any prede-
fined crack or its propagation path. A relatively simple,
though efficient formulation is implemented, which
consists of using a dynamic crack initiation tough-
ness, a crack orientation along the maximum circum-
ferential stress, and a simple equation to presume the
crack speed. Dynamic stress intensity factors (DSIFs)
are evaluated by means of the domain separation inte-
gral method. The governing elastodynamics equation
is first transformed into a standard weak formulation
and is then discretized into an XFEM system of time
dependent equations, to be solved by the uncondition-
ally stable Newmark time integration scheme. A num-
ber of benchmark and test problems are simulated
and the results are compared with available reference
results.
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1 Introduction

Rapid development in construction and application
of composite materials in various ordinary and high
tech engineering applications has resulted in extensive
research work to enhance the computational efficiency
of the existing methods or to the develop new ideas
to analyse crack stability and propagation of compos-
ite structures. In these set of problems, crack initiation,
propagation direction and crack tip state are usually the
main concerns of simulation. Static and quasi-crack
analyses have been widely used for fracture analysis
of composites (Atluri et al. 1975; Forschi and Barret
1976; Boone et al. 1987). Nevertheless, they do not
represent real world crack problems; they are only used
as efficient simplified models for other highly complex
dynamic phenomena.

Several numerical methods have been proposed in
the last decades in order to predict and analyze crack-
ing in composites. One of the well-known methods is
the remeshing technique which adopts a discrete crack
model for progressive crack propagation under quasi-
static and dynamic loadings (Maigre and Rittel 1993;
Combescure et al. 2008). This technique implements
the simplicity of classical finite element method (FEM)
with the sophistication of adaptive remeshing tech-
niques in each time-step when the cracks propagate.
Despite the fact that this method is fundamentally sim-
ple and is employed by a number of commercial finite
element softwares, the method suffers from a number
of drawbacks. First, it is time consuming and is not
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suited to simulate problems with several cracks. Also,
nodal alignments may cause numerical difficulties and
mesh dependency in propagation problems. Finally, the
continuum based finite element formulation is unable
to reproduce the physical singular stress field at the tip
of a crack.

In order to avoid such difficulties, new approaches,
which avoid the implementation of new nodes, have
been proposed by Xu and Needleman (1994) and
Camacho and Ortiz (1996) through the cohesive seg-
ments. Alternatively, the basis of XFEM was intro-
duced by Belytschko and Black (1999) and promoted
by Moës et al. (1999). They implemented the con-
cept of partition of unity (PUM), introduced earlier by
Melenk and Babuška (1996), to develop a method to
model discontinuity. Further investigations have sub-
sequently been carried out; including Sukumar et al.
(2000) and Areias and Belytschko (2005) extending
the method to three dimensional domain, Dolbow
et al. (2001) using frictional contact, Mergheim et al.
(2005) simulating cohesive cracks and Belytschko et al.
(Belytschko et al. 2003; Belytschko and Chen 2004)
modeling dynamic crack propagation for isotropic
materials.

Two independent parts are involved in a dynamic
crack analysis by XFEM. First, a crack tracking pro-
cedure is required to represent an existing crack and
its evolution by time. Fortunately, the level set method
and the fast marching approach are available. They have
been successfully implemented in the XFEM codes and
can be used for quasi-static or dynamic crack evolution
problems (Ventura et al. 2003).

The second part is related to the way dynamic crack
propagation is formulated. Belytschko et al. (2003)
developed a methodology for switching from a con-
tinuum to a discrete discontinuity where the govern-
ing partial differential equation loses hyperbolicity for
rate independent materials. They adopted the tech-
nique of loss of hyperbolicity in combination with the
XFEM cohesive crack models. The idea was to track
the change of a hyperbolicity indicator to compute the
direction and velocity of dynamic crack propagation.
They applied the method to solve problems involving
crack branching. The idea of loss of hyperbolicity was
previously developed by Gao and Klein (1998) for ana-
lysing dynamic crack propagations. Later, Peerlings
et al. (2002) and Oliver et al. (2003) further studied
the loss of hyperbolicity and added this technique into
equilibrium equations.

Further improvements were reported by Chessa and
Belytschko (2004, 2006). They presented a locally
enriched space–time extended finite element method
for solving hyperbolic problems with discontinuities.
The coupling was implemented through a weak enfor-
cement of the continuity of the flux between the space–
time and semi-discrete domains in a manner similar
to discontinuous Galerkin methods. They successfully
applied the TXFEM to the Rankine–Hugoniot jump
conditions to linear first order wave and nonlinear Bur-
gers equations.

Furthermore, Réthoré et al. (2005) proposed a com-
bined space–time extended finite element method,
based on the idea of the time extended finite element
method (TXFEM), allowing a suitable form of the time
stepping formulae to satisfy stability and energy con-
servation criteria. XFEM was used to implicitly define a
virtual crack field tangential to the crack front. The con-
cept of a virtual field allowed for separation of mixed
modes of fracture.

Other contributions include the work by Belytschko
and Chen (2004) who developed a singular enrichment
finite element method for elastodynamic crack prop-
agation, Zi et al. (2005) who presented a method for
modelling arbitrary growth of dynamic cracks without
remeshing, and Menouillard et al. (2006) who intro-
duced a lumped mass matrix for enriched elements,
which allowed the use of a pure explicit formulation in
XFEM applications.

