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Abstract In the paper, the results of numerical
failure analysis of plain concrete beams loaded by
impact three-point bending load are presented and dis-
cussed. The theoretical framework for the numerical
analysis is continuum mechanics and irreversible ther-
modynamics. The spatial discretization is performed
by the finite element method using update Lagrange
formulation. Green–Lagrange stain tensor is used as a
strain measure. To account for cracking and damage
of concrete, the beam is modeled by the rate sensitive
microplane model with the use of the so-called co-rota-
tional stress tensor. Damage and cracking phenomena
are modeled within the concept of smeared cracks. To
assure objectivity of the analysis with respect to the
size of the finite elements, crack band method is used.
The contact-impact analysis is based on the mechan-
ical interaction between two bodies—concrete beam
(master) and dropping hammer (slave) falling on the
mid span of the beam. The contact constrains are satis-
fied by Lagrange multiplier method, which is adapted
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for the explicit time integration scheme. To investigate
the influence of loading rate on the failure mode of the
beam parametric study is carried out. The numerical
results are evaluated, discussed and compared with test
results known from the literature. It is shown that the
beam resistance and failure mode strongly depend on
loading rate. For lower loading rates beam fails in bend-
ing (mode-I fracture). However, with increasing load-
ing rate there is a transition of the failure mechanism
from bending to shear. The results are in good agree-
ment with theoretical and experimental results known
from the literature.
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1 Introduction

The results of theoretical and experimental investiga-
tions show that loading rate significantly influences
the response of structures made of quasi-brittle mate-
rials, such as concrete. Comparing concrete response
at static or quasi-static loading with the response for
high loading rate (impact), it can be seen that the
concrete nominal strength increases with increase of
loading rate. Moreover, it is known that the failure
mechanism also depends on loading rate. Principally,
the structural response depends on loading rate through
three different effects: (1) through creep of the bulk
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material between the cracks, (2) through the rate
dependency of the growing micro-cracks, and (3)
through the effect of structural inertia forces, which
can significantly influence the state of stresses and
strains at the material level. In general, each of
the mentioned influences is always present. How-
ever, depending on the material type and loading
rate, the first, the second or the third effect may
dominate. For quasi-brittle materials, such as con-
crete, which exhibit cracking and damage phenom-
ena, the first effect is important only for relatively
low loading rates (creep–fracture interaction), the sec-
ond for intermediate loading rates and the last one
is dominant in case of relatively high loading rates
(impact).

Various theoretical and experimental studies were in
the past conducted in order to investigate the effect of
loading rate on the response of concrete structures (Dil-
ger et al. 1978; Reinhardt 1982; Curbach 1987; Comite
Euro-International Du Beton 1988; Bažant and Gettu
1992; Weerheijm 1992; Ožbolt and Reinhardt 2001,
2005a,b; Ožbolt et al. 2006; Saatci and Vecchio 2009).
In most of the studies different constitutive relations,
similar to the spring–dashpot models of visco-elastic-
ity, were employed. Some of the models cover only
a limited range of loading rates whereas the other are
more general and applicable over many orders of mag-
nitude of loading rate. However, apart from the influ-
ence of the loading rate on the structural response, an
additional problem at high impact mechanics is rather
complex energy transfer mechanism over the contact
surfaces between the bodies under collision. There-
fore, impact loading cannot be simply viewed only
as a problem of strain rate. As discussed by Bentur
et al (1987) and Banthia et al. (1987), in an experi-
ment it is difficult to satisfy the energy balance through
the measuring of mechanical energies. In contrary to
the experimental investigations, assuming isothermal
conditions, in numerical analysis the transformation of
impact kinetic energy into other mechanical energies
can be easily calculated. Due to the fact that the fail-
ure process in concrete occurs in a very short period
of time, numerical study is useful and necessary for
better understanding of damage phenomena at impact
loading.