In this study, orthotropic enrichment functions,
recently proposed by Asadpoure et al. (2006a,b),
Asadpoure and Mohammadi (2007), and Mohammadi
(2008), are extended to dynamic problems to simu-
late dynamic crack propagation with XFEM. By this
means, the displacement and stress fields near a crack
tip are expected to be accurately approximated. This
is achieved by modification of the very basic linear
static FE interpolation

(
uh(x) = ∑

Ni ui
)

into a new
enriched approximation to resemble the singularity
nature of stress field near crack tips within orthotro-
pic media. Other issues such as boundary conditions,
dynamic effects, etc. will be automatically handled by
the dynamic finite element analysis using a proper time
integration scheme. The present approach is expected
to improve orthotropic elastodynamic crack analyses
even by modification of the basic elastostatic approx-
imation of the finite element interpolation around a
crack tip. A similar approach has recently been adopted
by Réthoré et al. (2005) and Combescure et al. (2008)
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Dynamic crack propagation of analysis of orthotropic media by XFEM 23

to model the dynamic crack propagation in isotropic
media using static isotropic enrichment functions.

In the first section of this paper, the basic for-
mulations of fracture mechanics of dynamic crack
propagation in orthotropic media are introduced. Fur-
thermore, the idea of separation integral domain for
evaluation of the dynamic stress intensity factors
through J integral is explained. Then, implementation
of XFEM in modeling dynamic crack propagation has
described. Finally, in order to verify the proposed for-
mulation and to investigate its robustness, the dynamic
stress intensity factors (DSIFs) are compared with other
available data in a set of numerical problems.

2 Dynamic fracture mechanics

2.1 Dynamic fracture laws

The crack propagation law should be chosen based
upon the type of material which is being simulated
or experimented. Despite the fact that simulation of
dynamic brittle crack propagation remains a difficult
challenge, the physical modeling of fracture phenom-
enon is comprised of relatively three simple concepts
(Gregoire et al. 2007):

(1) a criterion is required to describe the
stability/instability of an existing crack;

(2) an equation is needed in order to find the propa-
gation direction, if the crack becomes unstable;

(3) an equation to specify the crack propagation
speed.

In this study, the stress intensity factor is compared
with the dynamic crack initiation toughness to evalu-
ate the crack instability. The dynamic crack initiation
toughness is a material property and can be obtained
by experiment. If the crack violates such a stability
criterion, it starts to propagate and the direction of
propagation is that of the maximum hoop stress (Mai-
gre and Rittel 1993). An implicit approach, which
updates the crack-tip new position at the end of each
step, is adopted to calculate the crack extension. Using
the crack propagation direction, K * is calculated and
the crack-tip velocity is obtained. Then, in each step,
the crack growth is calculated by multiplying the size
of the time step and the ratio of current and previous
crack velocities.

During the crack propagation, the crack speed adapts
its value in a way to make the maximum hoop stress
intensity factor become equal to the dynamic crack
growth toughness. To evaluate the dynamic crack
growth toughness, Kanninen and Popelar (1985) pro-
posed to replace the quasi-static toughness by the
dynamic crack initiation toughness. In this method, the
dynamic crack growth toughness is considered to be
(Gregoire et al. 2007):

K ∗ < K1d (no ini tiation)

K ∗ = K1d , θ
∗ = θc (ini tiation)

(1)
K ∗(t, v) ≥ K1d(v) ⇒ K ∗(t, v)

= K1D(v) (propagation)

where K ∗ is the dynamic maximum hoop stress inten-
sity factor, K1d is the dynamic crack initiation tough-
ness, K1D is the dynamic crack growth toughness and
v is the crack growth speed, which can be elicited from
the following equation (Gregoire et al. 2007):

v = CR

(
1 − K1d

K ∗

)
(2)

where CR is the Rayleigh wave speed. In orthotropic
materials, the Rayleigh wave speed is replaced with
the shear wave speed CS in Eq. 2. The maximum posi-
tive hoop stress can be calculated from (Aliabadia and
Sollero 1998):

σθθ =
{

K I Re

[
µ1µ2

(
µ2
B − µ1

A

)

µ1 − µ2

]

+K I I Re

⎡

⎣
µ2

2
B − µ2

1
A

µ1 − µ2

⎤

⎦

⎫
⎬

⎭
sin2 θ

+
{

K I Re

[ µ1
B − µ2

A

µ1 − µ2

]

+K I I Re

[
1
B − 1

A

µ1 − µ2

]}

cos2 θ

−
{

K I Re

[
µ1µ2

( 1
A − 1

B

)

µ1 − µ2

]

+K I I Re

[ µ1
A − µ2

B

µ1 − µ2

]}

sin 2θ (3)

where K I , K I I are the stress intensity factors and µ1

and µ2 are the complex roots (not conjugated pair) of
following equation (Lekhnitskii 1963):

a11µ
4 − 2a16µ

3 + (2a12 + a66) µ
2

−2a26µ+ a22 = 0 (4)

123



24 D. Motamedi, S. Mohammadi

where ai j are the components of the compliance tensor
(ε = ai jσ). A and B are also defined as (Aliabadia and
Sollero 1998):

A = √
(cos θ + µ1 sin θ)

(5)
B = √

(cos θ + µ2 sin θ)

The maximum hoop stress direction θ∗ can be calcu-
lated by finding the extreme values of Eq. 3. The cor-
responding maximum hoop stress intensity factor can
then be obtained from (Gregoire et al. 2007):

K ∗ = cos3
(
θ∗

2

)
K I − 3

2
sin

(
θ∗) cos

(
θ∗

2

)
K I I

(6)

In the present study, the material behavior is further
idealized in order to simplify the process of crack mod-
eling; the fiber composite structure is assumed as a
homogeneous orthotropic continuum, where the crack
growth takes place in an idealized material with aniso-
tropic constituents. In this approach, the details of local
failures of composite, such as broken fibers or cracked
matrix, are not consider and an equivalent orthotropic
continuum is adopted.

2.2 Dynamic stress intensity factors

Dynamic stress intensity factors, which play an impor-
tant role in dynamic fracture problems, are used to
calculate the positive maximum hoop stress inten-
sity factor and to evaluate dynamic crack propagation
properties.

In order to find dynamic stress intensity factors,
the method proposed by Nishioka and Alturi (1984)
is adopted. Accordingly, the analytical form of the
dynamic J -integral (J ′

k) can be written as:

J ′
k =

∫

�+�c

(
(W + K )nk − ti

∂u j

∂xk

)
d�

+
∫

V�−Vε

(
(ρüi − fi )

∂ui

∂xk
− ρ

∂ u̇i

∂xk
u̇i

)
d A (7)

where ui , ti , fi , nk andρ denote the displacement, trac-
tion, body force, outward normal direction, and mass
density, respectively, W = (1/2) σi jεi j is the strain
energy density, K = (1/2)ρu̇i u̇i is the kinetic energy
density and the integral paths are defined in Fig. 1.
�ε, �, and �c denote near-field, far-field and crack sur-
face paths, respectively. V� is the region encircled by

X2

X1

VΓ Γ

Γc Γε

Vε

X1
0

X2
0

θ 0

Fig. 1 Local crack-tip co-ordinates and the contour � and its
interior area, V�

Fig. 2 Nodal value for function q

�, while Vε represents the region surrounded by �ε
(Fig. 1). Inasmuch as the form of the first term of Eq. 7
is not well-suited for the finite element method, an
equivalent form of Eq. 7 can be achieved by using the
divergence theorem and some additional assumptions
for homogeneous materials, as discussed by Kim and
Paulino (2003),

J ′
k =

∫

V�

(
σi j
∂u j

∂xk
− (W + K )

)
q,kd A

+
∫

V�

(
(ρüi − fi )

∂ui

∂xk
− ρ

∂ u̇i

∂xk
u̇i

)
qd A (8)

where q is a function smoothly changing from q = 1
near a crack-tip to q = 0 at the exterior boundary, �. In
the present study, q is assumed to be varying linearly
from 1 to 0, as depicted in Fig. 2. Noting that the value
of q is constant near the crack-tip area, distinguishable
by shaded unaffected elements in Fig. 2, the gradient
of q vanishes in Eq. 8.

The interaction integral method is frequently ado-
pted in elastostactic crack analyses to evaluate mixed
mode J integral and associated stress intensity factors.
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Despite its more precise solution for static problems,
another method based on the concept of dynamic
energy release rate G is used in this work. To explain
the reason, it is well known that the interaction integral
method, requires several auxiliary field components to
be computed. Therefore, equations of dynamic near-tip
displacement and stress fields in orthotropic materials
have to be derived in order to extract the required aux-
iliary displacement and stress fields. Moreover, more
complex computations are required to calculate ‘aux-
iliary velocity’ and ‘auxiliary strain velocity’ fields.
These required a substantial theoretical and simulation
experience and cost (if possible at all). This might be the
reason why most of the researches on dynamic behav-
ior of materials using the interaction integral have been
within the framework of isotropic media. On the other
hand, an additional relation is required in orthotropic
media under mixed mode dynamic conditions. There-
fore, in the absence of access to all required elements
for that approach in orthotropic materials, the present
formulation based on G is preferred.

The crack-axis components of the dynamic J inte-
gral can be evaluated by the following coordinate trans-
formation (Kim and Paulino 2003):

J ′0
l = αlk(θ0)J

′
k (9)

where αlk is the coordinate transformation tensor and
θ0 is the crack angle. The tangential component of
the dynamic J integral, J ′0

l , corresponds to the rate
of change in the potential energy per unit crack exten-
sion, namely, the dynamic energy release rate (G). Wu
(2000) showed that the dynamic energy release rate can
be related to the instantaneous stress intensity factors
for an elasto-dynamically propagating crack with the
speed v:

G = J ′0
l = J ′

1 cos θ0 + J ′
2 sin θ0 (10)

G = (1/2)K T L−1(v)K (11)

where L(v) has been presented by Dongye and Ting
(1989), for orthotropic materials with the symmetry
planes coinciding with the coordinate planes. The non-
zero components of L(v) are:

L33(v) =
√

Ĉ55C44 (12)
√

Ĉ66C22 L11(v) =
√

Ĉ11C66 L22(v) = �	− 1
2

(13)

where Ĉi j = Ci j − ρv2δi j ,Ci j are the constitutive
coefficients, ρ is the material density and

� =
(

Ĉ11C22 − C2
12

)√
Ĉ66C66 − ρv2C66

√
Ĉ11C22

(14)

	 =
(√

Ĉ66C66 +
√

Ĉ11C22

)2

− (C12 + C66)
2 (15)