Currently there are only a limited number of numeri-
cal and experimental studies in which the failure mode
is investigated as a function of loading rate (Sukon-
tasukkul and Mindess 2003; Ožbolt and Reinhardt

2005a,b; Saatci and Vecchio 2009). In the present
numerical study, a rate dependent microplane material
model for concrete is used. The rate dependent micro-
plena model for concrete was originally proposed by
Bažant et al. (2000b). The model is based on the rate
process theory (Krausz and Krausz 1988) of bond rup-
tures, which is coupled with the microplane model for
concrete (Ožbolt et al. 2001, 2006). The aim of the
study is to check whether the numerical model is able
to realistically predict the rate dependent failure mech-
anism of plain concrete beam and to see the influence
of impact velocity on the response of plain concrete
beam. The numerical experiment is conducted by 3D
finite element simulation of the free fall of hammer,
where the dropped hammer falls from different heights.
The contact force between the dropped hammer and the
concrete beam is unknown, therefore, the mechanical
interaction between the beam (master) and the hammer
(slave) is simulated. The investigated range of impact
velocities is such that the strain rates are very high but
still smaller than the strain rates at which the dropping
hammer would cause extreme local concrete damage
(crushing) of the impact zone. The paper consists of
two parts. In the first part theoretical and numerical
aspects that are related to the numerical solution of the
contact-impact problem are discussed. In the second
part, the numerical results are presented, evaluated and
discussed.

2 Formulation of the contact-impact problem

2.1 General

The problem is formulated in the framework of contin-
uum mechanics assuming the validity of irreversible
thermodynamics (isothermal conditions). The numer-
ical spatial discretization is performed by the linear
tetrahedral finite elements (Zienkiewicz et al. 2005).
In the incremental transient finite element analysis, the
so-called update Lagrange formulation of the govern-
ing differential equations is employed, i.e., the equi-
librium is required on current (deformed) geometry.
Green–Lagrange finite strain tensor is used as a strain
measure (Belytschko et al. 2001; Crisfield 1991). As a
constitutive law, the rate dependent microplane model
for concrete is employed together with the so-called
co-rotational stress tensor (Bažant et al. 2000a; Ožbolt
et al. 2006).

123



Failure of plain concrete beam at impact load 33

2.2 Strong and weak form of the governing
differential equations

Let’s consider a system of bodies B κ , with κ denoting
each of them. Adopting index notation, for the entire
deformation history the balance of linear momentum
reads:

σκ
i j, j + ρκ f κ

i = ρκ üκ
i for i, j = 1, 2, 3 (1)

where σi j, j is divergence of the true Cauchy stress ten-
sor, ui is displacement with dot indicating its time
derivatives. If the boundary conditions between the
starting time t0 (initial time) and current time t are
known, the trajectory of each point in the deformable
continuum is uniquely defined. The Dirichlet displace-
ment boundary conditions on surface �κ

u are:

uκ
i = uκ

i,0 on �κ
u (2)

in which uκ
i,0is known displacement field. Denoting the

boundary surface unit outward normal vector with nκ
i ,

the additional Neumann traction boundary conditions
tκi,0 on the boundary �κ

t reads:

σκ
i j n

κ
i = tκi,0 on �κ

t (3)

To solve the problem of contact between two or more
bodies in the framework of continuum mechanics, there
are two basic additional restrictions on the displace-
ment and traction field over the contact surfaces �κ

C .
From the fact that two material points cannot occupy
the same space at the same time, the penetration of one
into another body is not possible. Let’s assume that the
negative gap value gκ

i indicates the magnitude of the
non-physical penetration, then the first condition, con-
dition of impenetrability, states that no penetration is
allowed:

gκ
i ≥ 0 ; gκ

i =
⎧
⎨

⎩

> 0 nocontact
0 contact

< 0 penetration
(4)

The second condition assures the compressive charac-
ter of the normal traction acting on the contact surface
�κ

C . This is so called intensility condition:

tκi ≤ 0 on �κ
C (5)

Finally, combination of impenetrability condition (4)
with the intensility condition (5) yields to the so-called
complementarity condition:

gk
i tk

i = 0 (6)

Under the assumption that the deformation of bodies
does not cause mechanical interaction (contact), the

weak form of dynamic equilibrium equation for body
B κ (1) can be obtained by applying the Hamilton’s
variational principle of least action:

∫

�κ

ρκ üκ
i δui d �κ +

∫

�κ

σ κ
i j, jδui d �κ

−
∫

�κ

ρκ f κ
i δui d �κ −

∫

�κ

tκi δui d �κ = 0 (7)