To accurately evaluate the in-plane mixed-mode stress
intensity factors from the dynamic J integral, the com-
ponent separation method, proposed by Aliabadia
and Sollero (1998), is implemented. Aliabadia and
Sollero (1998) discussed that the following relation-
ship between the dynamic stress intensity factors and
the relative sliding and opening displacements of the
crack face can be obtained:

{
δ1

δ2

}
=
√(

8r

π

) [
D11 D12

D21 D22

]{
K I

K I I

}
(16)

with

D11 = I m

(
µ2 p1 − µ1 p2

µ1 − µ2

)
, D12 = I m

(
p1 − p2

µ1 − µ2

)

D21 = I m

(
µ2q1 − µ1q2

µ1 − µ2

)
, D22 = I m

(
q1 − q2

µ1 − µ2

)

(17)

where µk are defined in Eq. 4 and pk and qk are
described below (Aliabadia and Sollero 1998):

pk = a11µ
2
k + a12 − a16µk (18)

qk = a12µk + a22

µk
− a26 (19)

The ratio of opening to sliding displacements, RC O D ,
can be written as:

RC O D = δ2

δ1
= D21 K I + D22 K I I

D11 K I + D12 K I I
(20)

Therefore, the ratio of dynamic stress intensity factors,
RSI F , is obtained as:

RSI F = K I

K I I
= RC O D D21 − D22

D21 + RC O D D11
(21)

Substitution for K I from Eq. 21 into Eq. 20 leads to
the following relationship for K I I :

K I I =
√

2G

L11(v)RSI F2 + L22(v)
(22)
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3 XFEM implementation of dynamic crack
propagation

3.1 Basics of XFEM method

The extended finite element method was first intro-
duced by Belytschko and Black (1999) in order to avoid
explicit modeling of discrete cracks by enhancing the
basic finite element solution through the use of enrich-
ment functions. By implementing the generalized
Heaviside function, proposed by Moës et al. (1999),
the method was further enhanced, avoiding the need of
complicated mapping for arbitrary curved cracks. Fur-
ther general improvements have been made by Suku-
mar et al. (2000), Dolbow et al. (2001), Belytschko et
al. (2003), Belytschko and Chen (2004), Asadpoure et
al. (2006a,b), and Asadpoure and Mohammadi (2007),
while specific extensions in field of dynamic crack
propagation have recently been made by Gregoire et
al. (2007) and Nistor et al. (2008). A general descrip-
tion and a comprehensive discussion on the method can
be found in Mohammadi (2008).

In the extended finite element method, first, the finite
element mesh is produced, regardless of the existence
and location of any cracks. Afterwards, according to
the location of any discontinuity, a few degrees of free-
dom are added to the classical finite element model in
selected nodes around the discontinuity. They contrib-
ute to the approximation through the use of the gen-
eralized Heaviside and crack-tip (near-tip) functions.
For modeling the crack propagation in each step, the
crack growth is considered as straight segments. When
an element is cut because of a crack growth, new Heav-
iside and singular enriched degree of freedoms will be
added to the existing conventional degrees of freedom
of the model (Gregoire et al. 2007).

Let’s consider that there is a discontinuity within a
domain which is already meshed into some elements
with N nodes. The displacement field for a point x inside
the domain, can be approximated based on the XFEM
formulation proposed by Belytschko and Black (1999):

ug(x) =
∑

I
nI ∈N

φI (x)uI +
∑

J
n J ∈N f

φJ (x)ψ(x)aJ (23)

where nI represents the node I, φI is the shape func-
tion associated with the node I,uI is the FEM vec-
tor of regular degrees of freedom, aJ is the new set of
enriched degrees of freedom added to the finite element
degrees of freedom, Nf is the set of nodes that the

Fig. 3 Definition of the influence (support) domain for node J
in an arbitrary finite element mesh

discontinuity is in its influence (support) domain and
ψ(x) is the enrichment function (Fig. 3).

The first term in Eq. 23 is the classical finite ele-
ment approximation to calculate the displacement field
while the second term is the XFEM enriched displace-
ment field related to the discontinuity.

In order to model crack edges and tips in the
extended finite element, Moës et al. (1999) suggested
that Eq. 23 can be generalized in the following form

uh(x) =
∑

I
nI ∈N

φI (x)uI +
∑

J
n J ∈Ng

bJφJ (x)H(x)

+
∑

k∈K1

φk(x)

(
∑

l

cl1
k F1

l (x)

)

+
∑

k∈K2

φk(x)

(
∑

l

cl2
k F2

l (x)

)

(24)

where Ng is the set of nodes that their corresponded
elements are cut by crack faces (but not crack-tip), bJ

is the vector of additional degrees of freedom which
are related to the modeling of crack faces (not crack-
tips), ck is the vector of additional degrees of freedom
for modeling crack-tips, Fi

l (x), (i = 1, 2) are crack-
tip enrichment functions and K1 and K2 are the sets of
nodes associated with crack-tip 1 and 2 in their influ-
ence domain, respectively.

According to Moës et al. (1999), the Heaviside
enrichment function is defined as:

H(x) =
{+1; if (x − x∗) .en > 0

−1; otherwise
(25)

In the present work, the following orthotropic enrich-
ment functions, recently derived by Asadpoure and
Mohammadi (2007) from the two-dimensional asymp-
totic displacement field near crack-tip in orthotropic
materials, are implemented:
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{Fl(r, θ)}4
l=1 =

{√
r cos

θ1

2

√
g1(θ),

√
r cos

θ2

2

√
g2(θ),

× √
r sin

θ1

2

√
g1(θ),

√
r sin

θ2

2

√
g2(θ)

}
(26)

which r and θ define the crack-tip based local polar
coordinates of integral points, and gk(θ) and θk, (k =
1, 2) are defined as (Asadpoure and Mohammadi
2007):

gk (θ) =
√
(cos θ + µkx sin θ)2 + (

µky sin θ
)2 (27)

θk = arctg

(
µky sin θ

cos θ + µkx sin θ

)
(28)

where µk = µkx + iµky are the roots of Eq. 4.

3.2 XFEM dynamic equations of motion

Consider a body � with an initial traction-free crack
�c in the state of dynamic equilibrium, as depicted in
Fig. 4. The fundamental elastodynamic equation can
be expressed as:

∇ · σ + fb = ρü (29)

with the following boundary conditions:

u(x, t) = ū(x, t) on �u (30)

σ · n = f t on �t (31)

σ · n = 0 on �c (32)

and initial conditions:

u(x, t = 0) = ū(0) (33)

u̇(x, t = 0) = ¯̇u(0) (34)

where �t, �u and �c are traction, displacement and
crack boundaries, respectively; σ is the stress tensor
and fb and f t are the body force and external traction
vectors, respectively.

Fig. 4 A body in a state of elastodynamic equilibrium

The variational formulation of the initial/boundary
value problem of Eq. 29 can be written as:

∫

�

ρü · δu d�+
∫

�

σ · δε d� =
∫

�

fb · δu d�

+
∫

�

f t · δu d� (35)

In the extended finite element method, approximation
(24) is utilized to calculate the displacement uh(x) for
a typical point x. The discretized form of Eq. 35 using
the XFEM procedure (24) can be written as:

Müh + Kuh = f (36)

where uh and üh denote the vector of nodal parameters
(displacements u, Heaviside and crack tip enrichment
degrees of freedom a and b, respectively) and its second
time derivative, respectively:

uh = {u, a,b}T (37)

The stiffness matrix K, mass matrix M and the external
load vector f are defined as:

σ(t)= H(t) σ0 

E1 
E2 

2h

w 

a 

σ(t)= H(t) σ0 

ϕ

Fig. 5 Geometry and loadings of a single edge crack in a rect-
angular plate with several orientations of the axes of orthotropy
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Ke
i j =

⎡

⎢
⎣

Kuu
i j Kua

i j Kub
i j

Kau
i j Kaa

i j Kab
i j

Kbu
i j Kba

i j Kbb
i j

⎤

⎥
⎦ (38)

Me
i j =

⎡

⎢
⎣

Muu
i j Mua

i j Mub
i j

Mau
i j Maa

i j Mab
i j

Mbu
i j Mba

i j Mbb
i j

⎤

⎥
⎦ (39)

fi =
{

fu
i , fa

i , fb
i

}T
(40)

where the stiffness components Krs
i j (r, s = u, a,b)

include the classical FEM (uu), Heaviside enrichment
(aa), orthotropic crack tip enrichment (bb) and the cou-
pled parts of XFEM approximation:

Krs
i j =

∫

�e

(Br
i )

TDBs
j d� (r, s = u, a,b) (41)

where B = ∇N is the matrix of derivatives of shape
functions, defined as:

Bu
i =

⎡

⎣
Ni,x 0
0 Ni,y

Ni,y Ni,x

⎤

⎦ (42)

Ba
i =

⎡

⎣
(Ni H),x 0
0 (Ni H),y
(Ni H),y (Ni H),x

⎤

⎦ (43)

Bb
i =

[
Bb1

i Bb2
i Bb3

i Bb4
i

]
(44)

Bbα
i =

⎡

⎣
(Ni Fα),x 0
0 (Ni Fα),y
(Ni Fα),y (Ni Fα),x

⎤

⎦ (α = 1, 2, 3 and 4)

(45)

To include the effects of interpolation, the following
shifting amendments are required (Mohammadi 2008):

Ba
i =

⎡

⎣
(Ni [H(ξ)− H(ξ)]),x 0
0 (Ni [H(ξ)− H(ξi )]),y
(Ni [H(ξ)− H(ξ)]),y (Ni [H(ξ)− H(ξi )]),x

⎤

⎦ (46)

Bbα
i =

⎡

⎣
[Ni (Fα − Fαi )],x 0
0 [Ni (Fα − Fαi )],y
[Ni (Fα − Fαi )],y [Ni (Fα − Fαi )],x

⎤

⎦(α=1, 2, 3 and 4)

(47)

Classical and enrichment components of the consistent
mass matrix can be expressed as:

Muu
i j =

∫

�

ρNi N j d� (48)

Maa
i j =

∫

�

ρ(Ni Hi )(N j Hj )d� (49)

Mbb
i j =

∫

�

ρ (Ni Fαi )
(
N j Fα j

)
d� (α = 1, 2, 3 and 4)

(50)

Mua
i j = Mau

i j =
∫

�

ρN
(N j Hj )

i d� (51)

Mub
i j = Mbu

i j =
∫

�

ρNi
(
N j Fα j

)
d�

× (α = 1, 2, 3 and 4) (52)

Mab
i j =

∫

�

ρ(Ni Hi )(N j Fα j )d� (α = 1, 2, 3 and 4)