Since in general there are more than two bodies, they
can mechanically interact between each other. Conse-
quently, the contact surfaces are time dependent. To
account for this scenario, the displacement field has
to be restricted by excluding those displacements that
cause non-physical penetration. From the various strat-
egies available for the enforcement of contact condi-
tion (Wriggers 2002), in the present formulation the
Lagrange multiplier method is used (Belytschko et al.
2001; Wriggers 2002). From the mechanical point of
view, Lagrange multiplier λ represents force that is
needed for the separation of bodies after a non-phys-
ical penetration is detected (4). The contact situation
can be energetically described by introducing the artifi-
cial “parasite” contact energy �k

C stored on the contact
interface (surface) �κ

C . The contact energy is defined
by the work of Lagrange multipliers on not-allowable
gaps gκ

n . Assuming that the frictional energy on the
contact surface is fully dissipative, only normal con-
tact forces λκ

n contribute to contact energy. The entire
contact energy is calculated as:

�κ
C =

∫

�κ
C

λκ
n gκ

n d �κ
C (8)

The variation and minimization of (8), that is a weak
form of (4), and its combination with (7) yields to the
weak form of dynamic equilibrium equation for bodies
B κ in contact:

∫

�κ

ρκ üκ
i δui d�κ +

∫

�κ

σ κ
i jδui j d�κ −

∫

�κ

ρκ f κ
i δui d�κ

−
∫

�κ

tκi δui d�κ + ∂�κ
C = 0 (9)

with : ∂�κ
C =

∫

�κ
C

λκ
nδgκ

n d�κ
C +

∫

�κ
C

δλκ
n gκ

n d�κ
C
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2.3 Finite element discretization and numerical
algorithm

The numerical approximation of (9) is performed by
finite elements. Following the standard finite element
formulation and accounting for constrains on contact
surfaces of finite elements, the discrete form of (9)
becomes (Voight notation):

Mü + Cu̇ + Ku + GT λ = R (10a)

G{u + X} = 0 (10b)

where M is the global diagonal mass matrix, K the
global secant stiffness matrix and R the known load
vector. The influence of vicious damping is introduced
through damping matrix C obtained by linear com-
bination of matrix M and K. Note, that the product
Ku represents internal nodal forces due to deformation
of bodies. Matrix G is the element contact displace-
ment constraint matrix and λ is the vector of unknown
Lagrange multipliers. The last term on the left hand
side of (10a) is the discrete form of contact forces and
(10b) is the discrete form of the contact displacement
constrains, where X is the material coordinate vector.
Note, that by definition the contact element consists
of one contractor node (slave node), which comes into
contact with the mesh of target surface (master sur-
face) defined by three nodes on one free finite element
boundary plane (triangle plane).

The system of differential algebraic equation (10)
is solved using the explicit time integration scheme
and update Lagrange formulation. In the solution strat-
egy the multi-step central difference method (Wriggers
2002) is adopted. The equation of motion (10a) for the
time step tn and displacement constrains (10b), which
are calculated at the time step tn+1 and related to contact
forces obtained at time tn, can be written as:

Mün + Cu̇n + Kun + GT
n+1λn = Rn (11a)

Gn+1 {un+1 + X} = 0 (11b)

with : u̇n = 1

2
t
{un+1 − un−1}

ün = 1


t2

{
un+1 − 2un + un+1

}
(11c)

In the update Lagrange formulation equilibrium is
required on the current configuration xn that is con-
tinuously updated as:

xn+1 = X + un+1 (12)

in which xn+1 is the coordinate vector of the current
mesh configuration calculated by adding displacement
vector un+1 to the vector of material coordinates X.

The unknown displacement un+1 at the end of
the time interval 
t can be calculated in four steps.
Neglecting for a moment the influence of the contact
in (11a), the computation starts with the contact pre-
dictor phase where the nodal displacement increments
are calculated using standard explicit update:

uD
n+1 =

[

M + 
t

2
C

]−1

{


t2 {Kun − Rn}

+
t

2
C un−1 + M {2un − un−1}

}

(13)

The computation proceeds with activating the so-called
global contact detection algorithm, where the search
over the possible non-physical penetrations of the
boundary mesh nodes is tested (Hutter and Fuhrmann
2007). For those contractor nodes that violate the con-
tact constraint equation (11b) and penetrate into a mesh
domain, an additional local detection strategy is acti-
vated. As a result, data needed for calculation of con-
straint matrix Gn+1 are obtained. The contact forces,
represented by the Lagrange multiplier λn, are than cal-
culated for each contact element as:

λn =
[

t2 Gn+1M−1 GT

n+1

]−1
Gn+1

{
uD

n+1 + X − un
}

(14)

To remove the penetrated nodes from contact, in the
contact correction phase, an incremental contact dis-
placements uC

n+1 are calculated by distributing the con-
tact forces from (14) to each contact element node using
the displacement constraint matrix Gn+1:

uC
n+1 = −
t2M−1 GT

n+1 λn (15)

At the end of the time interval 
t , the total nodal dis-
placements un+1are calculated as:

un+1 = uD
n+1 + uC

n+1 (16)

Due to the fact that the mechanical interaction is
nonlinear, (13, 14, 15) are solved using Gauss-Seidel
iterative algorithm (Carpenter et al. 1991). To avoid
numerical instability of the explicit algorithm, the time
increment 
t must be smaller than the critical time
increment 
tcr. The critical time increment 
te

cr for
the finite element e, is calculated as:
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te
cr = Le

min√
Eκ/ρκ

; e = 1, . . . , ne; 
t < min (
te
cr)

(17)

where Le
min is the minimal length of the finite element

edges, Ee and ρe are Young’s modulus and density,
respectively.

3 Rate dependent microplane model for concrete

In the microplane model the material is character-
ized by the relation between stress and strain compo-
nents on planes of various orientations. These planes
may be imagined to represent damage planes or weak
planes in the microstructure, such as those that exist
at the contact between aggregate and cement matrix.
In contrast to phenomenological models for concrete,
which are based on tensor invariants, in the microplane
model the tensorial invariance restrictions need not be
directly enforced. Superimposing in a suitable manner
the responses from all the microplanes automatically
satisfies them.

The used microplane model (Ožbolt et al. 2001) is
based on the so-called relaxed kinematic constraint
concept. It is a modification of the M2 microplane
model proposed by Bažant and Prat (1988). Each mi-
croplane is defined by its unit normal vector compo-
nents ni (see Fig. 1). Microplane strains are assumed
to be the projections of macroscopic strain tensor εi j

(kinematic constraint). On each microplane consid-
ered are normal and shear stress-strain components
(σN , σT r , εN , εT r ). To realistically model concrete, the
normal microplane stress and strain components have
to be decomposed into volumetric and deviatoric parts
(σN = σV +σD, εN = εV + εD). Based on the micro–
macro work conjugancy of volumetric–deviatoric split
and using in advance defined microplane stress–strain
constitutive laws, the macroscopic stress tensor is cal-
culated as an integral over all possible, in advance
defined, microplane orientations:

σi j = σV δi j + 3

2π

∫

S

σD

(

ni n j − δi j

3

)

d S

+ 3

2π

∫

S

σT r

2
(niδr j + n jδr j )d S (18)

where S denotes the surface of the unit radius sphere
and δi j is Kronecker delta. The integration is performed

x

y

z

microplane

ε

εVεM

εDTε
Kε

yx

z

n

microplane microplane
integration point

FE integration
point

Fig. 1 Decomposition of the macroscopic strain vector into
microplane strain components—normal (volumetric and devi-
atoric) and shear

by numerical integration using 21 integration points
(symmetric part of the sphere, see Fig. 1).

In general case displacements can be large and
strains finite, e.g., penetration of a nail into a con-
crete block. For such a case, as a strain measure
Green-Lagrange finite strain tensor is used. Moreover,
since the response of concrete is path dependent, the
co-rotational stress tensor should be employed (Bažant
et al. 2000a). This means that microplane directions are
not fixed, they rotate with the rotation of the point of
continuum (integration point). Note, however, that in
the present numerical study strains and displacements
are small. Consequently, the co-rotational stress tensor
coincide with the true (Cauchy) stress tensor. Detailed
discussion of the features and various aspects related
to the finite strain formulation of the microplane model
are beyond the scope of the present paper. For more
detail refer to Bažant et al. (2000a) and Ožbolt et al.
(2001).