(53)

Finally, the force vectors associated with the classical
and enrichment degrees of freedom are defined as:

fu
i =

∫

�t

Ni f t d� +
∫

�e

Ni fb d� (54)

Fig. 6 Crack paths for a
single edge crack plate for
ϕ = 0◦, 30◦, 45◦, 60◦ and
90◦ material angles; the
present work (straight-line)
and Aliabadia and Sollero
(1998) (dash-line)
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Fig. 7 Dynamic stress
intensity factors for a single
edge crack plate with
ϕ = 0◦, 30◦, 45◦, 60◦ and
90◦ material angles

fa
i =

∫

�t

Ni H f t d� +
∫

�e

Ni H fb d� (55)

fb
i =

∫

�t

Ni Fαf t d� +
∫

�e

Ni Fαfb d�

(α = 1, 2, 3 and 4) (56)

It is also possible to similarly extend the formulation to
include the effects of velocity based global damping,

Müh + Cu̇h + Kuh = f (57)

The Newmark time integration scheme is then adopted
to solve for the extended finite element equation of
motion at time step n:

Müh
n + Cu̇h

n + Kuh
n = fn (58)

where Mn,Kn and Cn are the mass, stiffness and damp-
ing matrices, respectively, and fn is the load vector at the
time step n. The final discretized simultaneous equa-
tions are expressed as:
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(
M + β�t2 K + α�tC

)
üh

n

= fn − K

(
uh

n−1 +�t u̇h
n−1 + (1 − 2β)

�t2

2
üh

n−1

)

−C
(

u̇h
n−1 + (1 − α)�t üh

n−1

)
(59)

u̇h
n = u̇h

n−1 + (1 − α)�t üh
n−1 + α�t üh

n (60)

uh
n = uh

n−1 +�t u̇h
n−1

+ (1 − 2β)
�t2

2
üh

n−1 + β�t2üh
n (61)

The choice of α = 1/2 and β = 1/4, uncondi-
tionally guarantees the stability of the Newmark app-
roach.

In the following simulations, a similar technique
proposed by Combescure et al. (2008) and Réthoré
et al. (2005) has been used. In this method, no degree
of freedom is eliminated after crack propagation. In
this way, only more degrees of freedom are added rel-
ative to the crack-tip enriched elements and previous
crack-tip enriched elements are changed to Heaviside
enriched elements. The degrees of freedom associated
with crack-tip enrichments from a previous step are
still stored and used in calculations, but their singular-
ity effect will be diminished by the increasing distance
between the nodes associated with previous crack-tip
and the new crack-tip position. The same references
have illustrated that the energy conservation is well pre-
served. So, the acceleration which is calculated by the
Newmark scheme, will remain reliable for post-pro-
cessing purposes

4 Numerical examples

In this section, the performance of the proposed method
is investigated by simulation of a number of prob-
lems. The robustness and accuracy of the method are
compared with other available theoretical or numerical
approaches. Three examples are studied which include
an edge crack tensile plate in quasi-static state, an ortho-
tropic plate subjected to impulse loading, and finally
a pre-cracked beam under dynamic loading. A com-
prehensive parametric study is provided to assess the
sensitivity of the results with respect to the primary
parameters of XFEM.

4.1 Edge crack in a composite plate under tensile
stress loading

This example was studied by Aliabadia and Sollero
(1998) in a quasi-static condition. Let’s consider a
rectangular plate with an edge horizontal crack sub-
jected to a tensile distributed loading (Fig. 5). 0, 30,
45, 60 and 90 material orientation angles are studied
and the plane stress state is presumed. The size of the
cracked plate is h = w = 50 mm and a = 25 mm. Graph-
ite-epoxy material properties are assumed to be the
following orthotropic properties, E1 = 114.8 GPa ,
E2 = 11.7 GPa ,G12 = 9.66 GPa , v12 = 0.21 and
ρ = 1500 kg/m3. The time-step is selected to be
�t = 0.5 µs and the relative integration domain size,
rd/a, is set to be 0.4. A 40 × 80 mesh is used for the
finite element mesh. The integrations are performed by

2h=200 mm

W=100 mm 

a=50 mm 

v0=16.5 m/s 
25 mm

Fig. 8 Geometry and boundary condition of the double edge
crack in a rectangular plate

V
C

ra
ck

 
 

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05

t (s) 

 Isotropic 

Belytschko et al. [16] (Dash-line) 
Present work (Straight-line)

Fig. 9 The crack propagation speed for Kalthoff’s (1987) exper-
iment, the loss of hyperbolicity criterion (Dash-line) and the max-
imum hoop stress (Straight-line)
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4×4 and 7×7 Gauss quadrature rules for ordinary and
enriched elements, respectively. The same integration
rule is applied to all other examples.

Figure 6 illustrates the predicted crack propagation
paths for different orthotropic material angles, and com-
pares them with the reference results (Aliabadia and
Sollero 1998). Good agreement is observed except for

the first case, where the orthotropic material axes are
parallel/perpendicular to the initial crack face. The pres-
entapproachpredictsanextensionalongthecrackdirec-
tion, whereas Aliabadia and Sollero (1998) predicted an
inclined propagation. The reason might be attributed to
the fact that the reference approach might have included
bifurcation and instability analysis which have resulted
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Fig. 10 The crack propagation speed and the maximum hoop stress intensity factor for Kalthoff’s (1987) experiment with the maximum
hoop criterion

Fig. 11 The crack growth
path for Kalthoff’s (1987)
experiment with the
maximum hoop criterion
at times t = 25, 35, 45,
55, 65, 75 and 80 µs
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Fig. 12 The crack propagation speed and the maximum hoop stress intensity factor with orientation angle of 45◦ and different meshes

in an un-symmetric inclined extension, which clearly
required lower level of energy compared with a straight
symmetric crack extension. The present approach, how-
ever, does not include such an instability analysis and a
symmetric response is expected from a fully symmetric
problem.

The predicted time histories of mode I and mode II
dynamic stress intensity factors are illustrated in Fig. 7.

The results for different orthotropic material angles
ϕ = 0◦, 30◦, 45◦, 60◦ and 90◦ have been compared
with the maximum and minimum quasi-static solu-
tions of Aliabadia and Sollero (1998), obtained from
a boundary element formulation (The reference mini-
mum solution for KI I was zero; x-axis). The results
show that the maximum values of mode I dynamic
stress intensity factor vary similar to the reference
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Fig. 13 The crack growth
path with orientation angle
of 45◦ and 50 × 50 mesh at
times t = 30, 40, 50, 60, 70
and 80 µs

Fig. 14 The crack growth
path with orientation angle
of 45◦ and 60 × 60 mesh at
times t = 30, 40, 50, 60, 70
and 80 µs

results by increasing ϕ. The maximum value of mode
I dynamic stress intensity factor occurs for the case of
ϕ = 30◦, which is similar to the conclusion of Aliaba-
dia and Sollero (1998). Generally, an acceptable trend
is observed, while the present dynamic solutions oscil-
late about an average solution; i.e. more or less similar
to the quasi-static response.

4.2 A composite plate with double edge cracks under
impulsive loading

This problem was investigated experimentally by
Kalthoff and Winkler (1987) and then numerically
studied by Belytschko and Chen (2004). In this prob-
lem, a plate with two edge notches is impacted by a

123



34 D. Motamedi, S. Mohammadi

Fig. 15 The crack growth
path with orientation angle
of 45◦ and 70 × 70 mesh at
times t = 30, 40, 50, 60, 70
and 80 µs

Fig. 16 The crack growth
path with orientation angle
of 45◦ and 80 × 80 mesh at
times t = 30, 40, 50, 60, 70
and 80 µs

projectile, as depicted in Fig. 8. Kalthoff and Winkler
(1987) showed that a lower projectile speed will cause
a lower strain rate and a brittle fracture mode. In lower
strain rates, a crack propagation angle of approximately
70◦ was observed.

In this example, the material is first simulated as
an isotropic material in order to compare the results
of the present approach with the isotropic approach by
Belytschko and Chen (2004), which was based on the

loss of hyperbolicity criterion. Then, the same problem
is solved for orthotropic composites and the effects of
different finite element meshes are investigated.

In Belytschko and Chen (2004), the impulse was
considered as a boundary speed condition. For low
strain rates, this speed was assumed equal to 16.5 m/s,
according to Kalthoff and Winkler (1987).

The material properties correspond to maraging
steel type 18Ni1900: E = 190 GPa , v = 0.3 and
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ρ = 8000 kg/m3. The critical stress intensity fac-
tor is considered to be KIc = 68 MPa

√
m. The dila-

tational, shear and Rayleigh wave speeds are Cd =
5654.3 m/s,Cs = 3022.4 m/s and CR = 2799.2 m/s,
respectively.

Fig. 17 A three point bending specimen under impact loading
(Nishioka et al. 2001)

Fig. 18 Comparison of the mode I dynamic stress intensity
factor for e = 0.0

The simulation is performed up to 80µs and the
timestep is considered �t = 1 µs. The relative inte-
gration domain size, rd/a, is selected to be 0.4 and
only one half of the plate is modeled, due to symmetry,
by a 50 × 50 finite element mesh.

Figure 9 depicts the time history of the crack prop-
agation speed and compares it with the reference iso-
tropic results. According to the results, the crack starts
to propagate at t = 27 µs, matching the initiation time
t = 26.17 µs reported by Belytschko and Chen (2004).
Variations of the crack tip speed is comparable with
Belytschko and Chen (2004) results, except for the last
part of crack evolution, which starts at t = 50 µs. This
difference may have caused from the fact that the meth-
ods have used different definitions for estimation of the
crack speed.

The predicted crack initiation angle is 67.5◦ and dur-
ing the crack growth, the angle varies and gradually
decreases to 59.4◦, which is matched with both Kalthoff
and Winkler (1987) and Belytschko and Chen (2004)
references.

Now, the same problem is considered as an ortho-
tropic material with the following properties: E1 = 8.6
GPa, E2 = 39 GPa , E3 = 12 GPa ,G12 = 3.8 GPa ,
v12 = 0.061, v23 = 0.04, v13 = 0.23 and ρ= 2100 kg/
m3. The critical stress intensity factor is consid-
ered to be KIc = 1MPa

√
m and the dilatational, shear

and Rayleigh wave speeds �= 45 are Cd = 2071.3
m/s,Cs = 1545.2 m/s, and CR = 1345.6 m/s, respec-

tively. The time-step is selected to be �t = 1.5 µs and
the relative integration domain size, rd/a, is set to be
0.4. A 50 × 50 finite element mesh is implemented
to model half of the plate. Also, the impact speed is

Fig. 19 Comparison of
mixed-mode dynamic stress
intensity factors for e = 0.1
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Fig. 20 Effect of different relative integration domain sizes, rd/a, for e = 0.0

reduced to 5 m/s in order to ensure the low strain rate
condition.