At the constitutive level the rate dependency con-
sists of two parts: (1) the rate dependency related to
the formation of the microcracks, and (2) the rate
dependency due to the creep of concrete between
the microcracks. The influence of inertia forces on
the rate effect is not a part of the constitutive law,
however, this effect is automatically accounted for in
dynamic analysis in which the constitutive law inter-
acts with inertia forces. The discussion related to the
influence of creep is out of the scope of the paper.
Based on the activation energy theory (Krausz and
Krausz 1988), the influence of strain rate on the rate
insensitive microplane stress σ 0

m(εm), where m indi-
cates microplane stress–strain components V, D and
Tr , can be written as (Bažant et al. 2000b; Ožbolt et al.
2006):
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Fig. 2 Geometry of the
investigated plain concrete
beam

σm(εm) = σm(εm)

[

1 + c2 ln

(
2γ̇

c1

)]

with: γ̇ =
√

1

2
ε̇i j ε̇i j c1 = c0

scr
(19)

where c0 and c2 are material constants, which have
to be calibrated by fit of test data. Note, that because
for γ̇ 2 � 1 a sinh γ̇ ≈ ln(2γ̇ ), instead of asinh,
which is exact solution according to energy activa-
tion theory, in (19) is used logarithmic function. The
calibration of the constitutive law was carried out for
moderate loading rates for which inertia forces have
not much influence on the rate dependent response
of concrete, i.e., only the rate of crack growth con-
trols the response. For more detail see Ožbolt et al.
(2006).

4 Numerical analysis of plain concrete beam under
impact load

Experimental tests on plain and reinforced concrete
beams (Comite Euro-International Du Beton 1988;
Sukontasukkul and Mindess 2003) loaded by three-
point bending showed that resistance and brittleness
of beams increase with the increase in loading rate.
Furthermore, it was shown that for relatively low load-
ing rate the failure is due to bending (mode-I fracture).
With increase in loading rate there is a transition of the

failure mode from bending to shear. The main diffi-
culty in the experiments with high loading rates is the
measurement of the beam response. This is due to the
fact that fracture takes place in a rather short period of
time. The numerical analysis is performed because of
two reasons: (1) to investigate whether the numerical
model is able to reproduce the test results qualitatively
correct and (2) to investigate in more detail the response
of concrete beam, e.g., cracking rate, distribution of
energies, transition of failure mode etc., for different
loading rates. The numerical study is carried out using
the above discussed numerical approach. Cracking and
damage phenomena in concrete are modeled using the
concept of smeared cracks. To obtain mesh objective
results crack band method is employed (Bažant and Oh
1983; Ožbolt and Bažant 1996).

The plain concrete beam is loaded by impact ham-
mer at the mid-span (see Fig. 2). The dimensions of
the beam are: length–height–width = 3000 × 600 ×
300 mm. The mechanical properties of concrete are:
Young’s modulus Ec = 30,000 N/mm2, Poisson’s
ratio ν = 0.18, uni-axial compressive strength fc =
45.0 N/mm2, tensile strength ft = 2.70 N/mm2,
fracture energy GF = 0.10 N/mm, and concrete
mass density ρc = 2,300 kg/m3. The load is applied
through the kinetic energy of dropping hammer. The
length of the hammer is 600 mm and the cross-sec-
tion area is 300 × 300 mm. The behavior of hammer is
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Fig. 3 Quasi-static analysis a Load-displacement curve. b Failure mode

assumed to be linear elastic with Young’s modulus of
20,0000 N/mm2 and mass density of 8,000 kg/m3. On
the beam-hammer contact surface, the frictional coef-
ficient µ = 0.5 is assumed. The numerical analysis is
performed for quasi-static loading and for impact load-
ing velocities of 2, 4, 6 and 8 m/s.

The results of the quasi-static analysis are shown in
Fig. 3. Plotted are mid-span load-displacement curve
and failure mode. As expected, the failure is of mode-I
type (bending). The crack (red zone) is plotted in terms
of maximal principal strains. It is assumed the critical
crack opening wcr = 0.2 mm what corresponds to the
critical strain of εcr = wcr/he = 0.0033, with he equal
to average element size (60 mm).