According to the results, depicted in Fig. 10, the
crack starts to propagate at t = 25 µs. The crack tip
speed changes from 72.4 to 1142.3 m/s. Propagation
patterns are shown in Fig. 11, which shows that the ini-
tial notch propagates with an initiation angle of 63.4◦
at time 25 µs and then decreases to 54.1◦ at the end of
crack growth at 80 µs.

In order to evaluate the effects of different finite
element meshes on dynamic crack propagation, four
different meshes 50×50, 60×60, 70×70 and 80×80
are utilized. The material angle is considered to be
45◦ and the time-step is chosen to be �t = 1 µs. The
results, depicted in Fig. 12, show good agreement for
crack growth path and crack tip speed in all simula-
tions, notably even when the speed is reached to 1627
m/s at the maximum point. In average, the crack angle

at initiation remains at about 63.4◦ and then decreases
to about 50.1◦ at the end of analysis. Such a decreas-
ing trend in crack angle propagation has probably been
caused by the effects of reflected waves from the right
side boundary of plate.

Figures 13,14,15, and 16 illustrate the crack propa-
gation paths at six successive times t = 30, 40, 50, 60,
70 and 80 µs for four different finite element meshes;
50 × 50, 60 × 60, 70 × 70 and 80 × 80. Similar results
are observed which indicate the mesh independency of
the results.

4.3 Pre-cracked beam under impact loading

For the final example, a pre-cracked beam previously
investigated by Nishioka et al. (2001) with isotropic
properties, is investigated. In this problem, a three point
bending beam is studied under a projectile impulse
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Fig. 21 Effect of different relative integration domain sizes, rd/a, for e = 0.1

with 5 m/s, as depicted in Fig. 17. The dimensions are:
L = 0.43 m,W = 0.1 m, S = 0.4 m, h = 0.01 m, a0 =
0.05 m. The material properties are E = 2.94 GPa,
v= 0.3 and ρ= 1190 kg/m3. The critical stress inten-
sity factor is considered to be KIc = 4.6 MPa

√
m. The

dilatational wave speed is Cd = 1710 m/s, whereas the
shear wave speed is Cs = 941 m/s. In order to investi-
gate various effects of mixed mode fracture, different
eccentricities of loading, defined as e = 2l/S, are con-
sidered. The time-step is considered as �t = 2 µs and
a 120 × 40 finite element mesh is chosen to discretize
the model.

Figure 18 compares the results of the proposed
approach with the reference results by Nishioka et al.
(2001) for the zero eccentricity e = 0.0. The results
match well in this case, whereas when the eccentric-
ity increases, although the results show the same trend,
but slightly different results are obtained (Fig. 19). The

reason may be attributed to the different adopted prop-
agation criterion in Nishioka et al. (2001), where an
iterative procedure was used to find the minimum K2.
This difference is minimized (vanished) for the sym-
metric condition of zero eccentricity, as the same results
are obtained from the both propagation criteria.

Furthermore, the simulation is extended to an ortho-
tropic material with the following properties: E1 =
8.6 GPa, E2 = 39 GPa, E3 = 12 GPa, G12 = 3.8 GPa,
v12 = 0.061, v23 = 0.04, v13 = 0.23 and ρ= 2100kg/
m3. The critical stress intensity factor is considered to
be KIc = 1 MPa

√
m and the dilatational, shear and Ray-

leigh wave speeds are Cd = 2071.3 m/s,Cs = 1545.2
m/s, and CR = 1345.6 m/s, respectively. Different

results for crack propagation velocity and the stress
intensity factor, obtained from different relative inte-
gration domain sizes, rd/a, are compared in Fig. 20.
The dynamic stress intensity factors are seemingly the
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same. Existing differences may have caused because of
the effect of the impact wave on the domain elements in
different times. In the case of e = 0.0, the crack starts
to initiate at t = 140 µs (Fig. 20), while for e = 0.1
this time is t = 125 µs (Fig. 21). After each evolution
during the crack propagation, the energy release rate
reduces to a value lower than the critical level. As a
result, the crack tip will rest until the energy reaches
the critical value during the upcoming time steps.

The speed of crack tip varies based on the integra-
tion domain size and eccentricity, but their trends and
crack propagation paths remain similar.

5 Conclusion

In this study, a new method has been presented for mod-
eling crack evolution in orthotropic materials. Ortho-
tropic crack tip enrichment functions are implemented
in the extended finite element method (XFEM) to
simulate the dynamic crack propagation in compos-
ites. A simple crack propagation criterion based on
dynamic stress intensity factors and energy release rate
is adopted. The results have been compared with avail-
able benchmarks and demonstrated close agreement.
The predicted crack propagation patterns were simi-
lar and the crack tip velocities were in good agree-
ment with previous numerical and experimental results.
Also, the robustness of the method unveiled by using
different sizes of mesh and different domain sizes for
J -integral evaluation which disclosed independency of
the proposed method from changing the mesh size and
domain size. Moreover, it was demonstrated that the
static crack tip enrichment functions were able to cor-
rectly simulate the crack tip displacement and stress
field, as well as the propagation paths.
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