Figure 4 shows predicted failure modes for impact
analysis in terms of maximal principal strains (left hand
side) and computed distribution of energies in time
(right hand side). Considered is the time interval up
to the moment when the beam-hammer contact force
drops approximately to zero. Within this time period
the relevant damage of the beam takes place. It can be
seen that for impact velocity of 2 m/s dominates mode-I
fracture (bending failure). However, for impact veloc-
ity higher than 4 m/s dominates shear failure mode.
Between impact velocities of 2 and 4 m/s there is a
transition from bending to shear failure. Similar results
were obtained by experimental investigations (Sukon-
tasukkul and Mindess 2003). Note, that these “limit”
impact velocities are valid only for the here investigated
beam-hammer geometry and their mechanical proper-
ties. For other geometrical and mechanical properties
these limit velocities would change, with the observed
failure modes being the same.

From the computed distributions of energies (see
Fig. 4), it can be seen that because of relatively high

stiffness of the hammer, its deformation energy is negli-
gible compared to the deformation energy of the beam.
After approximately 0.30 ms the total kinetic energy
of the hammer is transformed into deformational and
kinetic energy of the beam. The figure shows that the
total energy slightly decreases with time. For all load-
ing rates the decrease is obvious only up to the point
of transition of the total kinetic energy of the hammer
into the beam (approximately up to t = 0.30 ms).
The reason for this slight drop is the frictional energy
between the beam and hammer, which is not included
in the total energy plotted in Fig. 4. The smaller part
of the energy loss is caused by numerical error. The
energy curves show that the sum of deformational and
kinetic energy is equal to the total energy (isothermal
conditions), what confirms that dynamic equilibrium is
fulfilled.

The predicted mid-span impact loads and reactions
are as a function of time plotted in Fig. 5. Comparing
the peak load for quasi-static load (see Fig. 3a) and
impact load (Fig. 5a) it can be seen that the impact
load is much higher than the quasi-static peak (failure)
load. With increase of impact velocity the impact load
increases. Compared to the impact load, the reaction
forces are relatively small. They are activated after the
beam is already significantly damaged and impact load
already reduces almost to zero. This indicates that the
load transfer takes place in a relatively small zone of the
beam, close to impact zone, and that the impact load
is almost entirely in equilibrium with inertia forces.
With increase of loading velocity, the zone of the load
transfer tends to be smaller, i.e., more localized (see
Fig. 4). It can also be seen that just after the impact of
the hammer, the reactions start to act in direction oppo-
site to the impact load (positive reactions), however,
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Fig. 4 Failure modes and energy balance for a Impact velocity of 2 m/s. b Impact velocity of 4 m/s. c Impact velocity of 6 m/s. d Impact
velocity of 8 m/s

once the beam in the zone of impact is damaged, the
left and the right part of the beam tend to be lifted up
(negative reactions). The described mechanism can be

illustrated by the plot of sequence of distribution of
principal compressive stress waves shown in Fig. 6 for
the case of impact velocity of 2 m/s. It can be seen that
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Fig. 5 Dynamic analysis a Impact load at the mid span versus time. b Support reaction versus time

Fig. 6 Sequences of
propagation of principal
compressive stresses waves
for impact velocity of 2 m/s
(bending failure)

after the beam is damaged in the mid bottom region,
the compressive wave propagates under an angle of
approximately 35◦ (measured from the horizontal line)
and reflects from the bottom free beam surface, under
approximately the same angle, into the left and the right
regions of the beam ends by pushing these parts of the
beam into direction that is opposite to the load direction
(negative reaction).

From the results shown in Fig. 6 it can be deduced
that velocity of wave propagation through concrete is
calculated correctly. Namely, for the used concrete the
loading wave speed can be calculated from the material
properties as (Ec/ρc)

0.5 = 3551 m/s. Accounting for
the beam geometry and the time predicted for the prop-
agation of the loading wave from the top to the bottom
of the beam (0.167 ms, Fig. 6b), it turns out the velocity
of 3,593 m/s, what agrees well with the loading wave
velocity for the used concrete (3,551 m/s).

In Fig. 7 are shown velocities of bending-crack tip as
a function of time. They are obtained from the evalua-
tion of numerical results. Plotted are absolute (Fig. 7a)
and relative (Fig. 7b) velocities. The relative veloci-
ties are related to Rayleigh wave speed, which is for
the used concrete vR = CR(Gc/ρc)

0.5 = 2,140 m/s.
Note, that the constant CR depends on Poisson’s ratio.
For here used concrete it is equal to CR = 910 (for
crack velocity in m/s) and Gc is shear modulus of con-
crete. It is interesting to observe that after crack ini-
tiation there is almost linear increase in velocity of
the crack tip up to the maximal velocity of approxi-
mately 0.55vR . This is in good agreement with theo-
retical prediction (Freund 1972a,b). From Fig. 7 can be
seen that maximal crack speed only slightly increases
with increase of impact velocity. According to theoret-
ical solution for dynamic propagation of a single crack
(Freund 1972a,b), for relative velocities greater than
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Fig. 7 Propagation of the bending crack as a function of time a Absolute velocity of the crack tip. b Relative velocity of the crack tip

0.5 crack branching of mode-I crack is possible. This
is also confirmed by the results of the present study.
Namely, Fig. 4b–d show that after reaching relative
velocity of 0.5 bending crack tends to branch into two
inclined cracks. Furthermore, the evaluation of results
indicates that the acceleration at the crack tip is very
high, i.e., for a few orders of magnitude higher than
the gravity constant. How realistic are such values is
difficult to say because it is well known that standard
numerical integration scheme, such as used here, often
leads to not accurate estimation of acceleration. Note,
that because of relatively coarse FE mesh, the results
related to the dynamic crack propagation can be con-
sidered only as qualitative. To get more detailed view
into the dynamic crack propagation, numerical analy-
sis should be carried out with finer discretization of the
cracking zone.

The comparison between numerical and experimen-
tal results (Sukontasukkul and Mindess 2003), shows
that the used numerical model is able to correctly cap-
ture the rate dependant failure mechanism of plain con-
crete beam. Similar as in the present study, the recent
numerical studies (Ožbolt and Reinhardt 2005a,b);
Ožbolt et al. 2006) show that for lower loading rates
(bending failure) the rate sensitive response is con-
trolled by local inertia forces at the crack tip. In the
numerical analysis for this is accounted for by the rate
dependent constitutive law of concrete. Furthermore, it
is shown that for high and extremely high strain rates
(shear failure mode), the structural inertia forces gov-
ern structural response and that the rate dependency
at the constitutive level is much less important. The
consequence is that the structural response is strongly
dependent on the geometry of the structure. The same

turns out to be the case in the present numerical study,
what implies that, in contrary to lower loading rates,
for higher loading rates bending reinforcement would
have no or little effect on the failure mode that is of
shear type.

5 Summary and conclusions

In the present paper the theoretical background, which
is used in the numerical study of failure of plain con-
crete beam loaded by impact 3-point load is briefly dis-
cussed. The formulation of the problem is performed
in the framework of continuum mechanics, following
basic principles of irreversible thermodynamics. Based
on the experimental and numerical results obtained in
the study of rate dependent failure of plain concrete
beam under impact load, the following can be con-
cluded. (1) Loading rate has significant influence on
the resistance and failure mode of plain concrete beam.
The comparison between numerical and experimental
results shows that the used numerical model is able to
correctly predict the rate dependent failure of plain con-
crete beam. (2) For quasi-static load and relatively low
impact load velocity, the beam fails in bending (mode-
I fracture). With increase in impact velocity there is
a transition of failure mode from dominant bending
to dominant shear and the failure tends to be localized
closer to impact zone. (3) For relatively low strain rates
(mode-I fracture) local inertia forces at the micro-crack
tip control the beam response. The rate dependent con-
stitutive law for concrete can account for the rate depen-
dent response. However, for higher loading rates the
influence of loading rate on the beam response is mainly
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controlled by structural inertia forces. Consequently,
for higher loading rates the geometry (size) of the beam
should have significant influence on the failure. (4)
Because of the change of failure mode with increase
in loading rate from bending to shear, in reinforced
concrete beams loaded by higher loading rates bending
reinforcement would be ineffective. Instead, the shear
reinforcement is required to prevent failure. (5) Veloc-
ity of the bending crack tip increases almost linearly up
to the peak value of approximately 0.55 Rayleigh wave
speed. The maximal velocity only slightly increases
with the increase of impact velocity. The analysis indi-
cates branching of bending crack. (6) Further studies
are needed to investigate dynamic crack propagation in
more detail.
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